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This paper describes a numerical study of the role played by 2D turbulent fluctuations in

microwave reflectometry – a radar technique for density measurements using the reflection of

electromagnetic waves from a plasma cutoff. The results indicate that, if the amplitude of

fluctuations is below a threshold which is set by the spectrum of poloidal wavenumbers, the

measured backward field appears to originate from a virtual location behind the reflecting

layer, and to arise from the phase modulation of the probing wave, with an amplitude given by

1D geometric optics. These results suggest a possible scheme for turbulence measurements in

tokamaks, where the backward field is collected with a wide aperture antenna, and the virtual

reflecting layer is imaged onto the plane of an array of detectors. Such a scheme should be

capable of providing additional information on the nature of the short-scale turbulence ob-

served in tokamaks, which still remains one of the unresolved issues in fusion research.

I. INTRODUCTION

Microwave reflectometry, an offspring of methods used in ionospheric studies,1 is extensively used in

tokamak research for the measurement of plasma density. Since the original proposal of employing FM-

CW radar techniques in combination with swept millimeter-wave oscillators,2,3 microwave reflectom-

etry has matured quickly to the point of being seriously considered for plasma density measurements in

a fusion reactor.4-7 Indeed, the modest requirement for plasma accessibility and the possibility of con-

veying microwaves to a remote location make reflectometry an ideal method for the hostile environment

of a fusion reactor.
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In microwave reflectometry, the plasma density is inferred from the position of a plasma cutoff, which

is determined using the dependence of the phase φ  of a reflected wave on its frequency ω , i.e., from the

round-trip group delay dφ(ω ) / dω . From the assumption that φ(ω )  is given by the geometric optics

approximation

φ = 2
ω
c

ε 
  dr

 0

 rc∫  , (1)

and the appropriate initial conditions, it is possible to derive the electron density profile. In Eq. (1), as in

the rest of this paper, we assume that a unit amplitude wave is launched parallel to the gradient of the

plasma permittivity ε , and we denote with r  a radial coordinate, and with rc  the location of the reflecting

cutoff.

The presence of turbulent fluctuations may severely increase the difficulty of inferring the average

electron density profile from reflectometry measurements. On the other hand, this technique is one of the

best available tools for the measurement of fluctuations in the main core of tokamak plasmas, and for the

study of the role of turbulence in the process of anomalous transport. In fact, the first evidence for the

existence of a short-scale turbulence in tokamak plasmas was provided by the first application of this

technique to fusion research.8

In the presence of density fluctuations, the interpretation of reflectometry measurements is relatively

simple when the plasma permittivity varies only along the direction of propagation of the probing wave.

This can be seen by taking a plasma permittivity in the form ε = ε0(r) + ε̃(r) (where ̃ε(r)  is the contribu-

tion of fluctuations), and by assuming that |ε̃ |<<1. The wave equation can then be solved with the method

of successive approximations. Apart from a constant phase, the first order term (Born approximation)

outside of the plasma is given by9-12

E
 1 = 2k0 exp(ik0  r) ε̃(z)A2(z)dz

 0

 ∞
∫  , (2)

where k
 0 = ω / c  is the vacuum wavenumber, and A(r) is a zero order solution of the wave equation with

A(r) → 0  for r → ∞ , and A(r) → cos(k
 0r) for r → 0. When ε

 0(r) is a linear function, both A(r) and the

zero order field E0  become, apart from a constant factor, the Airy function Ai. When |E
 1|<<|E

 0|, Eq. (2)
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is a good approximation of the total scattered field. Under these conditions, by casting the backward wave

in the form exp(ik
 0r) + iφ ), from Eq. (2) we obtain that the contribution of fluctuations to the phase of the

reflected wave is

φ̃ = 2k
 0 ε̃(r)A2(r)dr

 0

 ∞
∫  . (3)

On the other hand, by expanding ε  to the first order in ̃ε , from Eq. (1) we get

φ̃ = k
 0

ε̃
ε0

 

 dr
 0

 rc
∫  . (4)

Away from the cutoff, where A(r) ≈ ε0
−1/4cos(k

 0  

 0

 r
∫ ε0

 (z)dz − π / 4)  (WKBJ approximation1), the coeffi-

cient of ε̃  in the integrand of Eq. (4) is the average over a distance ∆r = π / k
 0 ε  0

1/2 of the similar coeffi-

cient in Eq. (3). This is not true near the cutoff where ε
 0
−1/2 → ∞  and A2 ∝ Ai2(ζ ) , with

ζ ≡ (ω2 / c2L
 ε)1/3(rc − r) and L

 ε
−1 = (dε

 0 / dr)r=rc . Since the WKBJ approximation is valid up to the last

lobe of A2(ζ ), which near ζ ≈ 0  has a width of ∆ζ ≈ 3 (i.e., ∆r ≈ 3(k
 0 L

 ε)1/3 / k
 0), we conclude that Eq.

(4) represents a good phase approximation when fluctuations have a radial wavenumber in the range

|k
 r|< k

 G ≡ π / ∆r ≈ k
 0 / (k

 0 L
 ε)1/3, so that the scattered field is strongly weighted by fluctuations near the

cutoff. On the contrary, when |k
 r|>> k

 G , the scattered field may originate from fluctuations located away

from the cutoff where the spatial variation of A2(r)  matches that of the density perturbation (Bragg

resonance condition).10-12

For |k
 r|< k

 G , using ε
 0(r) ≈ (rc − r) / L

 ε  in Eq. (4) we obtain13

Γφ(kr ) = 2π
k

 0
2

 L
 ε

|k
 r|

[C2(w) + S2(w)]Γε(k
 r)  , (5)

where Γε(k
 r) and Γφ(k

 r) are the Fourier transforms of the radial correlation of ε̃  and φ̃  (considered as

a function of rc), respectively, and C(w)  and S(w) are the Fresnel integrals14 with w = (2|k
 r|L ε / π)1/2.

For the case of interest in tokamaks, where w >>1, C(w) ≈ S(w) ≈1/ 2 , while for w <<1, C(w) ≈ w and

S(w) ≈ 0.

The interpretation of reflectometry becomes considerably more difficult in the presence of two-di-

mensional (2D) fluctuations, i.e., when the plasma permittivity varies perpendicular to the direction of

propagation of the probing wave. The difficulty persists even when the approximation of geometric
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optics is applicable. Suppose, for example, that in the system of orthogonal coordinates (r,x) , represent-

ing the radial and the poloidal directions of a tokamak, the wave permittivity is ε = ε0(r) + ε̃(r,x), and

that the reflected wave, as in the 1D case, can be cast in the form exp(iφ̃ ), with φ̃(x) given by Eq. (1). In

a random medium, as in a tokamak plasma where the average density is perturbed by a small-amplitude

short-scale turbulence, the phase of the probing wave is the cumulative result of many random contribu-

tions, so that it is reasonable to assume that φ̃  is a normal random variable with mean < φ̃ >= 0 , variance

σφ
2 ≡< φ̃2 >  and autocorrelation γφ(ξ ) ≡< φ̃

 1(x)φ̃
 2(x + ξ ) > /σφ

2 . From this, we obtain that the first mo-

ment of the wave electric field, which can be interpreted as the amplitude of a coherent specular reflec-

tion, is < E >= exp(−σφ
2 / 2) , and thus it is a strong decreasing function of σφ . For the second moment we

get < E
 1E 2

* >= exp[−σφ
2(1− γφ)], which proves that the autocorrelation width is also a decreasing func-

tions of σφ . In particular, for σφ >>1, taking γφ(ξ ) = exp[−(ξ / ∆ )2] and expanding to the second order

in ξ , we obtain < E
 1E

 2
* >≈ exp[−(σφ  ξ / ∆ )2]. This proves that in the presence of 2D density fluctuations,

the range of wavenumbers of the scattered waves can become broader than the spectrum of φ̃ , and

consequently broader that the spectrum of the plasma fluctuations themselves. Under these conditions, it

becomes very difficult to infer the properties of plasma fluctuations from reflectometry measurements.13

The problem becomes even more complicated when the approximation of geometric optics is no longer

valid, making microwave reflectometry a useless technique for diagnosing tokamak plasmas.

The assumptions made in the previous paragraph, i.e., that reflectometry consists of a phase modula-

tion of the probing wave, occurring mostly near the cutoff layer with a magnitude given by 1D geometric

optics, provide the basis for a model of reflectometry that has been used in the past for the analysis of

reflectometry data in the Tokamak Fusion Test Reactor (TFTR).13,15 This model, which is reminiscent of

that described in Ref. (16), appears somehow arbitrary and restrictive, but when valid it transforms mi-

crowave reflectometry into a practical tool for the investigation of short-scale turbulence in tokamaks. In

the following, we will discuss the validity of this model of reflectometry using the results from a numeri-

cal solution of the wave equation in the presence of 2D turbulent fluctuations.
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II. PHYSICAL MODEL

A. Plasma geometry

In the system of orthogonal coordinates (r,x)  introduced in the previous Section, we consider a plane

stratified plasma equilibrium with electron density ne(r) . To make the numerical simulation more realis-

tic, we use the density profile of Fig. 1, which is similar to the density distribution on the equatorial plane

of a typical TFTR discharge. As in the standard reflectometry arrangement used in tokamaks, we assume

that the probing wave is launched along the r-direction from the right side of Fig. 1, with its electric field

perpendicular to the x-axis, corresponding to the ordinary mode of propagation in tokamaks. The wave

frequency is ω / 2π =75x109 s-1 (k
 0 =15.7 cm-1), and the radial position of the plasma cutoff is rc=278

cm, where the permittivity radial scale length is L
 ε =50 cm. For the density profile of Fig. 1, this cutoff

position prevents any significant tunneling of the launched wave, which therefore must be completely

reflected. Accordingly, we have used the total energy of reflected waves in the vacuum region as one of

the tests for assessing the validity of our solution of the wave equation.

B. 2D Random fluctuations

Since the frequency of turbulent fluctuations in tokamaks is several orders of magnitude smaller than

the frequency of the probing wave, we assume that the equilibrium plasma density ne(r)  is perturbed by

a spectrum of stationary random fluctuations with the amplitude distribution

δne
ne

=  δpq
 

 q=1

M

∑
 p=1

M

∑ cos(pκrr)cos(qκxx + ϕpq), (6)

which is composed of MxM  discrete components with wavenumbers pκr  and qκx  (where κ r  and κx

are constants), random phases ϕpq , and amplitudes δpq . For the latter, we take the distribution

δpq
 2 ∝ p exp[−(pκr / ∆kr ) 2 − (qκx / ∆kx) 2] with ∆kr = κrM / 2 and ∆kx = κxM / 2 . Without a loss of gen-

erality, we have introduced the factor p  in the spectral distribution of fluctuations for simplifying the

comparison of the numerical results with the predictions of Eq. (5), that can be obtained with a simple

analytical integration in kr . Such a factor is also justified by the fact that the focus in this paper is on short

radial scale fluctuations.
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C. Wave equation

We look for solutions of the wave equation in the form

E(x,r) = cn
 n=−N

   N

∑  En(x,r), (7)

where E n(x,r)  is a set of 2N+1 independent solutions of the wave equation, which are cast in the form

En(x,r) = f
m n

m=−N

   N

∑ (r) e imκxx , (8)

so that the functions fmn(r) are solutions of the system of equations

d  2 fm n

dr 2
+ k

 0
2(ε

 0 − αm
2 ) fm n +

        k
 0
2(ε

 0 −1)  [
 q=1

  M

∑
 p=1

  M

∑ δpq

2
 cos(pκrr) ( f(m−q) n e iϕpq + f(m+q) n e -iϕpq)]= 0

, (9)

where ε
 0 = 1− (ωp / ω )2  is the unperturbed plasma permittivity, ωp = (4π  ne e2 / me)1/2  is the plasma fre-

quency, and αm = mκx / k0 . These equations, which are obtained by inserting Eqs. (6) and (8) into the

wave equation and by performing a Fourier expansion in x , can be solved with the Runge-Kutta method.

Then the coefficients cn  in Eq. (7) are determined by separating the electromagnetic field in the vacuum

region into a forward and a backward component, and by imposing the condition that the former is a

plane wave propagating in the r-direction with unit amplitude. In the vacuum region (r > r0 ) the electro-

magnetic field can then be expressed in the form

E(x,r) = e
−ik

 0
 r

-  

+ An
n=−N

   N

∑   e
 i[nκ

x
x+(k

 0
2−n2κx

2)1 / 2r]
 , (10)

where the first term on the right hand side represents the launched wave, while the second represents the

reflected waves, which in the following we will refer to as the backward field Eb. Finally, the value of the

integer N is chosen so that an increase in its value does not significantly affect the solution. This condi-

tion, to be verified a posteriori, allows the closure of the system of Eqs. (9) by setting all terms f(m±q)n

with |m ± q|> N  to zero.
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III. NUMERICAL RESULTS

The amplitude |An| of reflected waves is shown in Fig. 2 as a function of nκx  for fluctuations with

κx =0.05 cm-1, κr =0.1 cm-1 and M =20. The three cases differ only in the value of the total density

fluctuation, defined as the volume average σn =< (δn)2 / ne
2 >1/2, which is equal to 5.0x10-3, 1.0x10-2 and

2.0x10-2, respectively. These results are a clear illustration of the broadening in the spectrum of back-

ward waves and of the decrease in the amplitude of the specular reflection |A0|, which are both caused by

the rise in the amplitude of fluctuations.

Here and in the following, the phase φ(x) of Eb on a plane with a constant value of r  is defined, apart

from an additive constant, as the sum of the phase differentials between pairs of adjacent points. By

setting their separation to be sufficiently small, one can avoid, with the exception of points where |Eb|≈ 0 ,

the indetermination caused by the multivalued character of the phase.

For the same three cases of Fig. 2, Figs 3 and 4 displays the modulus ρ ≡|Eb| of the backward field,

and the phase deviation from the mean value (φ̃ ) at the plasma boundary r = r0 . From these results, it

appears that the value of ρ  fluctuates wildly as a result of the reflected waves interference, and thus that

the backward field is far from being approximated by a plane wave. Also, since the density fluctuations

of the three cases shown in Fig. 2 differ only by a constant factor, i.e., they have the same set of random

phases δpq , the results in Fig. 4 show clearly that the calculated value of φ̃  does not agree with the value

obtained from Eq. (1), since the latter is approximately a linear function of δne / ne . It is also interesting

to note that as the amplitude of fluctuations increases the spectrum of φ̃(x) develops a strong low

wavenumber component.

These results appear to suggest that the model of reflectometry described in the Introduction fails to

predict the numerical results. Indeed this is not true. Suppose in fact, as done in our model, that the

launched wave is nearly unaffected by plasma fluctuations up to a region near the cutoff where it then

suffers a phase modulation. An observer in the vacuum region would detect a spectrum of reflected

waves as if they were coming from a virtual location r = rG , corresponding to the average round-trip

group delay,1 i.e., from r ≈ r0 + ε
 0
 −1/2 dr

r
0

 rc
∫ . For the case considered so far, we obtain r0 − rG ≈100 cm.

From the last term in Eq. (10), we get that the range of radial wavenumbers of the backward waves is
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δkr ≈ (1+ σφ
2)∆kx

2 / 2k0 , where, as explained in the Introduction, the factor  is due to the non-linear spec-

tral broadening of scattered waves. Thus an observer, who is located at a distance from the plane r = rG

which is larger than the diffraction distance D = δkr
−1, would sample an electromagnetic field which is

the result of a complicated interference pattern, and should therefore detect large amplitude variations

and random phases, as those displayed in Figs. 3 and 4. For the case in Fig. 2 with the lowest level of

fluctuations (σn=5.0x10-3), we obtain D ≈ 60 cm using the value of σφ ≈1 given by Eq. (1). Thus the

results of Figs. 3 and 4 can be explained by the fact that D < r0 − rG  in all three cases of Fig. 2.

As a further clarification of these results, the variance σ
E
 2(r) ≡< (ρ− < ρ >r) 2 >r  of the calculated

backward field modulus (where <  >r  indicates the average for constant value of r ) is displayed in Fig.

5 as a function of r . The significance of this parameter is that  can be approximated by the plane wave

exp(iφ̃ ) whenever σ
E

≈ 0 . Figure 5 shows that in all three cases σ
E
 has an absolute minimum at r = rG ,

but with a value which is a growing function of σn . As a result, while ρ  is almost constant at r = rG  for

σn=5.0x10-3 (Fig. 6), the case with σn=2.0x10-2 displays large amplitude fluctuations at every radial

location. As a point of reference, the dashed line in Fig. 5 represents the value of σ
E
 for a Gaussian noise

where both the real and the imaginary parts are independent normal random variables with mean zero and

variance 1/2. For such a field, the phase is uniformly distributed in the interval (−π,π ), and the modulus

follows the Rayleigh distribution17 2ρexp[−ρ 2], which gives σ
E
 2 = 1− π / 4. Thus from Fig. 5 we see

that in all three cases, as one moves away from the plane r = rG, the numerical value of σ
E
 2  approaches

the variance of a Gaussian noise.

As another test of our model, Fig. 7 compares the fluctuating component (φ̃ ) of the phase of Eb at

with the phase of geometric optics that is obtained by neglecting the bending of rays (Eq. (1)). This shows

that, while in the first two cases of Fig. 2 the numerical value of φ̃  is in excellent agreement with the

predictions of 1D geometric optics, a substantial discrepancy occurs in the third case with σn=2.0x10-2.

As a matter of fact, since in the latter case σn ≈ (∆krLε)−1, even the phase of geometric optics displays

large jumps because of the local inversions in the plasma permittivity.

In conclusion, these results show that the calculated backward field of case (a) in Fig. 2 is in good

agreement with the predictions of our model. They also demonstrate how quickly such an agreement is
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lost as the level of fluctuations increases. As mentioned in the previous paragraph, one of the conditions

for the validity of our model must be

σn <
1

∆k
 r L

 ε
 , (11)

which is required for avoiding discontinuities in the phase of geometric optics. Another condition can be

derived with the following simple argument.18 Since each spectral component of the backward field

carries information from a region near its reflecting layer, the breakdown of our model must occur when

the reflecting points are distributed over a distance ∆rc  which is comparable to the radial wavelength of

fluctuations, i.e., when ∆rc∆kr >1. Since the range of poloidal wavenumbers of reflected waves is ≈ σφ
 ∆kx

 

(see Introduction), we get ∆rc / Lε ≈ σφ
 2∆kx

 2 / k0
 2, from which we obtain that one condition for the validity

of geometric optics is

σφ
 2 <

k
 0

 2

L
 ε  ∆k

 r ∆kx
 2  . (12)

For the spectrum of density fluctuations used in this paper, Eqs. (5) and (6) give σφ
 2 = π3/2(k

 0
 2L

 ε / ∆k
 r) σn

 2,

which allows Eq. (12) to be cast in the form

σn
 2 <

1

π3/2L
 ε
 2

 ∆kx
 2

. (13)

From this we get σn < 0.017, which explains the failure of the model  for the conditions of case (c) in Fig.

2. This criterion demonstrates the deleterious effects of 2D fluctuations with large values of ∆kx . To

illustrate this phenomenon, Fig. 8 displays |Eb| and φ̃  at r = rG  for the same conditions of case (b) in Figs.

6 and 7, but with twice the value of κx (=0.1). From these results it is clear that, as predicted by Eq. (13),

a rise in ∆kx  causes an increase in the fluctuations of |Eb|, and a large discrepancy of the calculated value

of φ̃  with the phase of geometric optics.

The limit imposed by Eq. (11) is satisfied by the short-scale turbulence observed in tokamaks, since

both theory and experiments indicate that the amplitude of fluctuations obeys the mixing length criterion

σn <1/ ∆k
 r L

 n , where  Ln ≈ Lε  is the density radial scale length. Thus a sufficient but not necessary condi-

tion for the validity of Eq. (13) is ∆kr ≥ π3/4∆kx .
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The results in Fig. 5 indicate that, for r − rG ≥ D , the variance of ρ  approaches the value given by a

Rayleigh distribution even in the case with the smallest level of fluctuation (σn=5.0x10-3). Indeed, since

such a distribution is characteristic of a Gaussian noise with < Eb >r= 0 , this seems to contradict our

model of reflectometry which instead implies that, apart from a constant phase, < Eb >r≈ exp(−σφ
 2 / 2) ≠ 0 .

To clarify this important point, we have performed a sample average over 32 realizations of the backward

field, which were obtained by repeating the numerical calculation of Eb with a constant value of σn  but

different sets of the random phases ϕpq  in Eq. (6). Figure 9 shows the average spectra of reflected waves

for σn=2.5x10-3 and σn=5.0x10-3. From these, we can get a good estimate of the average value of |A
 0|,

which once inserted into the equation |A
 0|= exp(−σφ

2 / 2) gives σφ =0.63 and σφ =1.17 radian, respec-

tively. We find that these values of σφ  are in good agreement with the corresponding sample average of

< φ̃2 >r=rG

1/2 , for which we obtain 0.61 and 1.17, and with the similar average using the phase of geometric

optics, which gives 0.61 and 1.18, respectively. Thus the separation of the backward field into a specular

reflection and into a spectrum of scattered waves appears to be in excellent agreement with the prediction

of our model. This suggests19 that beyond the diffraction distance D, the statistical distribution of |Eb|

should be similar to the distribution derived by Rice for a sinusoidal signal in the presence of a Gaussian

noise,20,21  which is given by

F(ρ) =
ρ

σ  2
e−(ρ 2+|A 0|  2)/2σ  2

I0
ρ|A 0|

σ2






 , (14)

where I0  is the modified Bessel function of order zero, and σ2 is the variance of both the real and the

imaginary components of the noise. For the normalization used in this paper, we get σ  2 = (1−|A
 0|

 2) / 2 ,

and thus Eq. (14) becomes the Rayleigh distribution when |A
 0|=0. Figure 10 shows the distribution of

amplitudes at r =500 cm, calculated using the 32 realizations of the backward field, together with the

Rice distribution corresponding to the values of |A
 0| in Fig. 9. These results demonstrate that Eq. (14) is

indeed a good description of the distribution of amplitudes of the backward field. They also show that the

Rayleigh distribution is not substantially different form the Rice distribution for σn=5.0x10-3, which

explains the apparent inconsistency of the results of Fig. 5 with the predictions of our model of reflecto-

metry.
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By now it should be clear that, even when our model of reflectometry is valid, the spectrum of turbu-

lent fluctuations cannot be inferred from phase measurements in the far field region. As a another demon-

stration of this, for the conditions of case (b) in Fig. 9, Fig. 11 shows the power spectrum of φ̃  at the

cutoff virtual location (r = rG), and at the plasma boundary (r = r0 ). These results, which as before are

obtained by averaging over 32 realizations of the backward field, show that the calculated power spec-

trum at r = rG  is in good agreement with the spectrum of geometric optics, which is obtained from Eq. (5)

by replacing the 1D spectrum Γε(kr ) with the corresponding 2D spectrum Γε(pκr,qκx)  of Eq. (6), and

by summing over the range of values of p . On the contrary, away from the cutoff virtual location, at a

distance approximately equal to D , the bottom of Fig. 11 shows that the phase power spectrum tends

towards a universal 1/ kx
2 dependence, regardless of the spectrum of plasma fluctuations.

In conclusion, the numerical results presented in this paper appear to confirm a model of reflectom-

etry where the reflection of waves from a plasma cutoff in the presence of 2D random fluctuations re-

sembles the reflection of waves from a rough surface.13,15,16 The validity of this model requires the

amplitude of fluctuations to be smaller than a threshold value, which is determined by the spectrum of

wavenumbers (Eqs. (11) and (13)). Once these conditions are satisfied, the backward field arises from a

phase modulation of the probing wave, occurring mostly near the cutoff, with a magnitude given by 1D

geometric optics. To an outside observer, the reflecting layer appears to be located behind the cutoff, at

the radial location which corresponds to the average group delay. After reflection, the electromagnetic

field separates into a wave propagating along the direction of specular reflection, and into a group of

scattered waves propagating in different directions. The amplitude of the former decreases quickly to an

insignificant level as the variance σφ
2  of the phase modulation becomes larger than one. At a distance

from the cutoff virtual location, which is larger than the diffraction length D ≈ 2k
 0 / (1+ σφ

2)∆kx
2, the

scattered waves produce a complicated interference pattern, which appears as a Gaussian noise.

These results emphasize the importance of performing the reflectometry measurements as close as

possible to the virtual cutoff, since it is only by sampling the backward field at this location that it is

possible to reconstruct the field of turbulent fluctuations. Experimentally, this could be achieved by

collecting the reflected waves with a wide aperture antenna, and by imaging the virtual cutoff onto an

array of phase sensitive detectors. A similar conclusion was reached in Ref. 7.
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IV. DENSITY MEASUREMENTS

As a final application of our numerical simulations, we return to the problem of how to infer the

plasma density profile from reflectometry measurements. As mentioned in the Introduction, this can be

achieved using the frequency dependence of the round-trip group delay of a probing wave. The results

presented in this paper are a clear illustration of the kind of difficulties that one may encounter in per-

forming these measurement in the presence of 2D random fluctuations since, as shown in Fig. 4, even a

small level of fluctuations can cause a complete randomization of the measured phase. It has been pro-

posed that these difficulties could be circumvented by differential-phase measurements, employing two

or more probing waves simultaneously. This can be achieved either by using the side bands produced by

the amplitude modulation of a single wave,22,23 or by launching two waves with different frequen-

cies.24 The idea behind these proposals is that, if the distance between the cutoffs is sufficiently small, the

effect of fluctuations can be compensated by averaging the differential phase. We have performed a

numerical simulation of this type of measurements using two probing frequencies,  and f2 , and the

plasma conditions of case (b) in Fig. 2. Figure 12 shows the calculated phase difference ∆φ = φ
 2 − φ

 1 at

r = r0  for f1 =74.8 GHz and f2 =75.0 GHz, corresponding to a cutoff separation of ∆rc=0.26 cm. A

comparison of  with the differential phase given by Eq. (1) in the absence of fluctuations indicates that it

is indeed possible to obtain the average phase delay of geometric optics by averaging ∆φ . Unfortunately,

this is not always the case, as it is demonstrated by Fig. 13, which shows the deleterious effects of a larger

level of turbulence (σn=2.0x10-2), or a broader spectrum of fluctuations (∆kx=1.0 cm-1). In both cases,

similarly to what is observed experimentally, the differential phase is dominated by large jumps, which

make it difficult, if not impossible, to obtain the group delay by averaging ∆φ . These phase jumps are

caused by a spatial decorrelation of the two signals, and they occur when the amplitude (ρ ) of one of

them becomes zero. These jumps would appear in the measurements of a two-frequency reflectometer as

well, even though in this case the phase is measured along the r-axis. Such phase jumps cannot be com-

pensated, as it is often stated erroneously, by increasing the sweep-rate of the probing frequencies. The

remedy is instead a decrease in the frequency difference ∆f = f2 − f1 , as demonstrated by Fig. 14 which

shows  for =0.05 GHz. A further increase in the level of turbulence, or in the spectral width of fluctua-

tions, results in the reappearance of the phase jumps, that again can be compensated by a further decrease
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in ∆f . Unfortunately, this process cannot continue when the differential phase of geometric optics be-

comes too small, so that it is no longer possible to get its value by averaging ∆φ .

In conclusion, our numerical simulations demonstrate the advantages of differential-phase measure-

ments for inferring the density profile with microwave reflectometry, but they also indicate the serious

limitations imposed by the presence of a small level of 2D random fluctuations.
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FIGURE CAPTIONS

Fig. 1. Electron density profile used in the simulation; rc  is the cutoff radial position for a wave propa-

gating from the right side with ω / 2π =75 GHz and the ordinary mode.

Fig. 2. Spectrum of backward waves as a function of nκx  for fluctuations with κx =0.05 cm-1, κr =0.1

cm-1, M =20, and σn=5.0x10-3 (a), σn=1.0x10-2 (b), σn=2.0x10-2 (c). Calculations were per-

formed with N=60 (a), N=70 (b) and N=90 (c).

Fig. 3. |Eb| vs. x  at  r = r0  for the three cases of Fig. 2. The range of x  is 2π / κx

Fig. 4. φ̃  vs. x  at r = r0  for the three cases of Fig. 2.

Fig. 5. σ
E
 as a function of r  for the three cases of Fig. 2. Dashed line indicate the value of σ

E
 for a

Gaussian noise.

Fig. 6. Same as in Fig. 3 for r = rG .

Fig. 7. Same as in Fig. 4 for r = rG ; dashed line is the phase of geometric optics .

Fig. 8. |Eb| andφ̃  vs. x  at r = rG  for the conditions of case (b) in Fig. 2, but with κx =0.1 cm-1; dashed

line is the phase of geometric optics.

Fig. 9. Sample average of the backward field spectrum; (a): σn=2.5x10-3, N =40; (b): σn=5.0x10-3,

N =60. Other parameters are the same as in Fig. 2.

Fig. 10. Amplitude distribution of the backward field at r=500 cm for the two cases of Fig. 9 (solid line).

Dash-line is the Rician distribution; dot-line is the Rayleigh distribution.

Fig. 11. Phase power spectrum of backward field at r = rG  (top) and r = r0  (bottom). Conditions are

those of case (b) in Fig. 9. Circles are from Eqs. (5) and (6).

Fig. 12. Differential phase ∆φ  at r = r0  for ∆f = 0.2 GHz. Fluctuations are the same as in case (b) of Fig.

2. The dashed line represents the value of ∆φ  of geometric optics in the absence of fluctuations.
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Fig. 13. Same as in Fig. 12, but with =2.0x10-2 (top), and ∆kx=1.0 cm-1 (bottom).

Fig. 14. Same as in Fig. 13, but with ∆f = 0.05 GHz.
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