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Abstract

The Tokamak Simulation Code (TSC) has been used to model a new method of feedback

stabilization of the axisymmetric instability in tokamaks using driven halo (or scrapeoff

layer) currents.  The method appears to be feasible for a wide range of plasma edge

parameters.  It may offer significant advantages over the more conventional method of

controlling this instability when applied in a reactor environment.
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I.  Introduction

Tokamak reactor designs that utilize elongated plasma cross-section shapes require high-
power feedback systems to keep the plasma column positionally stable[1].   The
conventional design for these feedback systems uses either a dedicated pair of axisymmetric
poloidal field coils with up/down asymmetric currents or some combination of the equilibrium
shaping coils.  The feedback electrical currents in these coils are driven by applying a voltage
proportional to a linear combination of the plasma vertical displacement and it’s time
derivative.  These poloidal field coils must be located behind the first wall and blanket
assemblies in order to avoid excessive neutron capture and heating.  The large power required
for this system and the associated inductive heating of the cryogenic magnet assemblies cause
design problems which set an upper-limit on the practical plasma elongation attainable.

Here we propose and investigate an alternate method [2] for stabilizing the vertical
instability utilizing biased electrodes in the vacuum vessel.  The electrodes drive a force-free
current in the plasma halo, and this current creates a field which acts to stabilize the plasma,
resulting in a system with minimal coupling to the cold-structure, and hence reduced
recirculating power requirements.

This paper is aimed at demonstrating the principle of halo-current feedback by way of a two-
dimensional MHD simulation.  In Section II we describe the geometry utilized in our study.  It
is essentially a tokamak plasma of the ITER[3] shape but with a simplified vacuum vessel
geometrical shape in an effort to be more generic.  The actual results should be relatively
insensitive to the shape of the plasma or the vacuum vessel.

We describe the simulation results in Section III by presenting the results of several
parametric studies in Figures 5-8.  The results can be understood in terms of a relatively
simple circuits model which we present in Section IV.  In Section V, we discuss the results and
show how they can be readily scaled to other configurations.

II.  Configuration

Here φ is the axisymmetry angle, ψ  is the poloidal magnetic flux function, and g is the
toroidal field function.  Consider the idealized system consisting of an axisymmetric tokamak
plasma inside an axisymmetric rectangular cross-section vacuum vessel as shown in Figure 1.
We divide the plasma inside the vessel into three regions, according the value of ψ .  A high

temperature plasma region exists for all magnetic flux values ψ interior to the limiting flux

surface ψlim, ie. for ψlim > ψ  > ψ0, where ψ0  is the value of ψ  at the magnetic axis.  The
region outside the last closed flux surface is divided into two regions, the halo region with
temperature TH occupying the flux region with ψH  > ψ  > ψlim, and the vacuum region with ψ
> ψH.  We define the width of the halo region in terms of the normalized flux increment WH

= (ψH  - ψlim )/(ψlim - ψ0).   In the TSC modeling, the vacuum region is treated as a cold
resistive plasma with vacuum temperature TV << TH.

In any axisymmetric system, it is possible to represent the magnetic field as being the sum of
a poloidal part obtained from a magnetic flux function and a toroidal part,

v
B g= ∇ × ∇ + ∇φ ψ φ.                                                       (1)
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In order to detect the vertical motion of the magnetic axis of the plasma, we use the flux
values at two ficticious flux loops located at (R1,Z1) = ( 8.15 , 1.95 ) and (R2,Z2) = ( 8.15 ,
0.95 ).  A feedback poloidal electric field, proportional to the instantaneous difference in the
flux values of the two loops, δψ1,2 = ψ(R1,Z1) - ψ(R2,Z2), is applied in the clockwise sense in
the upper outboard quadrant of the vacuum vessel.   Thus, the poloidal Ohm’s law in this
upper quadrant of the vacuum vessel with R > 7.0 m , and Z > 1.5 m is

E J EFB= +η                                                             (2)

where η  is the vessel resistivity, J is the vessel current density, and  EFB = α δψ1,2. for some

proportionality constant α .  The applied poloidal electric field is limited to be less than EMAX

in absolute magnitude.  Note that over the distance lW ≈  8 m over which it is applied, this

would lead to a voltage difference V  = lW  EFB in the absence of current.  Voltage drops in
the sheath at the nelectrodes are neglected in this analysis.

III.  Simulation Results

We have modeled the time dependent evolution of this system using the Tokamak
Simulation Code (TSC)[4].  The vessel resistivity and thickness are taken to be η= 1.4 x 10-4

Ω-m and ∆=0.15 m, corresponding to a L/R decay time of 0.0035 sec. for the first up/down
antisymmetric decay mode. A typical TSC run proceeds as follows:

An initial equilibrium configuration is computed with no currents in the vessel or in the halo
or vacuum regions.  A conventional vertical feedback stabilizer which utilizes PF coils
external to the vessel is used during the initial equilibrium iteration to maintain vertical
stability during that phase of the calculation.  At time zero, this vertical feedback system is
disengaged and the system evolves in time according to the two-dimensional (axisymmetric)
resistive MHD evolution equations given in Ref. [4-6], which are appropriate for plasma
motion slow compared to the Alfven time.  The halo-current feedback system is engaged at
some subsequent time t=tFB, and we model the system motion for a fixed value of ΤΗ, WΗ, α ,
EMAX and TV.

Figures 2a-b plot contours of the toroidal field function g (see Eq. 1) at a fixed time for two
different halo feedback calculations with halo width WH  = 0.4 (Fig. 2a) and WH  = 0.01 (Fig.

2b).  The other parameters for these runs were ΤΗ = 20 eV, α = 266,  EMAX  = 40 V/m and TV

= 0.1 eV.  These contours correspond to streamlines for the poloidal current, which is given
by 

v
J g= ∇ × ∇−µ φ0

1 .   The contours deep inside the plasma region are suppressed in these
plots.

We see that for the wide halo case, Fig. 2a with WH  = 0.4, the majority of the driven halo
current flows through the upper right corner of the vessel, and returns through the plasma
halo, with the driven halo current being well aligned with the magnetic field.  This is
particularly true for that part of the plasma halo that intersects the vessel on both ends.
When the halo field lines do not intersect the vacuum vessel on both ends, such as is the case
for the inner halo contours on Fig. 2a and for all the halo contours on Fig. 2b, the patterns
for the poloidal current contours are somewhat different.  Here we see that the poloidal
current extends further down and around the main plasma so that the current density 

v
J  is

greatly reduced in the region where it crosses the flux surfaces in order to connect the vessel
current to the current in the thin halo region.  This is particularly evident in Fig. 2b.   
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.

The results from a typical run are shown in Figure 3 where we plot the plasma magnetic axis
and the applied feedback electric field strength EFB as functions of time.  This case
corresponded to a run with tFB = 0.4s , ΤΗ = 20 eV,  WΗ = 0.2 , α = 133 , EMAX  = 10 V/m and

TV = 0.35 eV.  We see from Figure 3b that after an initial transient period of about 0.1
seconds, the Z-position of the magnetic axis begins to move from it’s initial location Z0 with

exponential time dependence Z - Z0 ~ exp(γt) with a growth rate of γ ≈ 5 s-1.  At t = tFB =
0.4 s, the halo-current feedback system turns on with an electric field strength limit of 10
V/m.  This system remains limited for about 0.12 s, during which time it has produced halo
currents to restore the plasma to its Z0 location.  After this time, the feedback system settles
to a lower electric field level needed to maintain the plasma in a position slightly offset from
the neutrally stable point.  Figure 4 shows the poloidal currents flowing in the 8 m of passive
structure where the electric field is applied, with each curve corresponding to a different 15
cm section.  The maximum poloidal current passing through any part of the vessel cross
section is seen to be less than 0.6 x 106 Amperes.

Studies were done of the effect of the proportionality constant α  and of the maximum
electric field strength EMAX on the plasma motion.  The 5 curves on Figure 5 correspond to
the same situation as above except that the gain parameter α takes on the values of  0.000,
33, 66, 133, and 266.  In Figure 6 we extend this study to include variation of EMAX.  We

show the results of calculations with the combinations of  (α , EMAX) of (266, 10), (533, 40),
and (533 , 80 ).

We have also studied the sensitivity of these results to the plasma properties assumed in the
halo region.  Figure 7 shows the results of 5 runs with differing values of the halo
temperature, ΤΗ , of 1.0 eV, 2.0 eV, 5.0 eV, 10.0 eV, and 20.0 eV.  In Figure 8 we see the

effects of the halo width, WH on the plasma evolution.   The three runs marked 1-3
correspond to values of WH  equal to 0.01, 0.1, and 0.4. The other parameters for these runs
were TH = 20 eV, a = 266,  EMAX = 40 V/m, and TV = 0.35 eV.

Finally, we show in Figure 9 the dependence of the system performance on the vacuum
region temperature TV.  Curves 1-3 correspond to values of TV equal to 5 eV, 0.35 eV, and
0.1 eV.  All runs had WH = 33, TH = 20 eV, a = 266, and  EMAX = 40 V/m.  We see that
while higher vacuum temperatures work best for these narrow halo widths, the system still
responds adequately for the lowest vacuum temperatures investigated, TV = 0.1 eV.

We can summarize the results of this sections as follows:  The halo current feedback scheme
appears to offer a viable method for controlling the vertical instability in tokamaks.  The
method seems to work for a relatively wide range of parameters characterizing the spatial
extent and temperature of the plasma halo region, and of the vacuum region.  Larger gain
parameters and maximum electric field strengths always work better, as do hotter and wider
halo regions.  When the halo width is small, hotter vacuum temperatures work better than
colder ones.  However, none of these dependencies are particularly strong.
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IV.  Simple Circuits Model

The TSC simulation code solves the full two-dimensional resistive MHD equations as
described in detail in Refs. [4-6].  However, for purposes of understanding the results from
TSC, it is often useful to develop a simpler analytical model that still contains the essence of
the physics.  Let us consider the simplified model shown in Figure 10.

The plasma has toroidal current IP and is free to move rigidly in the Z-direction.  The vessel
wall has a toroidal current IW.  The halo current is shown in the upper right corner of the
figure. For analysis, we divide the path in which the halo current flows into 2 segments as
shown. It is purely poloidal (i.e., in the plane of the paper) in the wall (segment 2), but
follows the magnetic field lines in the plasma halo region (segment 1) so that it has both a
toroidal (i.e., directed into the paper) and a poloidal component.

The equivalent circuit equations for the halo current in segment 2 is obtained from Eq. (2).
If  we integrate this over the wall volume in the upper-right corner (see figure 10), we obtain
expressions for the poloidal resistance and applied feedback voltage in the wall between
points A and B:

R
l

AH W
W

W
2 = η

V lW2 =   1,2α δψ

Here lW is the distance along the wall between points A and B where the halo currents leave

and enter the wall, AW is the wall cross-sectional area to poloidal currents, and ηW is the wall
resistance.  For region 1, the circuit equations are obtained from the Ohm’s law valid in the
plasma halo region, r v v v

E V B JH+ × =0 η                                                    (3)

 Here 
v
B0  is the equilibrium magnetic field, assumed to be time independent in this analysis

for simplicity.  Let 
v

v

E
A

t
= − − ∇Φ

∂
∂

and take the dot product of Eq. (3) with the equilibrium

magnetic field 
v
B0 ,

− ⋅ − ⋅ ∇Φ = ⋅
v

v
v v v

B
A

t
B B JH0 0 0

∂
∂

η .                                                    (4)

In the Coulomb gauge, the vector potential 
v
A is defined in terms of currents in the plasma,

wall and halo (P+W+H) by the Greens’s function integral

v v v v v v v
A x G x x J x dx

P W H

( ) ( , ) ( )= ′ ′ ′
+ +
∫∫∫    ,                                       (5)

where

G x x
x x

( , )
v v

v v′ =
− ′
µ0                                                      (6)
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with µ0 being the permeability of free space.  We also make use of the identity
v v
B B0 0⋅ ∇Φ = ∇ ⋅ ( ).Φ                                                      (7)

Integrating Eq. (4) over the plasma halo segment 2, bounded by the vacuum vessel at points
A and B, yields, after some manipulation,

∂
∂ t

L I M I M I R I VH H HP P HW W H H( )+ + + =1 ∆                                                    (8)

where ∆V is the electrostatic potential drop between points A and B bounding segment 2
of the halo region.  We have also defined the mutual inductance between the halo current
and the plasma current, and the halo current and the wall current, and the halo current
resistance in segment 1 as follows:

M
I B dA

B x G x x J x dx dxHP

P
P

T

H P

=
⋅

⋅ ′ ′ ′
∫∫ ∫∫∫ ∫∫∫

1

0

0v
v v v v v v v v

( ) ( , ) ( ) ,                           (9)

M
I B dA

B x G x x J x dx dxHW

W
P

T

H W

=
⋅

⋅ ′ ′ ′
∫∫ ∫∫∫ ∫∫∫

1

0

0v
v v v v v v v v

( ) ( , ) ( )                            (10)

R
I B dA

B x J x dxH

H
P H

H

1

0

0

1
=

⋅
⋅

∫∫ ∫∫∫v
v v v v vη ( ) ( )                                (11)

Note that we have assumed that the amount of poloidal flux in the halo region intersecting

the wall is the same at points A and at B in Fig. 10, namely 
v
B dAP

0 ⋅∫∫ .   The total self-

inductance of the halo region is the sum of two parts, one due to the toroidal part of the
helical halo current in the plasma, and one due to the poloidal halo current in the plasma
and the structure.

L L LH H
P

H
T= +                                                              (12)

From Amperes’ law, the part due to the poloidal current is just given by

L
dA

RH
P = ∫∫µ

π0 2
                                                             (13)

where the integration is over the area inside the halo current path.  In analogy with Eqns.
(9) and (10), the toroidal part of the self-inductance is given by
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L
I B dA

B x G x x J x dx dxH
T

H
P

T

H H

=
⋅

⋅ ′ ′ ′
∫∫ ∫∫∫ ∫∫∫

1

0

0v
v v v v v v v v

( ) ( , ) ( ) .                                  (14)

Thus, the final circuits equation for the halo current can be written

∂
∂

α ψ
t

L I M I M I R I LH H HP P HW W H H W( ) ,,+ + + = ∆ 1 2                                 (15)

Where we have combined the resistance of the two halo segments into a single halo
resistance, R R RH H H= +1 2 .   A linearized form of Eq. (15) is given by

L
I

t
M I

Z

t
M

I

t
R I LH

H
HP P HW

W
H H

∂
∂

∂
∂

∂
∂

α ψ+ ′ + + = ∆ 1 2, .                       (15a)

The linearized equations for the wall current and the plasma motion are obtained in their
normal ways:

L
I

t
M I

Z

t
M

I

t
R IW

W
WP P HW

H
W W

∂
∂

∂
∂

∂
∂

+ ′ + + = 0,                            (16)

and
I M I M I RI B ZP PH H PW W P R( ) ,′ + ′ + ′ =2 00π                                  (17)

with primes (′) denoting differentiation with respect to Z.  After replacing time-derivatives
by the mode growth rate γ, equations (15a)-(17) can be combined into the single dispersion
relation:

det 

1

1

1

′ ′

′ +

′ − +

m m

m
M

L
L

L
m

M

L

WP HP

WP
W WH

W

W

H

HP
WH

H

H

( )

( ) ( )
*

γ
γ

α
γ

γ
γ

 = 0.                             (18)

We have defined ′ = ′ ×
′

m M I RB LHP WP P R W( / ) /2 0 1 2π  , ′ = ′ ×
′

m M I RB LHP HP P R W( / ) /2 0 1 2π ,

γW = RW/LW, γH = RH/LH,  and α α δψ δ π*
,

/( / ) ( / ) /= × ×
′

L Z I RB L LP R W H1 2
0 1 22 .

Equation (18) is of the same form as the dispersion relation analyzed in Ref. [7].  It is
quadratic in 1/γ.  For physical parameters of interest, both solutions should be damped (stable)
for values of the gain parameter α  sufficiently large.  We thus conclude that the halo-current
feedback studied here is very similar in behavior to the more conventional method of active
feedback control of the axisymmetric mode studied in Ref.[7].  Even though the halo-current
and it’s driving voltage are purely in the poloidal direction in the vessel, when they enter the
plasma halo, they take on a toroidal component due to the force-free constraint requiring
currents to align with the local magnetic field.  This toroidal component of the driven plasma
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halo current interacts with the other toroidal currents in the system (in the wall and plasma)
in a manner very similar to the way in which the toroidal current in a conventional feedback
control PF coil does.

V.  Summary and Discussion

We have demonstrated that within the confines of our computational model, it is possible to
control the axisymmetric instability in non-circular tokamak plasmas by applying a voltage
difference, proportional to the plasma vertical displacement, between poloidally separated
electrodes in the vacuum vessel.  This voltage drives a poloidal current through the vacuum
vessel and the plasma halo.

As the current carrying electrons leave the vessel at the electrodes and enter the plasma, they
pick up a toroidal component to align with the primarily toroidal magnetic field in the
plasma. The toroidal component of the driven plasma halo current provides a radial magnetic
field at the plasma such as to restore the plasma vertical position.

We can use this simple picture to estimate how much current in the halo would be needed to
restore a typical displacement of the plasma.  The radial component of the external
magnetic field near the plasma magnetic axis is of order

B
I

R

Z

R
nR

P≈ 





µ
π
0

2
                                                      (19)

where IP is the plasma current, R is the major radius, Z is the vertical displacement and n is
the external magnetic field index,

n
R

B

B

RZ

Z≡ −
∂
∂

.

The radial magnetic field at the magnetic axis produced by a halo current at the plasma edge
is approximately

B
I

aH
H
T

≈
µ

π
0

2
,

where a  is the minor cross section dimension scale and I H
T  is the toroidal component of the

halo current.  For stabilization, we require B BH R≈ , or

I

I
n

a

R

Z

a
H
T

P

≈ 











2

.                                                 (20)

The ratio of the toroidal to the poloidal halo current is approximately given by

I

I

a

R

RB

I
H
T

H
P

T

P

≈ 











∆θ

µ

2

0

,                                               (21)

where ∆θ is the poloidal angular extent (in radians) of the halo current in the plasma.
Solving Eqns. (20) and (21) for the poloidal halo current gives

I I
I

RB

Z

a

n
H
P

P
P

T

=






 












µ
θ

0

∆
.                                         (22)
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For the geometry studied here, we have 
µ

θ π0 0 57 003 2 3
I

RB

Z

a
nP

T







 = 





= = =. , . , / , .∆

Insertion of these values into Eq. (22) gives I I or AmpsH
P

P= ×0 03 6 105. . , in good
agreement with the maximum currents plotted in Fig. 4.
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Figure Captions

1.   The volume inside the vessel is divided into 3 regions:  The plasma region, the halo
region, and the vacuum region.  The upper right corner of the vessel has a voltage difference
proportional to the plasma vertical displacement.

2.  Poloidal current streamlines at a fixed time for two different halo feedback calculations
with halo width WH  = 0.4 (Fig. 2a) and WH  = 0.01 (Fig. 2b).  The other parameters for these

runs were ΤΗ = 20 eV, α = 266,  EMAX  = 40 V/m and TV = 0.1 eV.  Streamlines deep inside the
plasma region are not shown.

3.  A typical feedback stabilization test allows the plasma to move vertically without the
feedback system turned on from t=0 to t=0.4 sec.  At t=0.4 sec, the halo current feedback
system is turned on and the plasma Z-position returns to it’s equilibrium location.  Plotted
are the Z-position of the magnetic axis and the strength of the feedback poloidal electric
field as a function of time.

4.  Poloidal currents in each of the vessel conductor elements as a function of time for the
test shown in Figure 3.  When adjacent curves do not overlay, it implies that current is
entering or leaving the structure at that point.

5.  A test of the sensitivity of the plasma motion to the feedback strength parameter α .

Curves marked 1-5 have α  values (0, 33, 66, 133, 266).  In these runs,  EMAX = 10 V/m, WH

= 0.2, and TH = 20 eV.
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6. A test of the sensitivity of the plasma motion to the maximum allowed electric field
strength EMAX..  Curves marked 1-3 have  (α , EMAX)  values of (266, 10), (533, 40), and

(533 , 80 ).  All runs have WH = 0.2,  TH = 20 eV, and TV = 0.35 eV

7.  The results of 5 runs with differing values of the halo temperature.  Curves 1-5 correspond
to values of TH of 1.0 eV, 2.0 eV, 5.0 eV, 10.0 eV, and 20.0 eV. These runs all had WH =
0.2,  a = 266,  EMAX = 10 V/m and TV = 0.35 eV.

8.  This shows the effects of the halo width, WH on the plasma evolution.   The three runs
marked 1-3 correspond to values of WH  equal to 0.01, 0.1, and 0.4. The other parameters
for these runs were TH = 20 eV, a = 266,  EMAX = 40 V/m, and TV = 0.35 eV.

9.  This series shows the effect of the vacuum resistivity TV.  Curves 1-3 correspond to values
of TV equal to 5 eV, 0.35 eV, and 0.1 eV.  All runs had WH = .001, TH = 20 eV, a = 266, and
EMAX = 40 V/m.

10.  Geometry from which to derive simplified circuits model of plasma, wall, halo-system.
Poloidal currents are in the plane of the paper, while toroidal currents are into the paper.
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