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ABSTRACT

A high-n stability code, HINST, has been developed to study the stability of TAE

(Toroidicity induced Alfv�en Eigenmodes) in large tokamaks such as ITER where the spec-

trum of unstable TAE modes is shifted toward medium to high-nmodes. The code solves the

2-D eigenmode problem by expanding the eigenfunction in terms of basis functions. Based on

the Fourier-ballooning formalism the eigenmode problem is reduced to a system of coupled 1-

D equations, which is solved numerically by using the �nite element method and a SPARSE

matrix solver. The numerical method allows to include non-perturbatively non-ideal e�ects

such as: full ion FLR, trapped electron collisional damping, etc. The 2D numerical results of

TAE and Resonance TAE modes are compared with those from local ballooning calculations

and global MHD NOVA code. The results show that for ITER-like plasma parameters, TAE

and RTAE modes can be driven unstable by alpha particles for n = 10 � 20. The growth

rate for the most unstable mode is within the range =!A ' 0:3� 1:5%. The most unstable

modes are localized near r=a ' 0:5 and have a broad radial mode envelope width.

�Permanent a�liation: TRINITI, Troitsk, Russia 142092



I. INTRODUCTION

It is now generally acknowledged that Toroidal Alfv�en Eigenmodes [1{3] (TAE) desta-

bilized by fast ions could cause signi�cant di�culties for fusion ignition devices because of

their capacity to induce large losses of fast particles. Even though TAE may play some

positive role in burning tokamak-reactor plasma by means of providing a channel for fusion

energy transfer to the plasma ions and He ash removal, the main concern here is that TAE

induced losses could not only quench the ignition but also could lead to signi�cant damage

to the �rst wall. Previous low- to medium-n TAE instability studies indicated that fast

particle drive =! � n�h(�h=Lh), where n is the toroidal mode number, �h is the fast ion

Larmor radius, Lh is the fast ion pressure pro�le scale length, �h is the fast ion thermal to

magnetic pressure ratio. The fast particle drive reaches a maximum near nq�h=r ' 1 and

decreases with increasing n for nq�h=r > 1. On the other hand, the radiative damping rate

of TAE due to core ion FLR e�ects increases with k?�i [4,5], where k? is the perpendicular

wavelength of TAE and �i is the bulk ion Larmor radius calculated for ions with thermal

velocity vT =
q
2T=m. Thus, it is expected that in large scale fusion devices such as ITER,

JT-60SU, etc., where �h;i=Lh � 1, medium- to high-n TAE modes can be potentially unsta-

ble. It is therefore an urgent research need for the tokamak project with ITER size to study

the medium- to high-n TAE mode stability, which requires global numerical calculations.

The standard approach to high-n instabilities in toroidal system is via a WKB-ballooning

analysis. In the context of the ballooning formalism originally introduced in Ref. [6], the

radial mode envelope width is assumed to be of order 1=
p
n which is relevant in the case of

ballooning modes. However, radial mode widths for TAE modes and toroidal drift modes are

typically not strongly dependent on n, but instead are governed by the plasma equilibrium.

This characteristic has recently motivated [7{9] the extension of the 1-D ballooning analysis

to a 2-D analysis, which was also employed in numerical calculations [10].

The physics requirements for successful TAE stability code development were discussed

in Ref. [5]. First, the code should be able to treat non-ideal e�ects non-perturbatively. There
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are indications that non-ideal e�ects such as full FLR e�ects and fast ion drive can strongly

inuence not only the growth rate but also the eigenfrequency, the eigenmode structure,

and, as we will see, the existence of some TAE branches, like Resonant TAE (RTAE) [5]

or Energetic Particle Modes (EPM) [11,12]. Such modes may be related to experimentally

observed Beam Driven Eigenmodes (BAE) [13,14]. Thus, it is of great interest to retain

these non-ideal e�ects non-perturbatively in the code. Secondly, the code should be able to

reproduce many other TAE branches, like kinetic TAE (KTAE) and non-circularity induced

TAE (NAE). Damping mechanisms including radiative, collisional and resonant damping

on plasma species should be considered. Also, fast particle drive needs to be calculated

with full FLR e�ects and �nite radial drift orbit width e�ects. The equilibrium needs to be

represented numerically for reasonable Alfv�en continuum and gap structure.

In this work, a numerical framework, the HINST (high-n toroidal stability) code, based

upon a 2-D Fourier-Ballooning formalism with the capability of retaining non-ideal e�ects

non-perturbatively, is developed. In contrast to the WKB-ballooning approach where ob-

taining the global eigenfrequency requires a detailed and labor intensive calculation of local

ballooning eigenfrequencies, the Fourier-Ballooning approach allows direct calculations of

the eigenfrequencies. The perturbation analysis based on the Fourier-Ballooning represen-

tation was presented in Ref. [15] in application to the study of ballooning modes, and in Ref.

[16] to the study of TAE, where many results of previous work [1,7,8,17,18] were recovered.

In Section II, the 2-D Fourier-Ballooning formalism is presented. In Section III, a numer-

ical procedure is given. In Section IV, the 2-D eigenmode equation with retained non-ideal

and FLR e�ects is derived. Results are shown in Section V. Finally, a summary and con-

clusions are given in Section VI.

II. FOURIER-BALLOONING FORMALISM

We introduce the Fourier-Ballooning formalism for perturbed quantities in tokamak plas-

mas through the following F̂ B̂ transformation, �rst, to a ballooning variable #
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�(r; �; �; t) = B̂�̂ � e�i!t�in(��q�)
X
j

�̂(� + 2�j; r)e2�ijnq; (1)

where � is the ignorable toroidal angle and ! is the mode frequency. With this ballooning

representation �̂ is no longer periodic in #, where # = �+2�j, and should vanish as j#j ! 1
so that � is periodic in �. Considering that the safety factor q(r) is a monotonically increasing

or decreasing function of r, the Fourier transformation in the radial variable x = n[q(r)�q0]
(q0 = q(r0) is evaluated at a reference location r0, which is typically chosen at the location

of most unstable local TAE solution) to a new variable �k is given by

�̂(#; x) = F̂ (x; �k)� �
Z
e�ix�k�(#; �k)d�k: (2)

In the F̂ B̂ transformation (Eqs.(1) and (2)), fast spatial variation is represented by einq#,

while the envelope in #; �k space is given by the function �(#; �k). The envelope function

should satisfy the boundary conditions:

�(#+ 2�; �k + 2�) = �(#; �k);

�(#; �k)! 0; j#� �kj ! 1: (3)

Di�erential operators are transformed as follows:

@

@�
�!�inF̂ B̂�; @

@�
�! F̂ B̂

 
inq +

@

@#

!
�;

@

@ 
�! F̂ B̂ (#� �k) inq0�;rk�! F̂ B̂

1

JB
@

@#
�; (4)

where J is the Jacobian and B is the equilibrium magnetic �eld.

The eigenmode equation is in general in the form of an integro-di�erential equation:

D(!; x; �;r?;rk)� = 0: (5)

Applying the F̂ B̂ transformation to Eq.(5) we obtain:

F̂ (x; �k)D(!; x; �; �k; @�)�(�; �k) = 0; (6)

where � = # � �k, @� = @=@�. To solve Eq.(6) we extract the radial dependence from the

operator D, expanding it near the mode localization point x = 0
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D(!; x; �; �k; @�) '
LX
l=0

Dl(!; �; �k; @�)x
l; (7)

where L is the truncation number. We can now apply the inverse Fourier transform

F̂�1(�0k; x)f = (2�)�1
R
eix�

0
kfdx to Eq.(6), which results in a 2-D eigenmode equation in

the (�; �k) space

LX
l=0

(@�k � @�)lDl(!; �; �k; @�)(�i)l�(�; �k) = 0; (8)

with the boundary conditions

�(�; �k + 2�) = �(�; �k);

�(�; �k)! 0; j�j ! 1: (9)

Note that for L = 0, Eq.(8) reduces to a local ballooning equation.

III. NUMERICAL PROCEDURE

To obtain the numerical solution of Eq.(8), we present the solution in terms of a set of

basis functions f'p;ug:

�(�; �k) =
X
p;u

Ap;u(�k)'p;u(�); (10)

where p and u are integers, the amplitude function Ap;u is periodic in �k with a period of

2�. The set of basis functions f'p;ug must be complete and they should individually be very

close to the local solutions of the eigenmode equation to provide a better convergence with

a small number of terms in Eq.(10). The behavior of local TAE solutions has been obtained

in previous works [1,7,8,17,18] and shows 'p;u(�) � e(i
0���j�j) which has a \fast" variation

in � and an exponentially decaying behavior at j�j ! 1, where the local eigenfrequency


0 � !qR=VA ' 1=2, and 0 < � < �0 = r0=R. We choose the basis functions as follows:

'p;u(�) = ei�p���uj�j � e�
0
p;u�; (11)
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where �0p;u = i�p � �usign �, �p = p Re
0, p and u are integers, �u is a discrete set of

numbers taken to be evenly in the range f�min; �maxg. 
0; �min; and �max are to be chosen

according to the 1-D solution of the local eigenmode equation, i.e., Eq.(8) with L = 0. 
0

is usually chosen to be an eigenvalue of the 1-D local solution at the radial location with

maximum growth rate in order to give an optimized representation of the most unstable

mode. �min and �max represent the asymptotic behavior of the local solution at small � and

at �!1, respectively. Such a behavior is obtained numerically. Typically for TAE modes,

we know the solution in � and use �max = �0.

Operating with
R
d�'p0;u0 on Eq.(8), and substituting the solution in the form of Eq.(10),

we obtain a coupled set of 1-D equations for the periodic functions Ap;u(�k):

X
l0;p;u

dl0p0u0pu(�k)
@l

0

@(�k)l
0Ap;u(�k) = 0: (12)

One can show that coe�cients dl0p0u0pu have the following form:

dl0p0u0pu(�k) =
LX
l=l0

Z
'p0;u0'p;u

l!

l0!(l� l0)!
i�l(@�k � @�)

l�l0Dl(!; �; �k; �
0
p;u)d�: (13)

The numerical procedure for solving Eq.(12) is based on the �nite element method in �k.

Thus, the eigenvalue problem is reduced to a matrix equation with the eigenvalues and

eigenfunctions determined by requiring that the determinant of the matrix vanishes. The

exact form of the eigenmode operator D will be given in the next section.

IV. 2-D EIGENMODE EQUATION

A. Basic Equation

We consider an analytic s � �p equilibrium, where s = rq0=q is the magnetic shear,

�p = ��0pq2R, �p is plasma pressure to magnetic �eld pressure ratio. The high-n TAE

eigenmode equation to be analyzed was derived in Ref. [5] based on the gyrokinetic equation.

Assuming that bulk plasma species have Maxwellian equilibrium distribution functions, the

perturbed particle distributions were obtained by solving gyrokinetic equations including
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full ion FLR e�ects. The eigenmode equation in a form similar to Eq. (6) (except that it is

additionally inverse Fourier transformed by F̂�1) is

F̂�1F̂

"
@

@�
h
@

@�
+ [1 + 2�̂ cos(� + �k)]

!2

!2
A

�
1 � !�i

!

�
h

(1 �G1)(1 + bi)

+
h
�pc(1�G1)

�1 +G2

i #
� + F̂�1�D = 0; (14)

where h = h(�; �k) = 1+[s���p sin(�+�k)]2, �̂ ' 2[r=R+�0(r)], �(r) is the Shafranov shift,

R is the major radius, !A = VA=qR, V
2
A = B2

0=4�niMi, !�i=!A = qk��i�
1=2
i =2�n, �n = Lpi=R,

Lpi is the thermal ion pressure gradient scale length, bi = b�ih, b�i = (k��i)
2=2, k� = nq=r,

G1 = (qiTe=qeTi)bi=(1+bi)=(1�
p
2�+i�1), G2 = �(!q

p
�i=!Ak��i)(1�

p
2�+i�2)G1=(1�G1)

and �1 = �2=1:46 = 3:22�
q
�=2!=

�
ln 8

q
�!=�

�3=2
, � = r=R, and � is the electron collisional

frequency.

In this model dissipation due to trapped electron collision combines with bulk ion FLR

e�ect to provide a parallel electric �eld, which is responsible for the radiative damping of

TAE-like modes. For typical tokamak parameters, we expect �2 > �1 � 0:01 for TAE modes.

In Eq.(14), full bulk ion Larmor radius e�ects are included via the Pad�e approximation. The

nonadiabatic particle contribution denoted as �D includes wave-particle resonances and full

FLR e�ects of both hot particles and bulk ions and accounts for both the hot particle drive

and the bulk ion Landau damping. Even though the non-ideal contribution is proportional to

particle �, they can have signi�cant e�ects on TAE stability and generate new type of TAE

modes. In Ref. [5] the hot particle contribution were assumed to be mainly due to deeply

trapped particles with a slowing-down distribution function. The resonance contribution

from such a �Dh provides a hot particle drive which is inversely proportional to the toroidal

mode number. However, as we will demonstrate in the solution of gyrokinetic equation, only

the passing particle contribution may give the dependence Im �Dh / n for k?�h � 1, which

is important for the high-n mode stability analysis.

Following Ref. [5] we have

�Dj ' �
4�q2R2!qj

k2�c
2

Z
d3v!kJ0(

q
2bjv?=vT )gj ; (15)
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where gj is the nonadiabatic perturbed particle distribution function, J0 is the Bessel func-

tion of zero order, !k = B� � � rS(v2k + v2?=2)=!cj is the toroidal curvature drift frequency,

� is the magnetic �eld curvature, S = n(q�� �) is the eikonal, qj and !cj is the charge and
the cyclotron frequency of species j, respectively.

B. Nonadiabatic particle contribution

To derive the expression for the nonadiabatic ion particle contribution to the eigenmode

equation, we need the nonadiabatic perturbed distribution function, which is determined

from the gyrokinetic equation in the low frequency limit (! � !c) [19,20]. Neglecting the

parallel electric �eld e�ects for ion species the gyrokinetic equation is given by [5]:

dgj

dt
=

 
@

@t
+ (vk + vd) � r

!
gj =

iqj

Mj

@Fj

@E
�
1 � !�j

!

�
!kJ0�: (16)

where vd is the particle magnetic drift velocity, Fj = Fj( ; E; �) is the equilibrium particle

distribution, E = v2=2 is the particle energy per particle mass, � = v2?=2 is the magnetic

moment per particle mass, and !�j = B �rS � rFj=(B!cj@Fj=@E). In terms of the basis

functions introduced in Section III this equation has the solution to the lowest order in 1=n:

gj = �
iqj

2Mj

X
p;u

Z t

�1
dt0
@Fj

@E
�
1 � !�j

!

�
F̂Ap;u(�k)'p;u(�

0)vdk�J0e
�i!t0+iS(t0)

�
�
ei#

0
(i+ s�0) + e�i#

0
(i� s�0) +

i

2
�p(e

i2#0 + e�i2#
0 � 2)

�
; (17)

where the integration is along the unperturbed orbit, #0 = #(t0), �0 = �(t0). The expression

Eq.(17) should be treated separately for trapped and passing particles.

1. Trapped particle contribution

For trapped particles one can make use of the equality

Z t

�1
=

X
�=0;1

Z t���b

t�(�+1)�b
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where �b is the period of particle motion in the plasma cross section (see, for example, Ref.

[21]). Then, Eq.(17) can be written in the following way

gj = �
iqj

2Mj

e�i!t+iS(t)
X

p;u;�=0;1
ei(!��!D)(�+1)�b

Z t���b

t�(�+1)�b
dt0e

�i
R
t
0

t�(�+1)�b
(!�!Dpu)dt

00

F̂Ap;u(�k)'p;u(�)

�@Fj
@E

�
1� !�j

!

�
vdk�J0

�
ei#

0
(i+ s�0) + e�i#

0
(i� s�0) + i

2
�p(e

i2#0 + e�i2#
0 � 2)

�
; (18)

where !Dpu = !D � i�p;ud#=dt, !D = dS=dt, and the bar means the orbit average. One can

show that the integrand in the RHS of Eq.(18) is a periodic function of time, which allows

us to perform the sum over �:

gj = � iqj

2Mj

e�i!t+iS(t)

e�i(!��!D)�b � 1

X
p;u

Z t

t��b
dt0e

�i
R t0

t��b
(!�!Dpu)dt

00 @Fj

@E
�
1� !�j

!

�
F̂Ap;u(�k)'p;u(�)

�vdk�J0
�
ei#

0

(i+ s�0) + e�i#
0

(i� s�0) +
i

2
�p(e

i2#0 + e�i2#
0 � 2)

�
: (19)

To proceed further, we assume that trapped particles lives mostly near the bounce points,

and that the resonant denominator in Eq. (19) leaves the contribution for particles, which

are near the resonance

! � �!D � I!b = 0; (20)

where I is the bounce harmonic number and !b = 2�=�b. Then, after some algebra, we

reduce Eq.(19) to the approximate form

gj ' �
qj

2Mj

e�i!t+iS(t)

! � �!D

X
p;u

@Fj

@E
�
1� !�j

!

�
F̂Ap;u(�k)'p;u(�)vdk�J0

�e�0p;u(2�N�#)
"
i(X1 +X�1) + s(2�N � �k)(X1 �X�1)

+
i

2
�p(X2 +X�2 � 2X0) + is�b

(
sin[(�p + 1)�b]� sin[(�p � 1)�b]

)#
; (21)

where

Xl = cos [(�p;u + l)�b] : (22)

Here �b is the poloidal angle of trapped particle bounce point, N is the nearest integer to the

ratio #=(2�), and we have averaged over the sign of the parallel trapped particle velocity.
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Note that in the above expression there are no bounce harmonics, which one can show is a

good approximation provided the above assumption that the particle lives mostly near its

turning point is taken into account. Thus, from Eq.(15) we obtain the nonadiabatic particle

contribution

�Dj = �
�q2R2!q2j

c2Mj

Z
d3vv2dJ

2
0

e�i!t+iS(t)

! � �!D

@Fj

@E
�
1 � !�j

!

�X
p;u

F̂Ap;u(�k)'p;u(�)e
�0p;u(2�N�#)X;

X =

�
ei#(i+ s�) + e�i#(i� s�) +

i

2
�p(e

i2# + e�i2# � 2)

� "
i(X1 +X�1)

+s(2�N � �k)(X1 �X�1) +
i

2
�p(X2 +X�2 � 2X0) + is�b fsin[(�p + 1)�b]� sin[(�p � 1)�b]g

#
: (23)

The integrand in Eq.(23) can be factorized into two functions, f(v) and f(�b) � X, in the

large aspect ratio approximation when trapped particles have mostly perpendicular velocity.

Then, the velocity space integration is reduced to the following

Z
d3vf(�b)f(v) =

Z
v2f(v)dv

p
�

2
I(#) =

Z
v2f(v)dv

p
�

2

Z #�2�N

�

f(�b) sin �bd�bp
cos #� cos �b

: (24)

The integral in # can be evaluated approximately using the fact that TAE is well represented

by the basis function with �p ' 1=2. Then we have

I(#) '
p
cos #+ 1

�
[i(1� �p=2) � s(2�N � �k)sign�p]

8

5
cos(�p#)

+is
5

3
(2� cos #)

� �
ei#(i+ s�) + e�i#(i� s�) +

i

2
�p(e

i2# + e�i2# � 2)

�
: (25)

The velocity integration can be done for a Maxwellian distribution function, which allows

us to present the trapped particle contribution in the form

�Dj ' �
�jq

2
p
�

4
p
�
Ive

�i!t+iS(t)
�
1� !�j

!

�X
p;u

F̂Ap;u(�k)'p;u(�)e
�0p;u(2�N�#)I(#);

Iv =
Z

e�v
2=v2

T J2
0

1� �!DTv2=!v2T

v6dv

v7T
; (26)

where the subscript T is referred to the quantity evaluated at the thermal velocity vT . The

expression for the integral Iv can be found by making use of the equations

2
Z
dxxne�x

2

J0(ax)J0(bx) '
�((n+ 1)=2)

(1 + ab=2)(n+1)=2
e�(a�b)

2=4; (27)
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where we have used the Pad�e approximation. Eq. (27) is valid for odd n, but gives a good

estimate for even n as well [22]. Using Eq.(27) and matching the results of integrations for

Iv for the two limits �!DT=! � 1 and �!DT=! � 1, we obtain the expression

Iv =

p
�

(1 + bi)5=2

�
1 � �!DT

!

��
3

1+bj
+

�!2
DT

!2

�
�
1 +

�!2
DT

!2

�2 � i�

2
�

�
!

�!DT

�7=2
e�!=�!DTJ2

0 ; (28)

where � = 0; �; 2� if Imm! <;=; > 0, respectively.

2. Passing particle contribution

To simplify the derivation, we will use here the approximation of a large aspect ratio

equilibrium, which implies for passing particles:

dvk
dt

= 0;) # = vkt=qR: (29)

The perturbed nonadiabatic distribution is obtained from Eq.(17)

gj ' �
iqj

2Mj

X
p;u

@Fj

@E
�
1 � !�j

!

�
F̂Ap;u(�k)vdk�

Z t

1
dt0'p;u(�

0)J0(
q
2b0jv?=vT )e

�it0!+iS0y(#0; �0); (30)

where prime means that the corresponding variables should be taken at the moment t0, and

the notation used is y(#; �) = ei#(i+ s�)+ e�i#(i� s�)�2i�p sin
2 #. To get the contribution

of passing particles we will substitute Eq.(30) into Eq.(15):

�Dj = �
i�q2!Mj

B2

X
p;u

Z Z
d3vdt0e�i!t

0+iS0
�
1� !�j

!

�
F̂Ap;u(�k)'p;u(�

0)

�
 
v2k +

v2?
2

!2
@Fj

@E J0J
0
0y

0y; (31)

which can be integrated in v? using the Maxwellian distribution function and Eq.(27). The

result is

�Dj =
iq2!�j

2
p
�

X
p;u

Z Z
d�vkdt

0e��v
2
ke�i!t

0+iS0
�
1 � !�j

!

�
F̂Ap;u(�k)

�'p;u(�0)e�(
p
h�

p
h0)2b�j=2y0y

0
@ �v4k

1 +
q
bjb

0
j

+
�v2k

(1 +
q
bjb

0
j)
2
+

1

2(1 +
q
bjb

0
j)
3

1
A ; (32)
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where �vk = vk=vT . To perform the time integration we note, that the time variation of

the integrand is restricted by the exponent e�(
p
h�

p
h0)2b�j=2. For the sake of simplicity we

neglect this exponent substituting in�nite limit with one de�ned
R
�1 ! R

�t0 , where t0 =

qR=
q
bj=2svk. Also we are going to neglected all sideband contributions and assume �2p � 1.

One can obtain after this

�Dj =
�jq

2

2
p
�

�
1� !�j

!

�X
p;u

F̂Ap;u(�k)'p;u(�)e
�i!t+iS(t)(1 + s2�2)Ipasv ;

Ipasv =
Z
d�vke

��v2
k

 
�v4k

1 + bj
+

�v2k
(1 + bj)2

+
1

2(1 + bj)3

! 
1 � e�it0(!�!D+1)

1� !D+1=!
+
1 � e�it0(!�!D�1)

1� !D�1=!

!
; (33)

where i!Dl = (il + �p;u)vk=qR. We calculate the real part of the integral Ipasv , presenting

it in the form:
R �vkr
0 +

R1
�vkr
, where �vkr = qr!=vT j�p + l̂j, with l̂ = �1, is the resonant par-

allel velocity, and taking the integrals in the limit !2=!2
D+1 � 1 for the �rst integral and

!2=!2
D+1 � 1 for the second one. We also keep the imaginary part only in the resonance

term which as one can show produces the biggest contribution. The resulting expression can

be shown numerically to give a good approximation for Ipasv :

Ipasv = ReIpasv �
X
l̂=�1

i���vkre
��v2

kr (1� e�u=s
p
b�j=2)

 
�v4kr

1 + bj
+

�v2kr
(1 + bj)2

+
1

2(1 + bj)3

!
;

ReIpasv = (1� e�u=s
p
b�j=2)

X
l̂=�1

 
I0

2(1 + bj)3
+

I2

(1 + bj)2
+

I4

1 + bj

!
;

I0 = 2
p
�

�
1

2
� �v2kr

�
erf(�vkr)� 2

p
��v2kr � 2�vkre

��v2
kr ;

I2 =
p
�

�
1

2
+ �v2kr

�
erf(�vkr)�

p
��v2kr � �vkre

��v2kr ;

I4 =

p
�

4

�
3 + 2�v2kr

�
erf(�vkr)�

p
�

2
�v2kr �

�
2�v2kr +

3

2

�
e
��v2

kr ; (34)

where erf() is the error function. Since we need to establish the overlap between HINST and

previous calculations, we have to present the nonadiabatic contribution in linear form with

the respect to the perturbed quantities, while the forms derived above are linear in terms

of the basis functions. Thus, when comparing HINST results with the local ballooning code

calculations, we choose �p = 
0 in the nonadiabatic contribution.
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V. RESULTS

A. TAE solution: HINST versus NOVA

TAE modes with frequencies inside the toroidicity induced gap in the Alfv�en contin-

uum are routinely reproduced in low-n ideal MHD codes, such as NOVA [23]. In order to

benchmark the HINST code results we compare the eigenmode solutions of an n = 6 TAE

mode for a TFTR DT plasma equilibrium. For the n = 6 TAE mode in TFTR plasmas

HINST code formulation may be marginally applicable for such a medium toroidal mode

numbers. The equilibrium is calculated for a TFTR shot number #73268 at 3:41 sec using

the plasma pro�les from the TRANSP data analyzing code [25]. The plasma parameters

are: R0 = 2:52m, a = :87m, B0 = 5T , �pc(0) = 5%, central plasma electron density

n(0) = 7:3�1013cm�3 and the q(r) pro�le is shown in Fig.1 along with the radial eigenmode

structure of the poloidal harmonics of the radial component of the plasma displacement

� = � �r obtained by the NOVA code. The TAE mode frequency is f = !=2� = 265kHz.

The solution from the HINST code is in good agreement with the NOVA code result. The

n = 6 TAE mode solution obtained by the HINST code is shown in Fig. 2. The TAE

eigenfrequency computed by the HINST code is about 5% higher than the NOVA's value.

The mode structure (the mode radial location and envelope width) from the HINST code

is quite similar to the NOVA's solution, although corresponding structure of the poloidal

harmonics may di�ers slightly. There are several reasons for the di�erence in the mode

structure: (1) in the HINST code the equilibrium pro�les are �tted with a polynomial that

is truncated by keeping a �nite number of terms in the expansion series Eq.(10); (2) the

eigenmode equation, Eq.(14), is derived based on the high�n mode assumption and n = 6 is

relatively \low" enough so that plasma pro�le and geometric e�ects are not fully included;

and (3) �nite ion Larmor radius e�ect is included in the HINST code, but not in the ideal

MHD NOVA code.
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B. TAE and RTAE modes in ITER-like plasmas

Employing the HINST code we have also performed TAE and RTAE stability calculations

for ITER plasma pro�les and parameters similar to those used in Ref. [10]: R0 = 6:05m,

a = 2:3m, B0 = 5:7T , Te = Ti = T = T0(1 � r2=a2), ne = ne0(1 � r2=a2)1=2, ne0 =

1:5 � 1014 cm�3, q = 1 + 2r2=a2, �� � n2T 2, �1 = 0:1(T=T0)
�3=4, and �2 = 0:16(T=T0)

�3=4.

We assume a DT plasma with an equal mixture and same density and temperature pro�les

as electrons.

First we consider TAE stability in a low plasma beta ITER plasma by setting the bulk

particle temperature to be T0 = 10KeV , the total core plasma beta at the magnetic axis is

�pc = 3:7% and ��0 = 0:25%. For this plasma condition, TAEs exist inside the continuum

gap and are destabilized by alpha particles. The most unstable n = 10 TAE mode has

a real frequency !r=!A0 = 0:251, where !A0 = VA(0)=q(0)R, which agrees with Ref. [10]

and is located inside the continuum gap near r=a ' 0:5 as shown in Fig. 3. The TAE

growth rate is =!A0 = 1% which is di�erent from the value given in Ref. [10] because of a

di�erent driving mechanism and full FLR e�ects included in the HINST code. Also shown

in Fig. 3 are local TAE eigenfrequencies from the 1-D calculation (Eq.(8) with L = 0) at

a �xed value of �k = 0. Note that the local TAE growth rate is maximum near the radial

location r=a ' 0:5. The corresponding 2D radial mode structures of poloidal harmonics

with mode numbers 13 < m < 19 are shown in Fig. 4, which clearly show that the TAE

mode is localized near the maximum local growth rate location. The 2D calculation was

performed with 20 basis functions (�2 � p � 2, 1 � u � 4). The envelope function Ap;u(�k)

for p = 1; u = 1 (�p = 0:25p; �1 = 0:005; �4 = r0=R) computed by the HINST code, is shown

in Fig. 5. The number of grid points in �k is 30. One can see that the envelope function

is localized near �k = 0. Results show that the eigenfunction �(�; �k = 0) agrees well with

the local ballooning solution at r=a = 0:5. Therefore, we expect that this TAE mode can

be studied reasonably well by means of a 2D WKB-ballooning formalism [10].

It was shown previously [5] that as the core plasma � increases the TAE mode can be
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transformed into a resonant type TAE mode (RTAE) in presence of strong alpha particle

drive. Thus, we increase the core ITER plasma temperature to T0 = 20KeV , the total core

plasma beta at the magnetic axis is �pc(0) = 7:4% (< �pc >= 2:96%) and the most unstable

eigenmode frequency shifts down into continuum. We identify the unstable mode as RTAE

mode [5] which has !=!A0 = 0:2, r=!A0 = 0:0165, and 11 < m < 19 are the dominant

poloidal harmonics and their radial mode structures are shown in Fig. 6. The mode is broad

in r and shows a singular behavior which is typical for modes inside the continuum. The

envelope function Ap;u(�k) for p = 1; u = 1 shown in Fig. 7 is is broader for RTAE than

that for TAE mode. Thus, after inverse Fourier transform to the real space there are more

poloidal harmonics to cover a broader radial domain. With �1 = �2 = 0 the RTAE growth

rate is =!A0 = 0:0185 which is about 10% higher so that the e�ect of collisional radiative

damping due to electrons is small.

However, because the RTAE is a non-perturbative solution it is strongly a�ected by the

change in the fast particle drive (�h). The RTAE mode is stabilized for �h0 < �hcr = 0:6%,

which is slightly lower than the critical value, �hcr = 0:8%, of local calculations at r=a = 0:6

where the m = 18 harmonic amplitude is large. This is probably because alpha drive in the

r=a < 0:6 region is larger and can contribute more to the stability of RTAE mode. Also,

the ion Landau damping is usually small i=!A0 = 0:1%, which may be due to the use of

the s � � equilibrium model that neglects the ellipticity e�ect. The ellipticity may lead to

higher ion Landau damping because of the coupling through sideband resonances. We have

also investigated the stability of KTAEs and found that they are usually stable because of

high radiative damping e�ects.

VI. SUMMARY AND CONCLUSIONS

A high-n stability code, HINST, based on the Fourier-ballooning formalism has been

developed and is shown to be able to study the stability of various types of TAEs in large

tokamaks such as ITER where the spectrum of unstable TAEs is shifted toward medium to
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high-n modes. The HINST code adopts a non-perturbative approach for calculating non-

ideal e�ects such as: full ion FLR, trapped electron collisional damping, etc. The HINST

code has been benchmarked successfully against local ballooning calculations and the global

MHD NOVA code. It has been benchmarked carefully with both the global NOVA code as

well as the high-n WKB-ballooning code.

We have studied TAE stability of ITER-like plasma parameters and the results show

that for low core plasma � (�(0) ' 4%) TAE modes with n = 10 � 20 are unstable. As

�(0) increases to 7:4% resonant type TAEs (RTAE) with frequencies inside the lower Alfv�en

continuum are driven unstable by alpha particles. The most unstable RTAE mode has

=!A ' 1:6% and is localized near r=a ' 0:5 with very broad radial structure.

The HINST code is still being improved in several areas: (1) the capability of handling

non-circular plasma shaping e�ects, which are important in determining thermal ion Landau

damping and fast particle drive; (2) the reformulation of fast ion response to allow for

non-Maxwellian particle distributions such as the slowing-down distribution function; (3)

improvement of some non-ideal e�ects such as trapped electron collision. Finally, a more

complete comparison with other kinetic 2D codes such as the NOVA-K code is still to be

carried out.
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FIG. 1. Radial structure of poloidal harmonics of a n = 6 TAE mode radial displacement
obtained by NOVA for TFTR plasma (shot # 73268 at 3.41 sec).
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FIG. 2. TAE eigenmode radial structure obtained from HINST for the same TFTR plasma as
in Fig.1.
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FIG. 3. In�nite-n gap structure and 1D local TAE eigenfrequency at �xed �k = 0 for an
ITER-like equilibrium with �pc(0) = 3:7%.
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FIG. 4. The radial structure of poloidal harmonics of an n = 10 TAE mode.
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FIG. 5. Envelope function Ap;u(�k), de�ned in Eq.(10), for p = 1, u = 1 in radial Fourier variable
�k space for a global TAE mode.
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FIG. 6. The radial structure of poloidal harmonics of an n = 10 RTAE mode at �pc = 7:4%.
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FIG. 7. Envelope function Ap;u(�k), de�ned in Eq.(10), for p = 1, u = 1 in radial Fourier variable
�k space for a global RTAE mode for �pc = 7:4%.

25


