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Abstract

The rigorous formulation of the bounce-averaged equations is presented based

upon the Poincar�e-Cartan one-form and Lie perturbation methods. The re-

sulting bounce-averaged Vlasov equation is Hamiltonian, thus suitable for

the self-consistent simulation of low frequency electrostatic turbulence in

the trapped ion mode regime. In the bounce-kinetic Poisson equation, the

\neoclassical polarization density" arises from the di�erence between bounce-

averaged banana center and real trapped particle densities across a �eld line.

This representation of the neoclassical polarization drift as a shielding term

provides a systematic way to study the long term behavior of the turbulence

driven E�B 
ow.
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I. INTRODUCTION

The reduced kinetic description of plasma dynamics based on the existence of adiabatic

invariants has contributed greatly to the theoretical development of magnetic con�nement

physics. The best example is the nonlinear gyrokinetic formalism1{6 which describes 
uc-

tuations with characteristic frequency ! much lower than the ion cyclotron frequency 
ci

such that the �rst adiabatic invariant � is conserved. It has provided a rigorous foundation

for analytical kinetic microturbulence models,7;8 gyrokinetic particle-in-cell simulations,9{14

and the development of nonlinear gyro
uid equations15{19 for tokamak plasmas. Even with

overly simpli�ed electron dynamics, nonlinear gyrokinetic and gyro
uid simulations of ion

temperature gradient driven turbulence have reproduced many features of turbulence often

found in tokamak plasmas.

The nonlinear bounce-averaged kinetic equation for trapped electrons,20 which relies on

the conservation of the second adiabatic invariant J in addition to �, for 
uctuations with

characteristic frequency lower than the bounce frequency of the mirror trapped electrons

(!Be), o�ers a more realistic description of the electron dynamics. Nonlinear kinetic theories

of trapped electron driven turbulence7;5 based on this formalism have demonstrated the

possibility of reproducing some of the con�nement trends of Ohmic and Supershot plasmas.

It is also worthwhile to note that the bounce-averaged kinetic equation has been useful in

studying low frequency instabilities in the earth's dipole �eld.21

Previous bounce-averaged kinetic equations have been derived in the limit of vanishing

radial width of the banana orbit. In this work, we include the full banana orbit width

in the bounce-averaged kinetic formalism to provide a �rm theoretical foundation for the

description of low frequency large scale 
uctuations such as the trapped ion mode,22;23 turbu-

lence driven E�B 
ow24;25 (the axisymmetric mode), and convective cells.26 Indeed, from

re
ectometry27 and beam emission spectroscopy measurements28 on the Tokamak Fusion

Test Reactor (TFTR),29 one observes that a signi�cant fraction of the 
uctuation inten-

sity resides in the trapped ion mode regime corresponding to ! < !Bi, the bounce fre-
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quency of mirror trapped ions. From the theoretical side, both a comprehensive kinetic code

calculation30 and nonlinear simulations11;15;14;31 show the importance of long wavelength

low frequency 
uctuations. Persistent appearance of Bohm-like scaling of large tokamak

transport32{34 has also revived theoretical studies35{37 of trapped ion driven turbulence. Fi-

nally, small radial scale 
uctuating E�B 
ow driven by turbulence (zonal 
ow) has been

observed in both nonlinear gyro
uid38{41 and gyrokinetic13;31 simulations, as well as at the

DIII-D tokamak edge.42 It has been shown that the long term asymptotic behavior of this

zonal 
ow can be addressed by the bounce-kinetic equation.43

In analogy to gyrokinetics, the formalism of one-form mechanics and Lie perturbation

theory is employed.44{46 The formalism has convenient transformation properties and allows

us to preserve the Hamiltonian structure explicitly. We adopt three small quantities for our

ordering scheme: �B, which measures the ratio of the ion banana radius �B to the equilibrium

magnetic �eld gradient scale length, LB � B=jrBj; in analogy to the gyrokinetic ordering,

�� � e�=Ti � 1=k?Lp, where Lp is the pressure gradient scale length; and �k � !=!B �
k?�B, where !B is the ion bounce frequency. The �rst two parameters are analogous to the

corresponding small parameters in gyrokinetics, whereas the �k ordering, corresponding to

the low frequency limit, is necessary to ensure the adiabatic invariance of the bounce action.

In addition, long parallel wavelength perturbations are assumed, i.e., kk � k?. Because

the bounce phase angle dependence arises only in perturbed quantities, one can apply Lie

perturbation theory44;47;48;45 to remove systematically this phase dependence to any desired

order, while also preserving the Hamiltonian structure of the equations.

The principal results of this paper are as follows:

i) The nonlinear electrostatic bounce-averaged kinetic equations are derived systematically.

A symplectic derivation via phase-space Lagrangian Lie-perturbation theory ensures the

preservation of the Hamiltonian structure and conservation laws.

ii) The full banana orbit width e�ect is retained in both bounce-averaged Vlasov and Pois-

son equations. In the bounce-kinetic Poisson equation, the general form of the neoclassical

polarization density is obtained. This can provide useful insights into the long term behavior
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of the turbulence driven E�B 
ow.

iii) The relationship between the neoclassical polarization density associated with the dif-

ference between the real trapped particle density and the bounce-averaged banana center

density, and the more familiar neoclassical polarization drift49;50;43 is elucidated.

The formalism presented in this paper should be useful for bounce-kinetic particle-in-cell

simulations of trapped particle modes.

The remainder of this paper is organized as follows: in Section II we review the reduced

motion described by the guiding center drift equations and provide an heuristic estimate of

the neoclassical polarization density. The formalism of one-form mechanics and coordinate

transformations is summarized in Section III. In Section IV we derive the Vlasov equation

in bounce-averaged coordinates for a simple circular cross-section tokamak equilibrium. In

Section V, we derive the bounce-kinetic Poisson equation and the general form of the neo-

classical polarization density. Finally, in Section VI we provide a summary and discussion

of our work.

II. REVIEW OF GUIDING CENTER MOTION AND AN HEURISTIC

ESTIMATE OF NEOCLASSICAL POLARIZATION DENSITY

In order to provide a simple physical picture of the bounce motion and neoclassical

polarization density, we review and extend the guiding center treatment of trapped particle

motion in high aspect ratio (�a � 1) tokamaks given by Kadomtsev and Pogutse.51 A simple

heuristic estimate will be given for the neoclassical polarization density based upon both the

radial and toroidal deviations of the guiding center from the center of the bounce motion.

The equilibrium guiding center drift equation is

v = vkb+
mc(v2

?
+ 2v2

k
)

2eB3
B�rB; (1)

which, together with the conservation of the magnetic moment, �, and energy, E, completely

determines the guiding center motion. For the equilibrium �eld, we take
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B =
�aB0

q(1 + �a cos �)
�̂ +

B0

1 + �a cos �
�̂; (2)

here �a = r=R0 is the local inverse aspect ratio and q is the magnetic safety factor. In

toroidal coordinates (r; �; �), we have to lowest order

dr

dt
� �(v2 + v2

k
)

2
cR0

sin �; (3)

d�

dt
� vk

R0q
� (v2 + v2

k
)

2
crR0

cos �; (4)

d�

dt
� vk

R0

; (5)

where we have neglected terms higher order in �a. Upon integrating these equations as

functions of �, we obtain

r(�) = r0 � vq0


c
p
�a

 
v2
k0

�av
2
?0

� 2 sin2
�

2

! 1

2

; (6)

where r0 is the radius of the bounce points, q0 is the safety factor evaluated at r0, and vk0 and

v?0 are the velocity components at the outer mid-plane of the torus. Here we introduce the

banana radius �B � vq0=
c
p
�a and the pitch angle �2 � v2

k0=2�av
2
?0. Trapping corresponds

to �2 � 1, and for small �a this implies v
2
k0 � v2

?0 (thus v?0 � v). In the poloidal plane, the

guiding center motion can be viewed in terms of a bounce center at r0 with the second term

representing the periodic bounce motion. The upper sign applies when the motion is in the

positive sense of �̂ (the �rst half of the orbit) and the lower sign for the opposite direction

(the second half of the orbit).

The motion in the toroidal direction is given by

�(�) = q0� +
p
2�B

��
2q00 +

q0

r0

�
C1('(�); �)�

�
2q00(1� �2) +

q0

2r0

�
C2('(�); �)

�
(7)

where

C1('(�); �) =

8>><
>>:
E('; �) +E(�) �rst half of orbit

3E(�)� E('; �) second half of orbit
(8)

C2('(�); �) =

8>><
>>:
F ('; �) +K(�) �rst half of orbit

3K(�)� F ('; �) second half of orbit,
(9)
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and

'(�) � arcsin

 
sin(�=2)

�

!
: (10)

F ('; �) and E('; �) are elliptic integrals of the �rst and second kind, respectively; K(�) and

E(�) are the corresponding complete elliptic integrals; primes refer to @=@r. ' is similar to

a phase angle of the trapped particle bounce motion but is only de�ned between ��=2 to

�=2. The separation of the bounce motion and the averaged motion in the toroidal direction

is not as simple as it is for the radial motion. Unlike r(�), the toroidal position does not

return to its original value after a complete orbit. The di�erence in the poloidal angular

velocity between the �rst and second halves of the orbit, due to the e�ects of the magnetic

�eld strength inhomogeneity and curvature along with the magnetic shear, gives rise to a

net precessional motion in the toroidal direction. Since the guiding center motion follows

the �eld line to lowest order, the separation of average and bounce motions can be seen

more easily in 
ux coordinates rather than toroidal coordinates.52 The bounce motion is

thus mostly along the �eld line with deviations in the � �  p(r) (radial) direction and

� � � � q(r)� (� non-radial perpendicular) direction. Then, we can de�ne an average

precessional motion by means of the average precession frequency,

!pr =
�(�f )� �(�i)

�B
; (11)

where �B is the bounce period. The � position of the bounce center is given by �pr(�) �
!prt(�), where we have integrated dt=d� to �nd t as a function of �; the deviation from the

average is ��(�) � �(�)� !prt(�);

��(�) = �
p
2�B

"�
2q00 +

q0

r0

� 
E(�)

K(�)
F ('; �)� E('; �)

!
+ q00�

�
�2 � sin2(�=2)

�1=2#
: (12)

Thus, the motion of the guiding center is given by

r(�) = r0 +�r(�) (13)

�(�) = �pr(�) + ��(�); (14)
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while the motion of the bounce center is simply (r0; �pr(�)). One can now readily see the

separation between the averaged and bounce motions.

Before we present an heuristic derivation of the neoclassical polarization density, we �rst

review the role and origin of the classical polarization density in gyrokinetics.2 The classical

polarization density arises directly from the e�ect of the polarization drift of the ions. In

addition, the density is associated with the di�erence between the real particle density and

the gyroaveraged particle density. That is, if

vpol =
c


cB

@E?

@t
=
mc2

eB2

@E?

@t
; (15)

then the induced polarization current density is simply

jpol = eni0vi;pol � ene0ve;pol

� ni0mic
2

eB2

@E?

@t
; (16)

and using the continuity equation, the polarization density is

npol =
4�mic

2

eB2
r? � (ni0r?�): (17)

Representing the polarization drift as a shielding term in the gyrokinetic Poisson equation

has provided one of the principal computational advantages of the gyrokinetic approach.2

We expect that the neoclassical polarization density will arise from the modi�cation of the

classical polarization drift due to the toroidal magnetic geometry.

To give an heuristic estimate of the neoclassical polarization density as the di�erence

between the real trapped particle density and the bounce-averaged banana center density,

we de�ne the bounce-average of a quantity g to be

hg(�)i� =
H
g(�) dt

d�
d�H dt

d�
d�

=

H qR
vk
g(�)d�

�B
: (18)

To calculate the bounce-averaged density we need the �rst two �-moments of �r(�) and

��(�). As expected, h�r(�)i� and h��(�)i� are zero; the average motion has already ex-

plicitly been separated from the bounce motion. For h(�r(�))2i�, h(��(�))2i�, and h�r��i�,
we take the deeply-trapped particle limit and �nd
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h(�r(�))2i� = �2
B�

2 (19)

h(��(�))2i� = 1

16
�2
B

�
2q00 �

qo

r0

�2

�4 (20)

h�r��i� = 0: (21)

(Notice that the average toroidal deviation is smaller than the average radial deviation by

a factor of the pitch angle; however, we will see that the lowest order contribution is really

O(�2) in the rigorous bounce-averaged formulation.) Now we can calculate the di�erence

between bounce-averaged and real particle densities. Expanding ni about the bounce-center

in 
ux coordinates, we have

ni(X+�) � ni(X) + �r(�)
@ni

@r

����
X

+ ��(�)
@ni

@�

����
X

+

(�r)2

2

@2ni

@r2

����
X

+
(��)2

2

@2ni

@�2

����
X

+ �r��
@2ni

@r@�

����
X

: (22)

Bounce-averaging the expansion and integrating over the trapped particle portion of velocity

space, we �nd

ni(X)� hhni(X+�)i�iv (23)

� 1

4
�2
B;th

p
2�a

ni0e

Ti

@2�

@r2
+

3

320
�2
B;th

�
2q00 �

q0

r0

�2p
2�a

ni0e�

Ti

@2�

@�2

=
1

4

mini0c
2

eB2
p

(2�a)
3=2@

2�

@r2
+

3

320

mini0c
2

eB2
p

�
2q00 �

q0

r0

�2

(2�a)
3=2 @

2�

@�2
; (24)

where we have estimated that �n
i;trapped � p

2�ani0e�=Ti for ! � !Bi. The �rst term

represents the contribution to the neoclassical polarization density due to the radial ba-

nana excursions while the second term is due to the � excursions. The radial part of the

neoclassical polarization current has been derived before by Callen,49 Callen obtains

jpol � 16

3�
p
2
�3=2a

minic
2

B2
p

@Er

@t
; (25)

which corresponds to a neoclassical polarization density of

npol � 16

3�
p
2
�3=2a

minic
2

eB2
p

@2�

@r2
(26)
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through the continuity equation. Callen explains this neoclassical current density as \due

principally to the spreading of the charge cloud for the trapped ions over the thickness of

their banana orbits." Our heuristic derivation follows this description, while also identifying

the contribution from the excursion in the toroidal direction as well as the previously known

contribution in the radial direction. We note that Hinton and Robertson50 have studied a

closely related issue in a di�erent collisionality regime, and more recent calculations also

con�rm the scaling in Eq.(25).43

In what follows we will see that this heuristic estimate although useful, is only pedagogical

and should not be adopted for any serious application. This is due to the di�erence between

the gyrophase-average and bounce-phase-average. Already we have glossed over the fact

that �, the poloidal (and also related to the bounce phase) angle, not only appears in the

deviations �r and ��, but also gives the guiding center position along the �eld line. In

gyrokinetics, the gyrophase angle appears only in the Larmor radius deviations and has no

relation to the parallel motion. We will discuss this in more detail later.

III. ONE FORM MECHANICS AND LIE PERTURBATION THEORY

In order to derive rigorously the equations of motion that are bounce phase independent,

we use the formalism of the Poincar�e-Cartan one form.45;46;53;54 Classical mechanics in this

formalism transforms simply under coordinate changes, since a one-form transforms covari-

antly and the new equations of motion are determined from the one-form, via the principle

of least action. In addition, the powerful techniques of Lie perturbation theory55;44{46 can

be employed easily to derive equations of motion which are bounce-phase independent to de-

sired order. Here we present the basics of one-form mechanics and Lie perturbation theory;

for greater detail one can refer to the references cited above.

In canonical Cartesian coordinates, the single-particle Poincar�e-Cartan one-form is writ-

ten as


 = pjdq
j �Hc(q

i; pk)dt; (27)
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where j = 1 : : : 3, pj and qj are canonical momenta and coordinates, respectively, and

Hc is the Hamiltonian in canonical coordinates; the summation convention over repeated

indices is assumed. A coordinate transform where time is unchanged can be written as

z� = z�(qi; pk; t) with � = 0 : : : 6 and z0 = t; under such a transformation, the Poincar�e-

Cartan one-form is


 = pj
@qj

@z�
dz� � h(z�)dz0

� 
�dz
�; (28)

where 
0 � �Hc+pj
@qj

@z0
. Here, the covariant transformation properties are most easily seen.

Under another coordinate transformation, Z� = Z�(z�) we have


 = 
�dz
� = 
�

@z�

@Z�
dZ� � ��dZ

�; (29)

and the covariance is manifest. Notice that the coordinate transformations are general

transformations and need not be canonical.

The equations of motion can be derived from a variational principle applied to the

Poincar�e-Cartan one-form. The action associated with a particular one-form is given by

S =
Z tf

t0


�
dz�

dt
dt: (30)

Carrying out the minimization of S with respect to variations in the z�, we obtain the

generalized Euler-Lagrange equations:

 
@
�

@z�
� @
�

@z�

!
dz�

dt
= 0: (31)

If we explicitly separate out the time components, we have

!̂ij
dzj

dt
=
@h

@zi
+
@
i

@t
(32)

where !̂ij � @
j=@z
i � @
i=@z

j and here, i; j = 1 : : : 6. The tensor !̂ij corresponds to

the Lagrange brackets, and the inverse !̂�1
ij are the usual Poisson brackets (in the new

coordinates). Thus, knowledge of the Poincar�e-Cartan one-form completely determines the
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equations of motion. Notice that the addition of a perfect derivative dS to the one-form

does not change the equations of motion since
R
dS does not vary with variations in the path

of integration.

So far, we have discussed general transformations, which are usually �nite transforma-

tions. However, since the bounce phase dependence appears only in small (O(�B) or O(��))
quantities, perturbation theory is appropriate for these purposes. Here we use Lie pertur-

bation theory to obtain a coordinate system where the Poincar�e-Cartan one-form is bounce

phase independent (both in 
0 = �h and the other 
j's) to desired order. Though the

transformation itself is bounce phase dependent, because the transformed 
 has no bounce

phase dependence, the equations of motion will also be bounce phase independent. (The

bounce phase dependence has been removed from the new coordinates and incorporated into

the transformation.)

As in usual perturbation theory, we separate the Poincar�e-Cartan one-form 
 into 
0+
1,

where 
0 is the easily solvable part of the motion and 
1 is the perturbation. (Note that

subscripts can now represent the order in the perturbation expansion, as well as the various

components; the usage will be clear from the context.) In our case, only 
1 contains bounce

phase dependence, while the motion speci�ed by 
0 is bounce phase independent. We seek

a Lie transformation of coordinates

Z� = �z� (33)

such that the transformed 
1 contains no bounce phase dependence. Z
� and z� are the new

and old coordinates, respectively, and � is the Lie transformation. � can be written as

� = : : : �3�2�1; (34)

where

�n = exp(�nLn); (35)

and Ln is an operator with di�erent action on di�erent geometric structures; we will need
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only its actions on scalars and one-forms. For the transformation Z� = �z�, a scalar function

f(z�) transforms as

F = ��1f: (36)

In this case, Ln acts on f(z
�) as

(Lnf)(z
�) =

 
g�n(z

�)
@f

@z�

!
(z�) (37)

where g�n are the generators of the nth order Lie transformation. Notice that the z� are

only dummy variables; the transformations give the new functional dependences explicitly.

Similarly a one-form 
 transform as

� = ��1
 + dS (38)

where S is a gauge function which leaves the equations of motion unchanged. For one-forms,

Ln acts as

(Ln
)� = g�n

 
@
�

@z�
� @
�

@z�

!
: (39)

Expanding the Lie transformation � to second order, we see that

�0 = 
0 + dS0; (40)

�1 = 
1 � L1
0 + dS1; (41)

�2 = 
2 � L1
1 + (
1

2
L2
1 � L2)
0 + dS2: (42)

Thus, by choosing the g�n's and Sn's appropriately we can make our new Poincar�e-Cartan

one-form bounce phase invariant to desired order.

IV. BOUNCE-KINETIC VLASOV EQUATION

The rigorous derivation of the bounce-kinetic Vlasov equation follows the formalism de-

scribed in the previous section. Our starting point is the fundamental one-form for the
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motion of a charged particle in electric and magnetic �elds, in canonical Cartesian coordi-

nates. Through a series of transformations the Poincar�e-Cartan one-form is brought into

a form which can be suitably averaged. The equilibrium part of the one-form with only

a static magnetic �eld will be considered �rst; the knowledge of the unperturbed particle

motion determines the manner in which the perturbation theory is applied. Self-consistency

of the perturbed electrostatic �eld is enforced by the accompanying Poisson equation.

The equilibrium fundamental one-form in canonical coordinates is


0 = pjdq
j � hcdt; (43)

where hc = (p� eA=c)2=2m and j = 1 : : : 3. After transforming to velocity space (instead

of momentum space) and making the guiding center transformation (for more details, see

Refs. 4 and 33), we have


0 =

�
e

c
A0(X) +mvkb(X)

�
� dX+

mc

e
�d� �

�
�B(X) +

1

2
mv2

k

�
dt; (44)

where X is the guiding center position, � = mv2
?
=2B is the magnetic moment, and vk and

v? are the velocities parallel and perpendicular to the magnetic �eld, respectively. Here the

bounce motion in a non-uniform magnetic �eld is apparent in the last term: the conservation

of � and the total energy requires vk to be zero for large enough B(X). To make the bounce

motion of trapped particles readily apparent, the Poincar�e-Cartan one-form is transformed

into 
ux and action-angle coordinates in the bounce motion.47 This is written in two steps to

make the physical motion more apparent; also, the gyrophase dependence is dropped since

we are not interested in the bounce-averaged gyrophase motion. (In fact, throughout the

derivation the Larmor radius is assumed su�ciently small compared to the bounce deviation

that it can be ignored.) LettingB(X) = r��r�, choosing the gauge so thatA(X) = �r�,
and denoting the distance along the �eld line by s, the fundamental one-form is


0 =
e

c
�d� +mvkds�

�
�B(�; �; s) +

1

2
mv2

k

�
dt: (45)

At this point, we introduce the notation y1 = � and y2 = � and let a and b be indices which

take on the values 1 to 2. The equilibrium one-form has bounce phase dependence, but
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only in a quantity O(�B) compared to the other terms. The transformation to action-angle

coordinates which makes the equilibrium one-form bounce phase independent is more com-

plicated, and the results will only be summarized (see Ref. 41 for details). The motivation

for this particular choice of variables comes from the lowest order motion of the guiding

center along a �eld line; if �; � are held constant, the lowest order motion is given by

ds

dt
= vk (46)

m
dvk

dt
= ��@B

@s
(�; �; s); (47)

these are the equations of motion of an oscillator, and so one can de�ne action and angle

coordinates for this bounce motion. For the lowest order motion, we let

I(K0; �; �) =
1

�

Z s1

s0

[2m(K0 � �B)]
1=2

ds0 (48)

 (s; vk; K0; �; �) = � + sgn(vk)!B

Z s

s0

ds0

[2m(K0 � �B)]
1=2

(49)

where K0 is the numerical value of the particle energy, and !B(I; �; �), the bounce frequency,

is de�ned as @h0=@I(y; I), since the total energy h0 can be written in terms of I. Note that

these expressions are only for the lowest order bounce motion, where we have assumed

the guiding center is �xed to a given �eld line. The \true" action and angle variables are

di�erent from these expressions by terms of order �B. The derivation of these terms will

not be presented here (see Ref. 41); we present only the �nal equilibrium one-form and the

explicit coordinate transformations. After the application of a noncanonical Lie perturbation

transformation, we have:


0 =
e

c
Y2dY1 + Jd	�H(Y2; Y1; J)dt; (50)

where

Ya = ya � �abFb(y; I;  ); (51)

J = I +
1

!B

 
�abFb

@h0

@ya

!
; (52)

	 =  + g
 
1 (y; I;  ); (53)
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with �11 = �22 = 0, �12 = ��21 = 1, and

Fa(y; I;  ) =
mc

e

Z I

0
dI 0

 
@

@I 0

 
vkb � @X

@ya

!
� @

@ya

 
vk
@s

@I 0

!!
; (54)

the explicit form for g 1 will not be needed. F2 and F1 correspond physically to the deviations

from the bounce center radial (�) or �eld line (�) position, respectively, and Y gives the

bounce center position.

With this expression for the bounce phase independent equilibrium one-form, we can

now carry out the Lie perturbation analysis for the electrostatic 
uctuation. The above

expression is valid to second order in �B, and the perturbation analysis will be expanded to

second order in ��. Adding the electric �eld perturbation to the equilibrium one-form, we

have


 =
e

c
Y2dY1 + Jd	�H0(Y; J)dt� e�(y; s)dt: (55)

Throughout the derivation, � is written as a function of (y; s). Thus, in (Y; J;	) coordi-

nates,

�(y; s) = � (Ya + �abFb(Y; J;	); s(J;	)) : (56)

In order to have a bounce phase independent one-form, to �rst order in �� we seek a trans-

formation which brings � into h�i, where

h�i(Y; J) = 1

2�

I
d	�(Ya + �abFb; s(J;	)): (57)

That is, we seek S1 and g�1 so that �L1
0 + dS1 = e(� � h�i)dt (see Eq. (41)). The

determination of the generators and the gauge function is a linear system of �ve equations

for �ve unknowns and thus is solvable. (In full generality, this would be an 8�8 system, but

we have restricted ourselves to transformations which do not a�ect time and have ignored

the gyrophase action and angle variables.) The explicit form for the generators, which is

necessary for the construction of the Poisson equation and the polarization density, can be

determined iteratively in the longwavelength limit, �k � !=!B � k?�B � 1. In this case,

the �rst order generators are
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gJ1 = gJ10 + �kg
J
11 + : : :

=
e~�

!B
+

1

!B

 
� e

!B

@ ~�

@t
+ �ab

c

e

@

@Yb

 
e~�

!B

!
@H0

@Ya

!
+ : : : (58)

ga1 = ga10 + ga11 : : :

= ��ab c
e

@

@Yb

 
e~�

!B

!
(59)

g	1 = g	10 + g	11 + : : :

= � @

@J

 
e~�

!B

!
: (60)

Here, ~� � �� h�i, and ~� � R
d	0 ~�; we have displayed only terms in �k necessary to obtain

a �nal system good to O(�2k).
For second order, S2 and g

�
2 are similarly determined. To lowest order in �k,

�2t =
e2

2

*
�c
e
�ab

 
@

@Yb

1

!B

Z 	
~�d	

0

!
@ ~�

@Ya
+

@

@J

~�2

!B

+
; (61)

where overbars are used for the new, bounce-averaged coordinates. De�ning the e�ective

potential as

�e�(Y; J) � h�i+ e

2

*
c

e
�ab

 
@

@Yb

1

!B

Z 	
~�d	

0

!
@ ~�

@Ya
� @

@J

~�2

!B

+
; (62)

the bounce-averaged fundamental one-form is

� =
e

c
Y2dY1 + Jd	�H0(Y; J)dt� e�e�(Y; J)dt: (63)

H0(Y; J) has the same functional form as the unaveraged Hamiltonian but is in terms of

the new averaged coordinates. From the fundamental one-form Poisson brackets of the

bounce-averaged coordinate system are straightforwardly determined; the new coordinates

are canonical (up to a normalization):

fY1; Y2g = c

e
; (64)

f	; Jg = 1; (65)

all other Poisson brackets are zero. Using Eq. (32), the bounce-averaged equations of motion

are
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dY1

dt
=
c

e

 
@H0

@Y2
+ e

@�e�
@Y2

!
(66)

dY2

dt
= �c

e

 
@H0

@Y1
� e

@�e�
@Y1

!
(67)

d	

dt
=
@H0

@J
+ e

@�e�
@J

(68)

dJ

dt
= 0: (69)

The drift equations of motion presented in Sec. 2 are a special case of these equations.

Eqs. (66) and (67) express the motion in the radial and � directions, respectively. For

an axisymmetric tokamak equilibrium, the bounce-averaged radial velocity is zero because

@H0=@Y2 is zero; on the other hand, @H0=@Y1 is non-zero and represents the precessional

motion in the toroidal direction. In both equations, the bounce averaged radial and �-

directed electric �elds give rise to bounce-averaged motion. Eq. (68) evolves the bounce

phase angle, while Eq. (69) states that J is the second order approximation to the true

adiabatic invariant associated with trapped particle motion.

Because the Vlasov equation is covariant,46 its form is easily determined via

@f

@z�
dz�

dt
=

@F

@Z�

dZ�

dt
; (70)

where F is the distribution function written as a function of the barred coordinates

(Y; J; �; t) but has no 	 dependence.3 Thus the bounce-averaged Vlasov equation is simply

@F

@t
+
dY1

dt

@F

@Y1
+
dY2

dt

@F

@Y2
= 0: (71)

V. BOUNCE-KINETIC POISSON EQUATION AND NEOCLASSICAL

POLARIZATION DENSITY

Having derived the equations of motion for given �elds, we must now derive the associated

Poisson equation. In dealing with collective 
uctuation phenomena, the bounce-kinetic Pois-

son equation is as important as the bounce-kinetic Vlasov equation because self-consistency

is required. The bounce-averaged Poisson equation relies upon the correct determination of
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the trapped particle density. Following Ref. 3 the general expression for the particle density

from the distribution function is

n(x; t) �
Z
d3x0d3v�(x� x0)f(x0;v; t): (72)

Now remains the straight-forward though tedious process of transforming the integral, �-

function, and distribution function into the bounce-averaged 
ux and action-angle coordi-

nates as de�ned above. The details of this calculation can be found in the appendix. The

�nal trapped particle density in the bounce-averaged coordinates is

n(�; �; s; t) =
Z

0 B!B

m2jvkjdY1dY2d	dJd�d��(ya � Ya � �abFb)�(h(s; J)� 	+ g
 
1 )

�
 
F (Y; J; �; t) + gJ1

@F

@J
+ ga1

@F

@Ya

!
; (73)

where the prime indicates integration over the trapped particles only, and the �rst order

generators are given by Eqns. (58) and (59). (Since F has no 	 dependence the �rst order

generator g 1 plays no role in determination of the density.) This expression is valid to O(�B),
O(��), and O(�2k). The key di�erence between gyrokinetics and bounce-kinetics appears in

the �-function of the bounce phase angle. In gyrokinetics, the �eld line direction, s is

independent of the gyrophase angle, �, whereas in bounce-kinetics, s directly depends on

the bounce phase angle  . The � integration in gyrokinetics averages over the gyrophase,

but here, because of the �-function, the 	 integration evaluates the integrand at the 	

corresponding to the given �eld line position and bounce action. The \bounce averaging" in

the expression for the density is only an average in the sense that it averages over all 	's via

the integration over the possible values of the bounce action at a given �eld line position, s.

Eqs. (66){(69), (71), and (73) are the self-consistent set of equations which can be used

to model low frequency phenomena associated with trapped particle behavior in arbitrary

magnetic geometries that satisfy the assumed orderings. For applications, the specialization

to tokamak geometry is more useful. In order to keep the expressions analytically tractable,

the deeply trapped particle limit is assumed, as well as (�k � k?�B � 1). In this case,

lowest order 
ux and action-angle coordinates are given by
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� �  p(r) (74)

� � � � q(r)� (75)

 � � + sgn(vk)

"
arcsin

 
sin �

2

�

!
+
�

2

#
(76)

I � 2qR0

q
m�a�B0�

2; (77)

where  p(r) is the poloidal 
ux function, and � is the same pitch angle parameter introduced

in Sec. 2,

�2 =
K0 � �B0(1� �a)

2�a�B0(1� �a)
; (78)

where K0 is the numerical value of the total particle energy. The Hamiltonian and bounce

frequency are given by

H0(�; I; �) � �B0(1� �a) +
I
p
�a�B0

qR0

p
m
; (79)

!B �
p
�a�B0

qR0

p
m
: (80)

Note that H0 has � dependence arising from �a and q, but is independent of �. Applying

the necessary transformations described above, the �nal equations of motion are

dY1

dt
= e

@�e�
@Y2

(81)

dY2

dt
= �c

e

 
@H0

@Y1
� e

@�e�
@Y1

!
(82)

d	

dt
= !B(Yb; J) + e

@�e�
@J

(83)

dJ

dt
= 0; (84)

where H0 and !B have the same functional form as in Eqs. (79) and (80), though their

arguments are the bounce-averaged variables, rather than the lowest order variables.

As for the Poisson equation, keeping terms to O(�2k), Eq. (73) reduces to

n
i;trapped(�; �; s; t) =

N̂
i;trapped(�; �; s; t) +

p
2
mc2

e
�3=2a R2

0(�
2
m � u)1=2Ni
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�
"
@2�

@�2

 
5

4
(�2m � u) +

3

4
u+

1

2�a
u1=2q

1

Ni

@Ni

@�

!

+
@2�

@�2

 
1

2�a

�
u� 1

3
(�2m � u)

�
�q

1

Ni

@Ni

@�
+

�
3

8
u2 +

5

4
u(�2m � u) +

3

40
(�2m � u)2

�
�2

+

�
�3

4
u+

3

2
u2 +

1

4
(�2m � u)� 3

10
(�2m � u)2

�
�q

1

Ti

@Ti

@�

!

+
@2�

@�@�

 
�2u1=2(�2m � u)� � 2

�a
u1=2q

1

Ni

@Ni

@�
+

1

6�a
(�2m � u)�q

1

Ni

@Ni

@�

+u1=2
�
3� 2

�
(�2m � u) + 3u

��
q
1

Ti

@Ti

@�

!

+
@�

@�

 
2(�2m � u)

 
1

Ni

@Ni

@�
� �

q

!
� 2u1=2(�2m � u)�

1

Ni

@Ni

@�
+

1

2�a
u1=2

@q

@�

1

Ni

@Ni

@�

!

+
@�

@�

 
�2u1=2(�2m � u)

 
1

Ni

@Ni

@�
� �

q

!
+ 2u(�2 � u)�2

1

Ni

@Ni

@�

� 1

�a

 
u
@

@�
(q�)� 1

2

�
u+

1

3
(�2m � u)

�
q
p
�a
@

@�

 
�p
�a

!!!

+
@2�

@t@�

eq

c�aTi
u1=2 � @2�

@t@�

2e�q

c�aTi

�
u� 1

3
(�2m � u)

�#
(85)

where N̂i, the bounce-averaged banana center density, is de�ned as

N̂i(�; �; s; t) =
Z

0 B!B

m2jvkj
dY1dY2d	dJd�d��(ya � Ya � �abFb)�(h(s; J)� 	+ g

 
1 )

�
�
F (Y; J; �; t);

�
(86)

and Ni is the density of trapped particle banana centers, that is,

F (Y; J; �; t) � Ni(Y; t)

(�v2th)
3=2

exp (�H0=Ti(Y1)); (87)

u and � are de�ned as

u � sin2
 

s

2qR0

!

� � @q

@�
� q

2�a

@�a

@�
; (88)

�2m corresponds to the deeply trapped particle cuto� in pitch angle space. Due to the

approximations made in Eqs. (74){(80), our results are rigorously valid only for deeply

trapped particles with u � �2m � 1; �2m = 1 corresponds to the trapped-passing boundary.
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The details of the calculation are given in the Appendix. The form for the trapped ion

density in Eq. (85) has close similarity to the analogous gyrokinetic ion density.3 The energy

invariant for the bounce kinetic system is

Z
0

H0Fi;banana centerd
6Z +

Z
0 1

2
g
j
1

@

@Zj

 
gi1
@H0

@Zi

!
d6Z +

Z
miv

2

2
f
i;passingd

6z

+
Z
mev

2

2
fed

6z +
Z jEj2

8�
d3x = constant: (89)

The self-consistent determination of the 
uctuating potential is given by

r2� = �4�e(n
i;trapped + n

i;passing � ne): (90)

Assuming quasi-neutrality, the Poisson equation reduces to

n
i;trapped + n

i;passing � ne � 0; (91)

which is a useful form for simulation purposes; the response of the passing ions can be

obtained from gyrokinetics, although the adiabatic response is a very good approximation

for the low frequency range we are considering. (The bounce-averaging could also apply

to the trapped electrons,20 though because of the electron mass, their bounce radii are

considerably smaller than those of the trapped ions.)

The rigorous form for the nonlinear neoclassical polarization density is given by Eq. (85);

it is the di�erence between the real trapped particle density and the bounce-averaged banana

center density. Several features arise from the rigorous calculation that were not apparent

in the heuristic estimate. First, the polarization density has explicit �eld line dependence.

This is a natural consequence of the �nite poloidal excursion of trapped particles, and has

not been addressed in previous studies. Also, the heuristic estimate as presented in Section

II incorrectly eliminates this salient feature via the ad-hoc averaging procedure. The po-

larization density also has nonlinear terms proportional to �2 because of the � dependence

in the 
uctuating part of Ni. Last, the rigorous calculation includes the e�ects of equilib-

rium density gradients and cross terms, which previously averaged to zero; these terms are

necessary for proper energy conservation.
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Finally, we note that the axisymmetric limit @
@�

= 0 of Eq.(85) can be used for study-

ing the long term behavior of 
uctuation driven E�B 
ow. In particular, the aforemen-

tioned �eld line dependence will provide useful insights into the recent gyrokinetic simulation

result31 which shows that a signi�cant m = 0 component of E�B 
ow can be driven by

m 6= 0 components of turbulence.

VI. SUMMARY AND DISCUSSION

In this work, we have derived the nonlinear electrostatic bounce-averaged kinetic equa-

tions via phase-space Lagrangian Lie-perturbation theory. This symplectic derivation en-

sures the preservation of the Hamiltonian structure and conservation laws. This new bounce-

averaged kinetic formalism provides a �rm theoretical foundation for description of the low

frequency large scale 
uctuations such as the trapped ion mode, turbulence driven E�B


ow, and convective cells often observed in tokamak plasmas.

Full banana orbit width e�ects are retained in both the bounce-averaged Vlasov equation

and Poisson equation. In the bounce-kinetic Poisson equation, the general form of the

neoclassical polarization density term is obtained, and its relevance to the long term behavior

of turbulence driven E�B 
ow is discussed. We �nd that the neoclassical polarization

density arises from the di�erence between the real trapped particle density and the bounce-

averaged banana center density across the magnetic �eld lines. We have identi�ed the

contribution from the toroidal excursion in addition to the previously known contribution

from the radial excursion. A nonlinearity associated with this new term plays an important

role in the collisionless trapped ion turbulence model.37

Both similarities and di�erences between the bounce-averaged kinetic equations and the

gyrokinetic equations are discussed in this work. The formalism presented in this paper

should be useful for future bounce-kinetic particle-in-cell simulations of trapped particle

modes and the generalization of present nonlinear bounce-averaged gyro
uid equations.56

Since there is accumulating evidence that the E�B shear suppression of turbulence57{59
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plays an essential role in enhancing tokamak core con�nement, it is important to generalize

our formalism by including the equilibrium E�B shear e�ects.60{68 Fluctuations with long

radial correlation length are especially susceptible to the E�B shear suppression. Fol-

lowing the recent advances in the gyrokinetic formalism,69 such E�B shear e�ects can be

systematically included in our formalism.
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APPENDIX: DENSITY CALCULATIONS

In this appendix, the form for the trapped particle density in arbitrary geometries will be

derived and then specialized to the case of a tokamak (with further quali�cations discussed

below). The breakdown of the analogy between bounce-kinetics and gyrokinetics will become

apparent in the course of the derivation. The starting point is Eq. (72),

n(x; t) �
Z
d3x0d3v�(x� x0)f(x0;v; t): (A1)

Assuming the equivalence of the real particle position and the guiding center position, the

distribution function moment transforms to

n(X; t) =
Z
B�

m
d3X0dvkd�d��(X�X0)fg.c.(X

0; vk; �; t); (A2)

where B� = B + (mc=e)vkb̂ � r � b̂ is the Jacobian of the six-dimensional guiding center

transformation. Instead of continuing to express the density in terms of the Cartesian posi-

tion, the derivation is simpli�ed by considering it as a function of the �eld line coordinates.

Thus, one has
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n(�; �; s; t) =
Z
B�

m

����� @3X0

@� 0@�0@s

����� d� 0d�0ds0dvkd�d��(X0(� 0; �0; s0)�X(�; �; s))

�f
ux(� 0; �0; s0; vk; �; t)

=
Z
B�

m
d� 0d�0ds0dvkd�d��(�

0 � �)�(�0 � �)�(s0 � s)f
ux(�
0; �0; s0; vk; �; t): (A3)

The previous expressions are valid for all particles; for trapped particles the lowest order

action-angle variables are de�ned above, giving

ntrapped(�; �; s; t)

=
Z

0 B�

m2
d� 0d�0d dId�d��(� 0 � �)�(�0 � �)�(s0( ; I)� s)f
ux,a-a(�

0; �0;  ; I; �; t):

=
Z

0 B�

m2
d� 0d�0d dId�d��(� 0 � �)�(�0 � �)

�( � h(s; I))

j@s0=@ j f
ux,a-a(�
0; �0;  ; I; �; t); (A4)

where h expresses the relationship between (s; I) and  , and the integration is over trapped

particles only. Here the di�erence between the bounce-averaging and gyroaveraging is readily

apparent. Whereas the integral over d� plays no role in the �-functions in gyrokinetics and

so averages the integrand over the gyrophase angle, the d integral and �-function together

pick out the particular value of  in terms of I and the given �eld line position, s. We now

transform to the true action-angle coordinates following Littlejohn,46

ntrapped(�; �; s; t) =
Z

0 B

m2
dY1dY2d	dJd�d��(ya � Ya � �abFb)

��(h(s; J)�	+ g
 
1 )

j@s=@	j ftrue(Y;	; J; �; t); (A5)

g
 
1 is a generator of the noncanonical Lie transformation of the equilibrium one form and not

a generator of the canonical 
uctuation average transformation. The �nal step is to write

the distribution function in terms of the bounce-averaged coordinates; their relationship is

given by Eq. (36). Letting F be the distribution function in bounced averaged coordinates,

we have

ftrue = �F

� F + gJ1
@F

@J
+ ga1

@F

@Ya
: (A6)

Finally, in terms of bounce-averaged variables, the trapped particle density is
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ntrapped(�; �; s; t) =
Z

0 B!B

m2jvkj
dY1dY2d	dJd�d��(ya � Ya � �abFb)�(h(s; J)� 	+ g

 
1 )

�
 
F (Y; J; �; t) + gJ1

@F

@J
+ ga1

@F

@Ya

!
: (A7)

This expression for the trapped particle density is valid to O(��) and is not yet specialized to
tokamak geometry. Keeping terms of O(�2k) � (k?�B)

2, the trapped particle density reduces

to

ntrapped(�; �; s; t) = N̂i +
Z

0 Be

m2jvkj
dJd�d�

�
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�(F 2

1 + hF 2
1 i)

@2�

@�2
� (F 2

2 + hF 2
2 i)

@2�
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(A8)

after integration over the �-functions; all real space arguments are now dependent on �; �;

and s because of these integrations; the 	
0

integrations are evaluated at 	(s; J). Also, in

this step we have used the fact that the bounce deviations Fa are odd functions of the bounce

phase angle  . For given s and J , the �-function integration over 	 gives two possible values

for  , depending on the sign of vk; because of the oddness and periodicity of Fa, terms of

O(k?�B) sum to zero. The bounce-averaged trapped particle density, N̂i, is de�ned in the

main text.

Finally, we specialize to tokamak geometry and further assume a background Maxwellian

distribution,

F (Y; J; �; t) =
Ni(Y; t)

(�v2th)
3=2
e�H0=Ti(Y): (A9)
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(Note that Ni has no 	 dependence; it is the bounce center density.) To keep the equations

analytically tractable, all trapped particles are assumed to be deeply trapped. For a high

aspect ratio circular cross section tokamak, the functional forms of the bounce deviations

are

F1 = �I c sin 2 
2eq

 
@q

@�
� q

2�a

@�a

@�

!
(A10)

F2 = �c
e

 
2IR0

p
m�a�B0

q

!1=2

sin ; (A11)

where because of the �-function integration over 	, the phase angle  will be written in

terms of s and J . (Because of notational de�nitions, F1 corresponds to the � deviation

and F2 to the radial deviation.) Changing the deviations to bounce-averaged coordinates,

substituting, and performing the remaining integrations, we arrive at Eq. (85).
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