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The structure and spectrum of magnetosonic Alfv�en eigenmodes in spheri-

cal torus in the presence of magnetic �eld well are studied. Analytical solution

for eigenmodes localized in the well is obtained and compared with the nu-

merical one. The possibility of using the eigenmode spectrum measurements

for reconstructing the magnetic �eld well, and, thus, central magnetic safety

factor pro�le is discussed.

�Present address: Princeton Plasma Physics Laboratory, P.0. Box 451, Princeton, NJ 08543

1



I. INTRODUCTION

Low aspect ratio tokamaks, such as National Spherical Torus Experiment (NSTX) [1],

may have relatively low toroidal magnetic �eld, which can be exceeded by its poloidal com-

ponent. Also, the volume averaged plasma beta is considered to be signi�cant 10% � 40%.

It makes possible to create such an equilibrium, where the magnetic �eld has local minimum

Bmin close to the magnetic axis [2]. At such conditions the local Alfv�en velocity will have

local minimum at B = Bmin, which may result in the existence of the magnetosonic (or fast,

compressional Alfv�en) eigenmodes (MSE). The eigenfrequency of such modes can provide

the information about the absolute value of the magnetic �eld as well as the depth of the

magnetic well.

MSE are believed to be responsible for the numerous observations of ion cyclotron emis-

sion (ICE) in tokamak plasmas, which detail study in experiments on Joint European Torus

(JET) [3,4] and Tokamak Fusion Test Reactor(TFTR) [5,6] was reported. For the �rst time

the existence of localized MSE has been predicted theoretically in Ref. [7]. Further develop-

ment of MSE theory to explain the experimental measurements was done in Refs. [8{10]. In

tokamaks MSE are localized at the minimum of the Alfv�en velocity, which is located at the

low magnetic �eld edge of the tokamak plasma rather than near the magnetic axis in spherical

torus, which is to be discussed in this paper. MSE are excited via cyclotron resonances with

superalfvenic charged fusion products, which are strongly anisotropic in tokamaks. Thus, as

one expects strong anisotropy of beam and ICRF ions and low Alfv�en velocity in spherical

torus experiments, MSE instability in the frequency range of ion cyclotron frequencies seems

plausible in those machines. It also may be helpful for the diagnostic of energetic ions.

Here we investigate the possibility of localized MSE solutions in the magnetic well,

present MSE spectrum and eigenmode structure under the assumption that the magnetic

�eld well is well elongated vertically, which employs the hollow cylinder approximation sim-

ilar to that of Ref. [11].

As an example of plasma magnetic equilibria in spherical torus we show the numerical
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equilibrium for plasma with NSTX parameters. Fixed parameters used in q-solver equilibria

calculation are the major radius R0 = 0:85m, the minor radius a = 0:68m, the plasma

elongation k = 2:0, the triangularity � = 0:45, and vacuum toroidal magnetic �eld strength

0:3T taken at the geometrical center of plasma poloidal cross section. The safety factor

at the magnetic axis was chosen q(0) = 2:8 and q(1) = 14:0 at the plasma edge, and

having the following pro�le q( ) = 2:8 +  ̂
h
11:2 � 124:8

�
 ̂ � 1

�
=
�
 ̂ � 1:064

�i
where  ̂ is

the normalized poloidal 
ux, which is zero at the magnetic axis and unity at the plasma

boundary. The pressure pro�le was chosen in the form p( ) = p(0)(1 �  ̂1:6)1:8: A plot of

the magnetic �eld strength contours for equilibrium with averaged plasma beta �av � 8� <

p > = < B2 >= 40% is shown in Fig.1. Also shown as dashed lines are the magnetic �eld

surfaces. The existence of the magnetic well is clearly seen on Fig.1 as well as on Fig.2, where

the dependence of B vs. R in the midplane is shown and B has a minimum at Rm = 1:34m.

One can see that the magnetic well is asymmetrical in the R�direction (Fig.2) and has

strong elongation in Z direction (see Fig.1).

II. EIGENMODE EQUATION

To obtain the equation for magnetosonic eigenmodes localized in the magnetic well we

consider the model of an inhomogeneous, magnetized plasma in a tokamak with strong elon-

gated cross-section. An equation for the perturbed electric �eld is reduced from Faraday's

and Amp�ere's laws in the assumption of vanishing parallel electric �eld [12]

r�r�E =
!2

c2
�̂ �E; (1)

whereE has two components perpendicular to the equilibriummagnetic �eld and dependents

on time as E(t) � exp(�i!t). The cold plasma permeability tensor �̂ has elements

�̂11 = �̂22 =
X
i

!2

pi

!2

ci � !2
;

�̂12 = ��̂21 =
X
i

!

!ci

!2

pi

!2

ci � !2
(2)
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in the orthogonal coordinates perpendicular to the equilibrium magnetic �eld B, where !pi

and !ci are the ion plasma and cyclotron frequencies, respectively. We choose the cylindrical

coordinate system (R;Z;'), which is related to the toroidal coordinate system (r; �; '
0

) as

follows R = Rm + r cos (�); Z = r sin (�); ' = '
0

, where the axis is at B-minimum. We

also assume that perpendicular electric �eld has only ER and EZ components in order to

obtain an analytical solution of Eq.(1). Assuming in addition zero parallel component of

wave vector kk = �iek � rlnE we can rewrite Eq.(1) as a system of two coupled equations

for ER and EZ components of the perturbed electric �eld [9]

�
 
@2

@Z2
+ F

!
ER +

 
@2

@R@Z
�H

!
EZ = 0

 
@2

@R@Z
+

1

R

@

@Z
+H

!
ER �

 
@2

@R2
+

1

R

@

@R
+ F

!
EZ = 0; (3)

where F = (!2=c2)�̂11 and H = (!2=c2)�̂12. The system of equations (3) can be simpli�ed by

multiplying the �rst equation with (@2=@R@Z + (1=R)@=@Z +H), the second equation with

(@2=@Z2 + F ), and summing them. To simplify these equations further we make use of the

assumption @lnB=@z � @lnER;Z=@z. Finally after some algebra we obtain the eigenmode

equation

"
@2

@Z2
+

1

R

@

@R
R
@

@R
+
F 2 +H2

F
+
H

F

@

@Z

#
EZ = 0: (4)

We represent B(R;Z) near its minimum, i.e. at Z = 0; R = Rm as

B(R;Z) = Bmin

 
1 +

(R�Rm)
2

�2

R

+
Z2

�2

Z

!
; (5)

where �R and �Z are the magnetic �eld well characteristic widths in the R and Z directions

and we assume �R � �Z. We also present Z-component of the perturbed electric �eld in

the form EZ(R;Z) = ÊZ(Z;R)exp(ilZ=�Z), where l � 1, ÊZ(Z;R) is a mode envelope

being slowly varying function of Z, and consider the limit !2 � !2

ci. Then neglecting slow

variation of the envelope (i.e. considering ÊZ(Z;R) ' ÊZ(R)) we result in the equation

which determines the radial structure of MSE and which is zero order equation in a small

parameter �R=l�Z � 1:
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"
@2

@R2
� V (R)

#
	(R) = 0; (6)

where 	(r) = ÊZ(R)R1=2. Note that the next order equation in �R=�Z will give the MSE

structure in Z as was shown in Ref. [9] for the poloidal eigenstructure in tokamaks. The

potential in Eq.(6) is given by

V (R) =
l2

�2

Z

+
l!

�Z!ciR
� 1

4R2
� !2

v2A
; (7)

where v2A = (B2=4�ne)
P

i=1;2 (z
2

i ni=mine) is the Alfv�en velocity for a two-component plasma,

zi and ni are the electric charge and density of ion species i, respectively.

III. EIGENVALUES AND EIGENFUNCTIONS

To obtain a spectrum of MSE localized in the magnetic �eld well we de�ne

x2 = ��1
R (R �Rm)

2

s
2!2

v2Am
� l

�Z

!

!cimRm
; (8)

where subscript in variables vAm and !cim denote that they are evaluated at the magnetic

�eld minimum. Using Eq.(5) we further simplify equation (6) for localized in the well solution

into the equation of a harmonic oscillator

"
@2

@x2
+ f(!)� x2

#
	(x) = 0; (9)

where

f(!) = �R

 
!2

v2Am
+

1

4R2
m

� l2

�2

Z

� l

�Z

!

!cmRm

!
=

s
2!2

v2Am
� l

�Z

!

!cmRm
:

Equation (9) allows the localized eigenfunctions in the form

ÊZ(R) =
1p
R
e�x

2=2Hn (x) ; (10)

where Hn(x) is n-th order Hermite polynomials, and the following spectrum of the eigenfre-

quencies ! = !n;l
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!n;l ' vAm
2�R

0
B@2n + 1 +

vAm
!cm

l

ARm
+

vuut 2n + 1 +
vAm
!cm

l

ARm

!
2

+ 2 (2n+ 1)2 +
4l2

A2

1
CA ; (11)

where A = �Z=�R.

From Eqs.(8,10) one notes that the higher l number the more localized (near Bmin) MSE

solution is. An example of the localized MSE eigenfunctions for l = 10 and n = 0; 1; 2

is presented in Fig.3 for the parameters corresponding to the deuterium plasma at average

pressure �av = 40%: �R = 0:3m, �Z = 2�R, Rm = 1:34m, ne;i = 0:6 � 1020m�3,

Bm = 0:165T . In Fig.3 we also show the results of numerical solution of Eq.(6) with the

equilibrium magnetic �eld shown in Fig.2, which is asymmetrical in R around Rm. It is

compared with the analytical solution Eq.(10) and shows good agreement validating our

approach of using parabolic symmetrical approximation for the magnetic �eld near the well

Eq.(5).

As one might expect the spectrum of eigenvalues is discreet and depends on the chosen

l mode number in Z-direction. For example, at l = 10 the lowest MSE eigenfrequencies

are: !0;10 = 2:3!cDm; !1;10 = 2:6!cDm; !2;10 = 2:9!cDm : : :, where cyclotron frequency for

deuterium is estimated as !cDm ' 0:7� 107rad=s.

IV. SUMMARY AND DISCUSSION

We have demonstrated the existence of localized magnetosonic eigenmodes in the mag-

netic well in a spherical torus with NSTX equilibria at averaged plasma beta �av = 40%.

We have also determined the spectrum and radial structure of eigenmodes. If these modes

are excited one might suggest the measurements of MSE signal at �xed l (mode number

in Z-direction) using, for example, the coherent signal from several magnetic probes on the

low �eld side of the torus, which needs to be capable of resolving �Z=l wavelength. If the

emission signal is measured and the spectrum Eq.(11) is reconstructed, the relation between

the depth and the magnetic well radial width (Bmin=�R) can be obtained. Together with

other diagnostics it may provide the information for plasma equilibrium reconstruction in
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the spherical torus. Other possibility to search for MSE spectrum might be the excitation

of the modes using the set of magnetic probes working as antennas phased in such a way

that l number would be �xed and kk = 0.

We note, that MSE solutions presented in this paper have zero kk, which makes them

low damped modes. We expect such modes to be driven unstable by superalfvenic NBI or

ICRF heated ions, though the study of such instability needs to be done and is beyond the

scope of this paper.

Finally, several e�ects neglected here need to be included in the theory of MSE to be

applied in the experiments, such as nonzero kk, �nite toroidicity within the mode location,

and more realistic equilibria.
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FIGURE CAPTIONS:

Fig.1 Contours of absolute value of magnetic �eld for NSTX equilibrium for �av = 40%.

The magnetic �eld changes from 0:152T at the B minimum at R = Rm = 1:34 to 1:515T

at the edge at the high �eld side. Contours jBj = const are plotted for jBj values separated
by �B = 0:0454T .

Fig.2 The absolute value of the magnetic �eld for �av = 40% in the midplane.

Fig.3 First three localized eigenmode eigenfunctions for l = 10 and n = 0; 1; 2. Solid

lines represent analytical results, dash lines correspond to numerical solutions.
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