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ABSTRACT

The results of a Fokker-Planck simulation of the ripple induced loss of charged fusion
products in TFTR are presented. It is shown that the main features of the measured "delayed
loss" of partially thermalized fusion products, such as the differences between DD and DT
discharges, the plasma current and major radius dependencies etc., are in satisfactory agreement
with the classical collisional ripple transport mechanism. The inclusion of the inward shift of the
vacuum flux surfaces turns out to be necessary for an adequate and consistent explanation of the
origin of the partially thermalized fusion product loss to the bottom of TFTR.

INTRODUCTION AND REVIEW OF EXPERIMENTAL DATA

The confinement of charged fusion products (FPs) in tokamak-reactors has been the

subject of intensive numerical modelling and experimental research during the last years (see for

instance Refs. [1-11]). According to the modern understanding of this problem, at least in the

MHD-quiescent tokamak plasma, the fast ion behaviour is mainly determined by classical

transport processes [2, 3] caused by orbit effects (including those induced by toroidal field

ripple) and Coulomb collisions. In spite of the progress in understanding the classical alpha

confinement in a tokamak plasma, some of the experimental results -- for example, the origin of a

low energy, partially thermalized fusion product loss to the bottom of TFTR -- are not quite
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understood [3,5-7]. This kind of loss is also known as "delayed loss", and was observed for DD

charged fusion products in the energy range down to about half the birth energy, so was not due

to the usual first-orbit loss which occurs only at very near the birth energy.

These delayed loss measurements were made with a scintillator detector located 90

degrees below the outer midplane, as described previously [6, 7]. The main experimental features

of the delayed loss were: - (1) its appearance was delayed by 0.2±0.1 sec with respect to the

normal prompt first-orbit loss, (2) its energy was about 1/2 that of the prompt first-orbit loss,

(3) its pitch angle was higher than the first orbit loss, typically 65-70o with respect to the local

toroidal field, (4) the relative size of the delayed loss with respect to the first-orbit one increased

with plasma current and with NBI power at a fixed current, (5) the delayed loss had a strong

dependence on the plasma major radius, appearing strongly at R < 2.52 m and disappearing at R >

2.55 m, and (6) the characteristics of this loss process were very reproducible, occurring on every

discharge of this type, except for those with strong MHD activity. For DD plasmas with I = 1.6

MA and R = 2.45 m, the delayed loss was nearly 4 times larger than the calculated first-orbit loss.

The very reproducible nature of this loss suggests that it is not due to MHD activity, which is

variable from shot-to-shot. However, the delayed loss can be strongly modulated by such MHD

activity, causing it to either increase or decrease. This delayed loss was seen most clearly in the

scintillator detector 90o below the outer midplane (in the ion grad-B drift direction), and was not

seen at other poloidal detector locations, e.g. 60o, 45o, and 20o below the outer midplane.

In DD plasmas, these scintillator detectors measured both 1 MeV tritons and 3 MeV

protons, with a relative response which depends on the energy loss in a 3 micron thick aluminium
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foil filter in the detector [5]. The detector response to (half-energy) 1.5 MeV protons is about 10

times that of 0.5 MeV tritons; therefore it is likely that the delayed loss is dominated by 3 MeV

protons. However, it is not possible to uniquely identify which species is responsible for the

delayed loss, since the detector only measures the gyroradii and not the mass of these lost ions.

In TFTR DT plasmas there was, surprisingly, no evidence for any delayed loss of alpha

particles as measured by the same scintillator detector 90o below the midplane, i.e. the alpha loss

measurements were consistent with simple first-orbit loss [7]. However, an entirely different

type of lost alpha detector at the same poloidal location in TFTR did show evidence of a

partially thermalized alpha loss. The alphas in this detector were collected in a thin metal foil and

removed for analysis, so its data was not time-resolved [11]. However, several features of the

alpha collector measurements were similar to those of the delayed loss observed for DD fusion

products; namely, the ratio between low energy loss and prompt first-orbit loss increased as the

plasma current increased (the alpha loss at I=1.0 MA was consistent with the first-orbit loss), the

peak of the energy of the alpha loss at high current (I=1.8 MA) was about 30% below the birth

energy, and the pitch angle of the partially thermalized alpha loss at higher current was larger

than the first-orbit loss. At high current, the magnitude of this "delayed" alpha loss in DT was

about a factor of 6 above the first-orbit loss for collector samples located 0.5±0.3 cm radially

inside the limiter radius, but was within a factor of 2 above the first-orbit loss for collector

samples located at 0.6±0.3 cm radially outside the limiter radius. Since the aperture of the 90o

scintillator detector was about 1.2 cm outside the limiter radius, it appears as if the delayed alpha

loss was strongly shadowed by the limiter in these experiments.
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The very reproducible nature of the DD measurements of the delayed loss in the 90o

detector suggest that it is due to some classical mechanism. However the simulations of the

axisymmetric collisional loss in TFTR [8] are not consistent with the delayed loss measurements

[7]. Namely, the pitch-angles of the calculated collisional losses are less than those of the

measured first orbit loss and not higher as is measured for delayed loss, and the calculated

axisymmetric collisional loss near the bottom of TFTR is significantly smaller than the

experimentally observed delayed loss. By employing a Monte Carlo code, in Ref.[9, 10] the

collisional loss of the alphas in the presence of TF ripple has previously been simulated for

TFTR, where the obtained losses turned out to be significantly larger than the axisymmetric

collisional losses [8]. However, in these calculations the losses were peaked poloidally within

30o below the outer midplane [9], a result which is also inconsistent with the delayed loss

measurements 90o below the midplane.

The purpose of the present paper is to explain how partially thermalized FPs can reach

the detector at the bottom of the vessel, based on a model which includes a significant inward

shift of the flux surfaces in the vacuum region [8]. The stochastic ripple diffusion [4] and the

superbanana diffusion [13,14] of toroidally trapped fast ions are considered as possible

mechanisms which may be responsible for this delayed loss. These investigations are based on

the 3D Fokker-Planck code of Ref. [8], which is extended to the case of a rippled tokamak field.

The paper is organised as follows. In Sec. 2 the influence of the inward shift of the flux

surfaces in the vacuum region on the poloidal distribution of the loss of partially thermalized

alphas is investigated. A qualitative evaluation of the collisional ripple diffusion rate of the
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toroidally trapped fast ions is carried out in Sec. 3. The results of a 3D Fokker-Planck simulation

of the delayed loss of fusion products in TFTR and comparisons with the experiments are

represented in Sec. 4. Finally relevant conclusions are drawn in Sec. 5.

2. MARGINALLY CONFINED ORBITS AND VACUUM FIELD EFFECT

In the present paper we are interested in the ripple loss, caused by the weak perturbation

of the axisymmetric particle motion, and neglect the ripple trapping effects. As a mechanism of

the charged fusion product loss we consider the radial diffusion induced both by the pitch-angle

scattering and the ripple perturbation of particle motion [13-15]. However, here we are not

interested in the FP losses due to the pitch angle scattering of counter-circulating particles into

the first-orbit loss cone [8, 27, 28]. In this case the losses take place due to the step by step

increase of the maximum radius of the orbit. As a result the particle can intersect the wall only

near the poloidal angle ϑ t , corresponding to the tangency point of the marginally confined orbit

with the wall. To investigate the tangency condition we first neglect the effects caused by the TF

ripples and radial diffusion and employ the model of an axisymmetric magnetic field with shifted

circular flux surfaces [8, 16]. Then the major flux surface radius, Ro, is given by

Ro(r) = R + ∆( )r ,                                                         (1)

where R is a major plasma radius and ∆( )r  is the shift of the flux surface with minor radius r. It

is obvious that the vacuum region (or "gap") between the plasma and the chamber wall can

significantly influence the marginally confined orbits (i.e. orbits which become tangent to the

wall). In the absence of the gap, the flux surface with the maximum radius coincides with the
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chamber wall, so that all slowly outwardly diffusing banana orbits eventually intersect the

chamber at poloidal angles close to the midplane. In the presence of a vacuum region between

plasma and wall, as in the case of TFTR plasmas with R<2.6 m, the vacuum flux surfaces have to

be shifted inwards compared with the plasma surface, in order to satisfy the condition for a

currentless gap (i.e. the condition of minimum ( ) ( )[ ]dS j r r q rvac t∫ 2 , ,∆ , see [8]). In other words,

the major and minor radii of the vacuum flux surfaces are correspondingly smaller and larger than

the major and minor radii, Rw and rw, of the chamber wall. Therefore these surfaces should

intersect the chamber wall. As a result the TF ripple diffusion losses for most of the partially

thermalized toroidally trapped particles (except deeply trapped ones) can take place far away

from the outer midplane [17]. In order to investigate the influence of the vacuum region on the

marginally confined orbits, within the plasma the profiles of the flux surface shift ∆( )r  and the

safety factor q(r) are determined by TRANSP calculations [8, 18], whereas for the vacuum region

the shift is approximated by

∆ ∆ ∆( ) / ( ) ( ) , ( ) ( ), /x a x x q x x q x r a= − + − = =0
2

1
2 2 21 1 1 ,                       (2)

where a is the minor plasma radius and  ∆ ∆0 05= =. /∂ ∂r r a   is a constant corresponding to

results of Refs.[8, 18]. ∆1 is a constant determining the maximum inward shift ∆m defined as

∆ ∆m maxr a= ( / ) , where rmax = Rw + rw − R − ∆m is the maximum flux surface radius at x > 1. If

we assume for ∆1 the value ∆1 0 025= .  then the vacuum profiles determined by Eq.(2) allow a

very accurate approximation of the currentless profiles obtained in Ref.[8] (see Fig.1).

Furthermore, the value of the tangency poloidal angleϑ t  is then determined by the total and
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longitudinal energies of the particles, strongly depending on the maximum inward shift ∆m . This

is confirmed by Fig.2, where the typical marginally confined orbits of 0.5 MeV tritons are shown.

In fact, in the case of a weak inward shift ( ∆m a= −0 1. ), a marginally confined orbit is tangent to

the chamber wall at the midplane (orbit B in Fig.2). However if ∆( )r  and q(r) correspond to the

currentless gap, then the tangency angle is situated at ϑ t
o= 62 5.  (orbit A in Fig.2, we are

interested here only in valuesϑ t  below the midplane, where according to the assumed orientation

of the ion ∇ B drift the loss is possible). In Fig.3 there is represented the dependence of the

tangency angle ϑ t  on the value of the maximum inward shift of the vacuum flux surfaces for

tritons and alphas at I = 2MA and R = 2.52 m, based on the model profiles of ∆( )r  and q(r) given

by Eq.(2). It can be seen that, if ∆m  exceeds some critical value ∆cr , then ϑ t  is shifted poloidally

toward the bottom of the TFTR vessel, otherwise ϑ t= 0. Thus for the 0.5 MeV tritons with

normalised magnetic moment λ=0.925 it follows from Fig.3 that ∆cr a= −013.  and that for

∆m a= −0 24.  the tangency angle is situated at ϑ = 62o , being in agreement with Fig.2.

The poloidal shift of the impact point of the marginally confined orbit tends to result in a

poloidal shadowing of the outer midplane region of the toroidally smooth wall from the diffusive

loss of FPs. From the expression for the curvature radius, rcurv , of the banana orbit at the

midplane,
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it follows that
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Here E is the particle energy, λ χ= −( cos ) /1 2
0B B  a transverse adiabatic invariant, χ  the

particle pitch-angle and B0 the magnetic field at the plasma centre. Furthermore, ξ m  denotes the

particle pitch-angle cosine at midplane, V the particle velocity and Ecr  the critical energy

corresponding to the orbit for which the curvature radius at the midplane is identical to the minor

wall radius. Note that this Ecr  corresponds to a critical gyroradius ρ cr  which may be

approximated by ( )ρ ξcr w m mR R q r≈ − −2( ) / max∆ . Since the curvature radius rcurv  decreases

with increasing E, the tangency requirement may be written as ( )r E rM t wϑ λ, , = , where rM  is the

maximum distance from the chamber centre and ϑ t = 0 for E E cr>  and ϑ t ≠ 0  for E Ecr< .

From the expansion of this tangency condition in the vicinity of ϑ t = 0 and E Ecr=  then it follows
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From Fig. 3 it is concluded that the analytical approximations of Eqs. (3-5) are in agreement with

the numerical results, also showing the strong dependence of ϑ t  on the particle energy. Thus

relatively few particles can be lost at ϑ ϑ< t  as a result of radial diffusion if there is only a small

change of the energy and radial position of the banana tip per bounce. This effect becomes

stronger with decreasing both major plasma radius and particle energy (see Figs.4, 3) and,

obviously, with increasing plasma current, as all of them result in a banana width reduction and in

the enhancement the influence of vacuum field. In the following we will refer to this as the
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poloidal shadowing effect, in contrast to the toroidal shadowing effect due to the toroidally non-

smooth nature of the limiters in TFTR [19].

In order to take into account the influence of the magnetic field ripples on the marginally

confined particles, the TFTR magnetic field is approximated by the expression B B Bs r= + ,

where Bs  is the model magnetic field of an axisymmetric toroidal configuration with nested-in

circular flux surfaces [8, 16] and Br = ∇ U  is the ripple perturbation. The perturbation potential

U can be expressed in the form U F N N= ( / ) sinδ ϕ , where F is the poloidal current outside the

considered flux surface, N is the number of TF coils, and δ is the ripple amplitude, which is

modelled by [20]

( )
δ δ η η= =

− +
0 0

2

2 2

I N
R r z

R r
r

r

( ),  ,                                          (6)

with I x0( ) being the modified Bessel function. Furthermore, in accordance with Ref.[21] it is

assumed N R mr= =20 2 25, .  and δ0 =1.4.10-5.

Because of the uncompensated vertical ripple drift of trapped particles at the bounce

point, the poloidal and pitch angles of the lost fusion products can be significantly increased [22].

This effect is demonstrated in Fig.5, where both, the ripple perturbed as well as the unperturbed

orbits of the alphas are represented. To obtain a qualitative description of the influence of the

ripples on the angular distribution of lost particles, it is assumed that the lost bananas are

homogeneously distributed over all the values of the vertical ripple drift d per bounce period in

the range
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d dm ≤ ≤ 0,                                                        (7)

where dm  is the amplitude value of this drift per bounce [4, 15], defined by

d
q
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,                                 (8)

with ( )α δ≅ z NqRo/  and ε = r Ro/ . Note, that the maximum ripple drift per bounce period d =

2dm only applies to those particles, which strictly satisfy the resonance condition (see Sec.3).

However, since the fraction of the latter is only small as compared with the total number of the

diffusively lost particles, one can neglect their contribution to the poloidal and pitch-angle

distributions.

The ripple induced change in the poloidal angle at which the orbit hits the wall,

∆ϑ ϑ ϑ= − t , strongly depends onϑ t . It follows from the analytical analysis (similar to that of

Ref. [22]) of the ripple perturbed banana motion that for small ϑ t  this change is of the order

( )εd rb∆
1 4/

, and near the vessel bottom ( )∆ ∆ϑ ε∝ d rb

1 2/
, where ∆rb is the characteristic banana

width. The typical increase of the poloidal angle for lost FPs given by these approximate

expressions, ∆ϑ ≤ ÷10 30o o , is in agreement with the modelling results shown in Fig. 5.

3. SUPERBANANA DIFFUSION

The orbits of toroidally trapped fast particles in tokamaks are known to be very sensitive

to weak field-asymmetries caused by TF ripples. Therefore, most sensitive to ripple

perturbations are the so called resonant particles [15, 23], satisfying
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l N lb dω ω= = ± ±, , , , ...0 1 2                                                (9)

where ωb  and ωd  are the particle bounce and precession frequencies, respectively. Fig.6

represents typical resonant levels for 3.5 MeV alphas in the{ }λ,rm plane, where rm  is the

maximum radial coordinate along the unperturbed orbit. In this section, we will consider the

toroidally trapped particles within the non-stochastic domain, which are confined in the absence

of collisions. In the vicinity of the resonant levels, these particles execute "superbanana" orbits

[14, 15, 17] with typical radial excursions in the order of

∆ ∆r r lsb m r≤ / ,                                                                  (10)

where ∆lr  is the number of resonant levels in the radial coordinate within the non-stochastic

domain. It should be pointed out that the superbanana radial excursions are significantly larger

than the typical ripple induced drift d of the banana tip per bounce. Typical values of d in TFTR

are about 1 cm [20], while ∆rsb  is of the order 5-10 cm. This is demonstrated in Fig.7 by the

time dependence of rm  for alphas with λ = 09. , obtained by numerical integration of the

equations of motion. Typical periods of superbanana oscillations are in the order of 10-20 banana

bounce times.

In the presence of weak pitch-angle scattering, superbanana excursions result in a

collisional ripple diffusion with a rate

( ) ( )D rr
eff sb eff sb= = ⊥ν ν ν ε λ∆ ∆

2 2
, / ,                                           (11)

where ν eff is the effective pitch-angle scattering rate of superbananas in the λ  variable and ε  is

the inverse aspect ratio. The width ∆λ sb  of a resonant region satisfies the relation
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∆ ∆λ ε λsb l≤ / ,                                                                (12)

where ∆lλ  is the number of resonant levels for a fixed rm . With the help of Eqs. (9) and (10), the

collisional ripple diffusion coefficient Dr  can be estimated by the relation

( )D D l l D rr
sb r sb m= = ⊥∆ ∆λ ν ε/ , /

2
2 .                                              (13)

Note that the diffusion coefficient Dsb looks like the standard "superbanana" diffusion [12,24],

and the factor ( )∆ ∆l lrλ /
2
accounts for the effect of "inclination" of resonant levels in the

{ }λ,rm plane. The maximum diffusion takes place if resonant levels are parallel to

line λ = const .

It should be pointed out that Dsb  can be derived also from qualitative expressions for the

superbanana motion of alphas in the limit of a small banana width [15]. If we employ for ∆rsb,

ν eff  and the frequency of superbanana oscillations ν sb  the formulas derived in Refs. [15, 25], then

one arrives at the relations
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Here ( )δ ε1

3 2
= /

/
Nq  is the characteristic ripple value that divides the plasma into regions with

qualitatively different superbanana motions [15, 23-25] and Vd  is the toroidal drift velocity. It

may be easily seen that ∆rsb and νeff , defined by Eqs.(14) also result in the diffusion coefficient

D Dr
sb≅ . This rate corresponds to the regime of weak collisionality with ν νeff sb<  and applies

for particles with high energies, which satisfy the inequality
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where Eo is the birth energy of the charged fusion product. For typical TFTR parameters the

condition for weak collisionality is satisfied for ( )E E/ . .0 0 3 05≥ ÷ . It is evident that the

collisional diffusion coefficient Dr  can be comparable to the one of the superbananas Dsb only in

resonant regions, i.e., in the vicinity of resonant levels, where superbanana orbits may occur,

whereas outside these regions the inequality D Dr
sb<<  holds. According to the numerical results

shown in Fig.7, the volume of the resonant regions is comparable or less than the volume of the

non-resonant ones. To examine the effect of a decrease of the ripple diffusion rate due to the

existence of non-resonant regions, Dr may be approximated by

D kD kr
sb≅ ≤, 1.                                                     (16)

The evaluation of k is a rather complex theoretical problem and is beyond the scope of the

present paper [24]. In our numerical modelling we will apply k const= . It should be pointed out

that the diffusion coefficient of Eq.(16) is in qualitative agreement with the results of numerical

modelling of collisional ripple diffusion of trapped alphas within the central region of a tokamak

plasma [26].

4. SIMULATION RESULTS AND COMPARISON WITH EXPERIMENT

The superbanana diffusion should result in an enhanced loss of the toroidally trapped

FPs. To evaluate this loss, we carry out the modelling based on the numerical solution of the 3D

Fokker-Planck equation in the COM space [8]



14

  
∇ − ∇( ) = ( )c cd D c

t
f S ,                                                      (17)

with d ds= , 
t t t
D D Ds r= +  and where the superscripts "s" and "r" denote the axisymmetric and

ripple induced transport coefficients, respectively, ( )S c is a source term and c are the COM

variables. The definition domain of the toroidally trapped particles for the case, where the ripple

transport is taken into account, is shown in Fig.6. For the calculation of the radial component of

  
t
Dr , the stochastic diffusion coefficient [4] ( )Dr

b= ∆2 2/ τ  is employed for the stochasticity part

of this domain, whereas the superbanana rate of Eq.(12), Dr = k ν⊥ rR = (102-103) cm2/s is used

for the remainder. The FP loss level will be characterised by that fraction of particles lost for a

given species within a given energy range (Eo >E>mV2/2) and poloidal angle.

We first estimate the contribution of the superbanana diffusion to the total diffusive loss

of charged fusion products. For a 2 MA TFTR discharge with R=2.52 m, the dependence of the

relative FP loss fraction on the particle velocity for different rates of the assumed ripple induced

collisional diffusion is shown in Fig.8. It can be seen that about 5% of the tritons are lost in the

high energy range (E/Eo > 0.8), where the main loss mechanism is the ripple induced stochastic

diffusion. For k>0.1, the loss fraction of the partially thermalized particles with energies in the

range of 0.5<E/Eo<0.8 is larger than of those with energies in the range E/Eo>0.8. The loss of

partially thermalized ions scales approximately like k0.5. It is similar to the Zeff dependence of

the loss due to pitch angle scattering through the trapped-passing boundary [27, 28]. The fraction

of the collisional ripple loss of alphas at k = 0.1 is about 7% and comparable to the ripple loss
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energy fraction of alpha particles simulated by Monte Carlo code ORBIT [9]. In the following

our modelling will be done mainly for an assumed k = 0.1.

Note that at I = 2 MA and Dr = 0.1ν⊥ rR the calculated collisional ripple loss of toroidally

trapped tritons with 0.5<E/Eo<0.8 even exceeds the first-orbit loss. In the case of the alphas it is

only about 20% of the total loss level. It should be pointed out, that because of the scattering

through the passing/trapped boundary it is possible also for originally circulating fusion products

to be lost due to the transport mechanism considered. However the quantitative evaluation of the

contribution of the circulating at birth particles to the ripple collisional loss was not investigated

here.

Now we investigate, for the different detectors in the DT and DD discharges with 2 MA

and 2.5 MA plasma currents, the dependence of the calculated FP loss fraction on energy. First of

all it is evident that one has to expect different loss spectra at small and large poloidal angles.

Indeed it follows from Sec. 2 that the effect of poloidal shadowing of the outer part of the first

wall is extremely sensitive to the energy of the lost particles. Thus, poloidal shadowing takes

place only for energies below some critical value Ecr . Furthermore, for energies E close to the Ecr

the tangency angle ϑ t  is strongly increasing with decreasing energy. Therefore, diffusive losses of

particles with energies E> Ecr  should be expected just below the midplane, while the particles with

energies E< Ecr  (except the small number of those with E very close to Ecr ) should be lost far

from the midplane. Hence if the critical energy Ecr  is close to the birth energy Eo (like in the case

of R = 2.52 m and I = 2-2.5 MA), then the loss of high energy FPs is expected at small poloidal

angles. This is in qualitative agreement with the modelling results represented in Fig.9. Thus for
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poloidal angles θ < 60°, the main contribution to the calculated loss comes from the high-energy

range 0.8 < E/Eo <1 (due to stochastic diffusion) whereas the contribution of the partially

thermalized particles is weak. From Fig. 9b it can be concluded that at small poloidal angles the

diffusive loss of tritons with 0.5 < E/ Eo < 0.8 is at least a few times smaller as compared with the

high-energy loss (including first-orbit one). In the case of the alphas (Fig.9a) this distinction

increases. On the other hand at the 90o detector the energy spectrum of the diffusive loss of FPs

is quite different from that at the other detectors. Thus at θ = 90o only the collisional loss of

particles with E/Eo<0.7-0.8 is observed. Moreover for I = 2.5 MA the loss of the partially

thermalized tritons exceeds the first orbit one. As already pointed out the reason for this

difference is the poloidal shadowing of the 20o, 45o and 60o detectors from the collisional loss of

thermalized FPs discussed in Sec.2. Note that the weak loss of FPs with energies 0.5<E/Eo<0.8

at θ < 60o is in qualitative agreement with the delayed loss observations (see Sec.1). It can also

be seen that the ripple loss at the 20o and 45o detectors increases with the plasma current, while

at 60o it decreases. This feature indicates the strong dependence of the poloidal distribution of

the ripple loss on the q profile and may be important for the explanation of the inconsistency

between the alpha ripple loss measured by the 20o movable scintillator detector and the total TF

ripple loss simulated with ORBIT code [18].

The calculated collisional ripple losses of DD tritons and DT alphas at the 90o detector

are shown in Fig.10. In the energy range E/Eo> 0.5 the partially thermalized triton loss

significantly exceeds that for the alphas, qualitatively consistent with the delayed loss
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measurements [3,5-7]. The differences between the DD and DT FP losses are due to their

different collision rates, since for the alphas the ratio of pitch-angle scattering frequency to the

slowing down one is about 7 times smaller as in the case of the tritons [7]. As for the case of DD

protons this ratio is only 10% that of tritons, the proton contribution to the collisional loss

fraction of DD FPs is small as compared with the triton one. More quantitative comparisons

with the measurements are difficult since the detector does not distinguish between the proton

and triton fusion products [5], moreover the modelling carried out is rather qualitative one and

neglect the toroidal shadowing caused by RF limiter (i.e. the radial dependence of alpha loss), the

finite Larmor radius effects and so on.

The next important feature of the calculated collisional losses to the 90¡ detector is the

strong dependence of the ratio between delayed loss and first-orbit loss on the plasma current. In

fact, from Fig.10a it follows that for energies E/Eo > 0.5 the fraction of delayed alpha loss for I =

2 MA is negligible compared to the 2.5 MA case. For tritons the delayed loss fraction for I = 2.5

MA is about 5 times larger compared to the case I = 2 MA. This feature of the calculated loss of

partially thermalized FPs is also in agreement with experimental observations of the DD FP loss

[7].

In Fig.5 of Sec.2 it was shown that the poloidal distribution of lost FPs is strongly

affected by the ripple induced drift of banana tips. In Fig. 10a by the curve a the significant

weakening of the alpha loss for E/Eo > 0.5 at the 90o detector is shown for the case where the

amplitude value of this drift is assumed to be _ of that given by Eq. (8), i.e. for the range of the

vertical ripple drift given by 05 0. d dm ≤ ≤ .
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Finally curve b in Fig. 10b demonstrates the weak increase of the triton loss as a result of

the two fold decrease of the threshold for the stochastic ripple diffusion. From the results of the

modelling represented in Fig.10b it follows also that the triton loss fraction detected at the 90o

detector roughly scales with k like k0.5, in agreement with the analogous scaling for the calculated

total loss of tritons (see Fig. 8).

The pitch-angle distributions of the collisional ripple loss of tritons and alphas at the 90o

detector are shown in Fig.11. It can be seen that for E/Eo > 0.5 the maximum loss occurs in the

pitch-angle range 65o-75o, also being in approximate agreement with the observations [7].

Note that the ripple collisional loss caused by radial diffusion with D ∝ ⊥ν rR  should

increase with NBI power. Really the increasing of the latter results in the increase of the plasma

temperature, and hence the decrease of the ratio of pitch angle scattering time to the slowing

down one. From the other hand, the NBI induced additional shift of plasma flux surfaces should

enhance the inward shift of vacuum ones, and hence should result in the additional shift of

delayed loss to the vessel bottom.

5. SUMMARY

A Fokker-Planck simulation of the delayed loss experiments of charged fusion products in

TFTR shows that the main observed features are at least qualitatively consistent with the

classical collisional ripple transport mechanism. The new feature of these calculations is the
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inclusion of an improved model for the vacuum magnetic fields, which can strongly affect the

poloidal distribution of the charged fusion ripple loss to the wall.

It is found that the superbanana and stochastic diffusion of toroidally trapped particles in

TFTR results in a loss of partially thermalized DD FPs (0.5<E/Eo<1) which exceeds the first-

orbit loss at I > 2 MA. In the case of DT plasma with I = 2 -2.5 MA the calculated loss of

partially thermalized alphas is less then the first-orbit one.

The poloidal and pitch angle distributions of the calculated losses have turned out to be

very sensitive to the spatial distribution of the magnetic field in the vacuum region. The origin of

the losses to the bottom of TFTR in the small pitch-angle range above the passing/trapped

boundary may be explained by the effect of poloidal shadowing of the outer part of vessel wall

because of the inward shift of the vacuum flux surfaces. For currents I = 2-2.5 MA the calculated

delayed losses at the 90o detector are characterised by pitch-angles in the range 60o-75o and

gyroradii < 3.7 - 4.5 cm for tritons and < 3.3 - 4 cm for alphas, correspondingly. Moreover in the

energy range 0.5 < E/Eo <1 the calculated triton losses are a few times larger than those for

alphas, which helps to explain the absence of any significant delayed loss of alphas in DT.

It is found that at poloidal angles ≤ 60o the collisional ripple loss of partially thermalized

DD and DT fusion products is small as compared with the loss of high-energy ones. This is

consistent with the apparent absence of delayed loss in the DD measurements at these angles.

Furthermore, the dependencies of the calculated collisional ripple losses of the charged fusion

products on the plasma current and the major plasma radius are shown to be in qualitative

agreement with the delayed loss measurements [7].
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In summary, the collisional ripple loss mechanism is at least qualitatively consistent with

previous observations of the delayed loss of DD fusion products in TFTR. This loss mechanism

may also explain the anomalous loss of partially thermalized alphas measured by the TFTR

alpha collector [11]. However, for quantitative comparisons of the calculated and measured loss

levels these simulations should be carried out with more accurate transport coefficients, and

should also take into account the toroidal shadowing caused by RF limiter (i.e. the radial

dependence of alpha loss) and the finite Larmor radius effects, which were neglected in our

consideration. This collisional ripple loss mechanism should play an important role in the alpha

particle loss behaviour in the large scale tokamaks like ITER, since the role of ripple collisional

loss mechanism of FPs dominates over the first-orbit loss at high plasma current, and the issue of

the spatial distribution of the alpha loss to the first-wall is crucial to the design of the first-wall

structure and TF magnet systems.
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Figure Captions

Fig. 1 Profiles of Shafranov shift (figure (a)) and safety factor (figure (b)) used for the

investigation of the marginally confined orbits. Curves A correspond to the model of a

currentless gap [7], curves B and C are given by Eq. (2) with ∆1 01= .  and ∆1 0 02= . ,

respectively. r-R is the distance in the equatorial plane from the plasma centre.

Fig. 2 Marginally confined orbits of tritons with λ=0.925 ( λ χ= −( cos ) /1 2
0B B  is a transverse

adiabatic invariant, χ  is the particle pitch-angle and B0 the magnetic field at the plasma

centre). Orbits A and B correspond to the A and B vacuum profiles of shift and safety

factor in Fig. 1.ϑ t  is the poloidal angle corresponding to the tangency point. ϑ t
o= 62 5.

for the orbit A and ϑ t= 0o for the orbit B. r-R is the distance in the equatorial plane from

the plasma centre.

Fig. 3 Tangency poloidal angle versus maximum inward shift of the vacuum flux surfaces for the

model profiles of ∆( )r  and q(r) given by Eq. (2).

Fig. 4 Marginally confined orbits of tritons with λ=0.925 for a major plasma radius R = 2.45 m.

Tangency poloidal angles ϑ t  are 90.2o and 74.6o for particle energies 0.5 MeV and 1 MeV,

respectively. r-R is the distance in the equatorial plane from the plasma centre.

Fig. 5 Marginally confined orbits of tritons with λ=0.925 in the presence of TF ripple. θ and χ

are the poloidal and pitch angles at the impact point. Orbits 1, 2 and 3 in figure (a) start at

toroidal angles at the tangency point above the midplane, ϕ  = 29.2o, 28.9o and 28.8o,
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respectively. In figure b these toroidal angles are correspondingly 28o and 11.9o for orbits

1 and 2. Orbits 3 (figure a) and 2 (figure b) are practically unperturbed by TF ripple. r-R

is the distance in the equatorial plane from the plasma centre.

Fig. 6 Definition domains of toroidally trapped alphas in the {λ , rm} plane. l is the resonance

number (see Eq. (9)). Curves A correspond to ripple magnitudeδ δ= 1 , where

( )δ ε1

3 2
= Nq is the characteristic ripple value which divides the plasma into regions with

qualitatively different superbanana motions. Curves B and C correspond to the boundary

of stochastic part of definition domain in the case ofδ δst GWB= and δ δst GWB= 0 5. ,

respectively. Here ( )[ ] ( )δ ε δ ρGWB LNq q= ′
3 2

1 is the Goldston, White, Boozer threshold

for stochastic ripple loss.

Fig. 7 Time dependence of the maximum radial coordinate on the banana orbit, rm, for alphas

with λ = 09. . Tnorm is the typical bounce time.

Fig. 8 FP loss fraction in the 2 MA TFTR discharge with R = 2.52 m versus the particle velocity

for different rates (k = 0.1, 0.3, 0.6) of the ripple collisional diffusion, Dr = kν⊥ rR.

Fig. 9 FP loss fractions versus the particle velocity at the poloidal angles 20, 45, 60 and 90

degrees. Loss curves are normalised to the first orbit loss L IFO
90 ( ) at θ = 90o.

L MA L MAFO FO
9 0 9 02 2 2 5( ) ( . )≅ ; ( L IFO

90 ( ) for tritons)/( L IFO
90 ( ) for alphas) ≅ 0.8.

Fig. 10 Charged fusion product loss fractions at θ = 90o. Curve a of figure (a) corresponds to the

two-fold reduced ripple drift of the banana tips. Curve b of figure (b) is obtained for
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δ δst GWB= 0 5.  i.e. for the two-fold decreased threshold for the stochastic ripple diffusion

as compared with the rest curves. Loss curves are normalised to the first orbit loss at θ =

90o. L MA L MAFO FO
9 0 9 02 2 2 5( ) ( . )≅ ; ( L IFO

90 ( ) for tritons)/( L IFO
90 ( ) for alphas) ≅ 0.8.

Fig. 11 Pitch angle distributions of the loss of partially thermalized FPs at the 90o detector.
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Fig. 2
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Fig. 3
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Fig. 4
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Fig. 7
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Fig. 8
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