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Abstract

In recent Deuterium-Tritium experiments on the Tokamak Fusion Test Reac-

tor(TFTR), both the Pellet Charge Exchange (PCX) [Phys. Rev. Lett. 75, 846

(1995)], [Nucl. Fusion 35, 1437 (1995) ] and the alpha Charge Exchange Recombina-

tion Spectroscopy (�-CHERS) [Phys. Rev. Lett. 75, 649 (1995)] diagnostics indicate

that sawtooth oscillations can cause signi�cant broadening of the fusion alpha ra-

dial density pro�le. We investigate this sawtooth mixing phenomenon by applying a

Hamiltonian guiding center approach. A model of time evolution of the Kadomtsev-

type sawtooth [Sov. J. Plasma Phys. 1, 389 (1976)] is constructed. The presence of

more than one mode in the nonlinear stage of the sawtooth crash is necessary to cause

signi�cant broadening of the alpha density pro�le. Use of numerical equilibria allows

us to perform detailed comparisons with TFTR experimental data. Our results are

in reasonable agreement with �-CHERS and show a broadening of alpha particles

similar to that seen in PCX measurements.
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I. Introduction

In recent D-T experiments on the Tokamak Fusion Test Reactor (TFTR),1 di-

agnostics including Pellet Charge Exchange (PCX)2{4 and Alpha Charge Exchange

Recombination Spectroscopy (�-CHERS)5 have been used to measure the radial den-

sity pro�le of con�ned � particles. Results from these measurements indicate that

sawtooth instabilities can transport a signi�cant number of alphas from the core-

region into the outer region (r=a � 0:3). The observed sawtooth mixing is an issue

of fundamental importance for two reasons. First, it can reduce the alpha heating in

the central region where it is most e�cient for sustaining the fusion reaction. Second,

it can enhance alpha particle losses by redistributing a fraction of the alphas onto

�rst-orbit loss or ripple-loss orbits, thus reducing the total alpha-heating available to

the bulk plasma, and producing an excessive heat load to the wall.

The model we present here adopts a fundamental approach by following the parti-

cle guiding center motion during a whole sawtooth crash cycle. It di�ers from previous

analytic or empirical models6{8 in that it automatically takes into account the e�ects

of �nite orbit width and toroidal drift. In some experiments, the width of fast ion or-

bits is comparable to that of the sawteeth region. Furthermore, alpha particle energy

modi�cation due to the time varying �elds is essential to explain the redistribution

of deeply trapped � particles. The Monte Carlo method is used to generate particles

representing the alpha distribution (peaked) just before the sawtooth crash. The fact

that more than one poloidal harmonic is needed to cause signi�cant broadening of the

alpha density pro�le indicates the important role the stochasticity of magnetic �eld
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lines plays in this process. Since the PCX diagnostic only detects deeply trapped par-

ticles within a very narrow range (�0:001) of pitch angle around vk=v = �0:048, the

simulation and comparison with experiment becomes more subtle. In this case, �eld

line stochasticity is not su�cient to explain the data. We also need to introduce the

electric �eld which is non-negligible during the sudden crash. It is this electric �eld

that causes the particle di�usion in pitch angle and energy space. The electric �eld

parallel to B is zero due to the rapid response of the electrons, so energy is changed

only by the �eld perpendicular to B through cross �eld drift. Thus trapped particles,

with larger drift motion, are more strongly a�ected. Ripple e�ects are not considered

since the measured alpha loss rates9 were not changed signi�cantly (< 1%) during the

sawtooth crashes, indicating that in these experiments the sawtooth mixing results

in only an internal redistribution of � particles with no induced loss.

In Sec. II we briey describe the guiding center equations used for following par-

ticle trajectories. The models for the sawtooth mode structure, the evolution of the

sawtooth crash and the particle distribution are given in Sec. III, V and VI. The

simulation results and comparison with experimental measurements are presented in

Sec. VII.

II. Hamiltonian Guiding Center Equations

The Hamiltonian guiding center equations,10{12 allow very e�cient numerical eval-

uation of particle trajectories for times long enough to investigate fast ion transport

during sawtooth crashes. Since the particle's drift motion is described by a set of
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canonical variables which are closely related to the magnetic coordinates, this for-

mulation is convenient for plasmas with arbitrarily shaped cross sections. The con-

travariant and covariant forms of the equilibrium �eld are:

B = r��r p + qr p�r� (1)

B = gr� + Ir�+ �r p (2)

with  p the poloidal ux, � the poloidal angle, and � the toroidal angle. For low �

plasmas with primarily transverse magnetic perturbations, �B is well described by

one function �( p; �; �; t), in the form:

�B = r� �B = r� �A (3)

Now, let �k = vk=
, with 
 being the particle's gyro-frequency, then the canonical

momenta for the particle's guiding center are given by:

P� =
e

c
[g(�k + �) �  p] =

e

c
[g�c �  p]

P� =
e

c
[I(�k + �) +  t] =

e

c
[I�c +  t] (4)

with  t the toroidal ux. Finally, let � be the perturbed electric potential, the

particle's Hamiltonian is then:

H =
e2B2

2mc2
(�c � �)2 + �B + e� (5)

Therefore, we have the Hamiltonian guiding center equations:

_P� = �@H
@�

; _� =
@H
@P�

_P� = �@H
@�

; _� =
@H
@P�

(6)
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Substitute ( _P�; _P�) with ( _ p; _�k) by solving Eqs. 4, and we obtain the set of di�erential

equations actually used in the code:
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Where,

D =
e

c
[gq + I + �c(gI

0 � Ig0)] (11)

and primes refer to derivatives with respect to  p. The above equations describing

the Hamiltonian guiding center motion are incorporated into the code ORBIT.11{13
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III. Sawtooth Mode Structure

Since most TFTR plasmas have circular cross section, and sawtooth activities are

dominant within the q(rs) = 1 ux surface, with rs satisfying rs=R � 1, the mode

structure in the cylindrical limit is a good approximation. Near the q = 1 ux surface

in a typical TFTR discharge, the resistive time and Alfv�en time are �R ' 88 sec

and �A ' 4:0 � 10�7 sec respectively. Therefore the magnetic Reynolds number is

S = �R=�A ' 2:2�108 � 1, corresponding to the ideal magnetohydrodynamic (MHD)

limit. In this limit, the actual sawtooth mode shape is well approximated by that of

the ideal MHD sawtooth mode. For an ideal MHD eigenmode m=n, with �0mn the

perturbation magnitude at q = m=n ux surface, we have

�mn =
r�0mn

R0

� r
rs

�(m�1)�1
q
� n

m

�
cos(n� �m� � !t)H

�m
n
� q

�

=
r�0

R0

� r
rs

�(m�1)�1
q
� n

m

�
Re[ei(n��m��!t)]H

�m
n
� q

�
(12)

with H the Heavyside step function. Fig. 1 shows the mode structure of a typical

TFTR case, with 1=1 and 2=1 modes present. For numerical reasons the Heavyside

functions are made smooth, so that they possess continuous derivatives, as we will

discuss below. This smoothing is equivalent to the inclusion of the e�ects of a small

but nonzero resistivity. Because of the highly peaked nature of the alpha distribution

the mode structure is irrelevant much beyond the q = 1 surface, so in fact this

smoothing is important only for the m = 1 harmonic.

Parameters of a typical TFTR equilibrium are shown in Table 1:

Table 1: Parameters of a typical TFTR equilibrium
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Figure 1: Mode structure for TFTR run #84549 @ t= 4.4 sec. The frequency of saw-

tooth oscillation is ! = 7:68kHz. The peak value of � corresponds to the perturbed

magnetic �eld of the order : j�B=Bj � �=a0 � 2:5%.

8



B0 5:0T I0 2.0 MA

R0 260:0cm a 90:0cm

q0 0:8 qw 3.5

Let �0 = rs(q = 1) = 25:0cm, the parameters for sawtooth modes are shown in Table

2:

Table 2: Values for di�erent modes

Mode Rational Surface (j�Bj=B0)max �max(cm) Frequency (rad/sec)

1/1 25.0 cm 0.0236 0.206 7:54 � 103

4/3 40.0 cm 0.0413 0.318 5:78 � 104

2/1 60.0 cm 0.953 1.559 2:0� 104

The sawtooth mode frequencies, determined by local diamagnetic e�ects, are given by

experimental measurements.14 To determine the peak value of the sawtooth modes,

we plot the Poincar�e cross section of the magnetic �eld in the presence of two sawtooth

modes and scan through the magnitudes of the perturbations. When the Poincar�e

plot shows a signi�cant degree of stochasticity, indicating the onset of full magnetic

reconnection, we choose that set of perturbation magnitudes as the peak values for the

modes. This procedure is subjective to some extent, but the results were not sensitive

to the exact value of the magnitudes as long as the threshold for full reconnection

is reached. Fig. 2 shows the Poincar�e plot of the magnetic �eld in the presence of

the two sawtooth modes shown in Fig. 1. At the peak values of magnitude of the

sawtooth oscillations, the topology of the magnetic ux surfaces are totally destroyed
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by the nonlinear interaction of the two modes near the central region of the plasma.

Figure 2: Poincar�e plot for magnetic �eld lines.. Two sawtooth modes are present

with �0(1=1) = 1:0rs(1=1), and �0(2=1) = 0:4rs(2=1).

IV. The Perturbation Induced Electric Field

To determine when the perturbation induced electric �eld is important, it is nec-

essary to look at the time scales of bounce motion of trapped and passing particles.

Fig. 3 shows how the poloidal bounce period of a 1 MeV � particle varies with its

pitch angle (at the mid-plane) and poloidal ux. The tips, corresponding to the
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Figure 3: Alpha particle's bounce period. E = 1MeV . TFTR run 86644 at t= 4.35

sec. The pitch is measured at mid-plane.  is the normalized poloidal ux..
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trapped-passing boundary, are actually in�nite, but numerical resolution truncates

them as shown. Since the typical crash time for a sawtooth in TFTR is of the order

�cr � 15�sec, and the passing particle transit time is about 10�sec, the perturbed

electric �eld is closer to resonance with trapped particles than with passing particles.

In addition, energy is transfered to the particles through E � Vd, with Vd the cross

�eld drift motion, much larger for trapped than for passing particles.

The perturbed electric potential can be written as a sum of Fourier components:

�( p; �; �; t) =
X
m;n

�mn( p; t)e
i(n��m��!t) (13)

Since ideal MHD is valid in the time scale of interest, the parallel electric �eld must

be shorted out by electrons,

Ek = b̂ �
�
r�� @A

@t

�
= b̂ �

�
r�� @(�B)

@t

�
= 0 (14)

by using

B � r=
1

J (
@

@�
+ q

@

@�
)

we have:

b̂ � r� = 1

BJ
X
m;n

i(nq �m)�m;n( p; t)e
i(n��m��!t) (15)

Noting that

b̂ � @(�B)
@t

= B
@�

@t

@�

@t
=
X
m;n

�@�mn

@t
� i!�mn

�
ei(n��m��!t) (16)

Combining the above equations, we arrive at:

�mn( p; t) =
(gq + I)

(m� nq)

�
!�mn + i

@�mn

@t

�
(17)
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For the purpose of implementation into the code, it is more convenient to relate

�mn directly to �0mn, the displacement corresponding to mode (m=n). In cylindrical

approximation:

�mn( p; t) = i
� r
m

�� r
rs

�m�1�
i!�0mn +

@�0mn

@t

�
H
�m
n
� q

�
(18)

Its derivative with respect to  p is then:

@�mn( p; t)

@ p

= i
�q
r

�� r
rs

�m�1�
i!�0mn +

@�0mn

@t

�
H
�m
n
� q

�
+

+i
� q
m

�� r
rs

�m�1�
i!�0mn +

@�0mn

@t

� d
dr

h
H
�m
n
� q

�i
(19)

Obviously, this derivative is singular at the rational surface, since the derivative of

a step function is a �-function! The singularity is due to our simpli�ed assumption

of the ideal MHD limit and does not correctly represent the actual potential. Since

resistivity is non zero, a magnetic island forms due to the perturbation. Inside the

island, ux surfaces close on themselves and modify the potential. As a �rst approx-

imation we take the electric potential to be at around the rational surface within

the range of island width, rather than having a singularity as given by Eq. 19. The

island width (in terms of poloidal ux), is given by

� p =
4m

n

�g�0

q0

�1=2
/ p�0 (20)

and increases with the magnitude of the perturbation which evolves with time. We

smooth the potential within the range of the island width around the rational surface,

thus avoiding the singularity.
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By imposing the condition of Ek = 0, the last component of the guiding center

equations, Eq. 10 is modi�ed as:

_�k = �@�
@t
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(21)

V. Evolution of Sawtooth Modes

Not much detailed information is provided by the current experimental observa-

tions concerning the temporal evolution of a sawtooth cycle. Thus we take as a model

the simplest approximation, in which a sawtooth crash cycle can be characterized by

two time scales|one describing the relatively slow build-up of amplitudes and the

other describing the sudden decline. A sawtooth crash cycle generally starts with

a single mode (in our case, the m=n = 1=1 mode) of small amplitude. This single

mode grows exponentially with time, until its magnitude becomes large enough to

excite other nearby modes (such as the 2/1 and 4/3 modes). All modes continue

to grow until their nonlinear interaction leads to a attening of the current density

and temperature pro�les followed by a rapid crash to zero magnitude of the pertur-

bation, concluding a sawtooth cycle. We model this evolution using the following
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parameterized analytic form.

�(t) =

8>><
>>:
�0(exp

�
t
�1

�
� 1)=(e � 1); for t < �1,

�0(exp
�
t��1��2

�2

�
� 1)=(e� 1); for �1 < t < �1 + �2.

(22)

where �2 � �1. We adjust �1 and �2 for each mode according to experimental data.

The crash time, �2, is much slower than the cyclotron rotation of the particles, thus

the conservation of magnetic moments is valid even in the crash phase. But �2 is of

comparable magnitude with the trapped particle bounce period and a partial reso-

nance causes the particles to di�use in velocity space. A typical case of temporal

evolution is shown in Fig. 4.

VI. Monte Carlo Simulation of Alpha Distributions

In order to make sensible comparison with experimental measurements, it is im-

portant to interpret the output of the Monte Carlo simulations properly, and to

understand how the output would correspond to measurements from the PCX and

�-CHERS diagnostics. In fact, the correspondence can be quite subtle for the PCX

case.

Let F ( p; E; �) be the particle distribution in the phase space (x;v), and F( p; E; �)

be the counter part in the phase space of ( p; �; E; �). ( � is the mid-plane pitch and

has a one-to-one correspondence with magnetic moment �). Note that,

d3xd3v = 4�2
p
EJ d pd�d�dE (23)

with, J the Jacobian of the ux coordinate system. The number of particles per unit
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Figure 4: Evolution of sawtooth amplitudes for 1/1 and 2/1 modes.. The duration

of one sawtooth crash cycle is � 2:3msec. The crash time is of the order: �crash �

15�sec.
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phase space volume is,

dN = F ( p; E; �)d
3xd3v = F( p; E; �)d pd�d�dE (24)

Therefore,

F( p; E; �) = 4�2
p
EJF ( p; E; �) (25)

For the case of a Gaussian radial distribution, n(r) = n0 exp(�(r=h)2), the peaked-

ness is determined by the single parameter h. Fig. 5 shows an example of how well

the Monte Carlo generated particle distribution represents the intended analytic dis-

tribution.

VII. Comparison with Experiments

The �-CHERS experiment was performed in a standard TFTR D-T super-shot

with toroidal magnetic �eld of 5.1T, and major and minor radii of R = 2:52m and

a = 0:87m, respectively. This diagnostic measures the alpha particles with energies in

the 0.15-0.6 MeV range and positive pitch angles (with � 2 [0; 1] and mostly passing

particles). We modeled the alpha radial density pro�le before the sawtooth crash

using a �t obtained from TRANSP analysis.15

n(r) = n0(1 �
�r
a

�2
)9 (26)

The initial pitch distribution was taken to be uniform in the range of [0; 1]. After the

crash, the particle's radial density pro�le is reconstructed by statistical analysis. Fig. 6

shows the simulation of the redistribution of passing particles with 0:15MeV < E <

0:6MeV . The results are seen to be in reasonable agreement with the experiment.
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Figure 5: The Gaussian distribution f(r) / exp(�(r=h)2) (smooth curve) is simu-

lated by Monte Carlo method (histogram). 40000 particles are used. The peakedness

parameter is h = 0:3a.
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Figure 6: The results from �-CHERS measurements are the ones with error bars.

Solid circles are pre-crash measurements and squares are the post-crash measure-

ments. Simulation of the �-CHERS diagnostics are the solid lines with the diamonds

indicating pre-crash density and triangles the post-crash density.
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We found that to simulate PCX diagnostics is more subtle. The PCX diagnostic

measures alpha particles with one single energy value at a time, with 0:8MeV � E �

1:21MeV . Furthermore, only deeply trapped particles with pitch � = �0:048�0:001

are detected. It is easy to launch particles with a single value of pitch angle, but

it is statistically impossible to collect an acceptably large number of particles which

happen to be within a narrow range of pitch angle after the sawtooth crash. Among

the particles we launched at the beginning, all of which satisfying the criteria to be

picked up by the detector, about only half of them still satisfy that criteria at the

end of a sawtooth cycle. At the moment, we have to sacri�ce accuracy for better

statistics by widening the range of acceptable pitch angles. Comparisons between the

experimental measurements and our simulations are displayed in Fig. 7, 8 and 9

for three di�erent energies. Although the results are not as clear as in the case of

the �-CHERS simulation, both experiment and simulation show a broadening of the

particle distribution by roughly 10 cm.

A picture of the trapped particle motion will help us to understand this result. A

trapped particle passes the outer mid-plane twice in each bounce-period, with smaller

minor radius when passing with negative pitch angle and larger minor radius with

positive pitch angle. One mechanism for the depletion of the particles with small

negative pitches is induced transition by the mode into passing particles during the

positive pitch angle phase of the orbit (i.e. while they are relatively further away

from the magnetic axis). This would require only a small resonant energy transfer

to the particle. Supporting evidence is provided by a similar simulation in which we
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Figure 7: TFTR run #84549 @ t= 4.4 sec, E = 0.8 MeV, PCX, pre-crash measure-

ments are solid circles and post-crash are solid squares. The simulations are in solid

line: diamonds are pre-crash and triangles are post-crash.. Duration of the sawtooth

cycle is 2.6 msec. Mid-plane pitch range: � 2 [�0:4; 0:0].
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Figure 8: TFTR run #84549 @ t= 4.4 sec, E = 1.0 MeV, PCX, pre-crash measure-

ments are solid circles and post-crash are solid squares. The simulations are in solid

line: diamonds are pre-crash and triangles are post-crash.. Duration of sawtooth

cycle is 2.6 msec. Mid-plane pitch range: � 2 [�0:4; 0:0].
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Figure 9: TFTR run #84549 @ t= 4.4 sec, E = 1.21 MeV, PCX, pre-crash measure-

ments are solid circles and post-crash are solid squares. The simulations are in solid

line: diamonds are pre-crash and triangles are post-crash.. Duration of the sawtooth

cycle is 2.6 msec. Mid-plane pitch range: � 2 [�0:4; 0:0].
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�nd that the number of particles with small but positive pitch is increased by the

sawtooth crash cycle.

We do not see any signi�cant loss of particles throughout our simulations.

VIII. Conclusion

A numerical model based on the Hamiltonian guiding center equations has been

developed for the analysis of the sawtooth mixing phenomena in TFTR D-T ex-

periments. There are two important processes in the � particle redistribution: the

stochasticity of magnetic �eld lines at peak perturbation amplitudes, and the large

perpendicular electric �eld during the sawtooth crash. The simulations for passing

particles with positive mid-plane pitch angles are in good agreement with the �-

CHERS results. The simulations corresponding to PCX measurements su�er from

poor statistics and possibly incorrect treatment of the electric �eld in the nonlinear

stage. An improved model for the sawtooth crash would possibly allow more detailed

comparisons.
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