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Abstract

A robustly accurate and e�ective method is presented to solve Laplace's equation in general

azimuthally symmetric geometry for the magnetic scalar potential in the region surrounding a plasma

discharge which may or may not contain external conducting shells. These shells can be topologically

toroidal or spherical, and may have toroidal gaps in them. The solution is incorporated into the

various mhd stability codes either through the volume integrated perturbed magnetic energy in the

vacuum region or through the continuity requirements for the normal component of the perturbed

magnetic �eld and the total perturbed pressure across the unperturbed plasma-vacuum boundary.

The method is based upon using Green's second identity and the method of collocation. As useful

byproducts, the eddy currents and the simulation of Mirnov loop measurements are calculated.

PACS: 52.35.Py, 52.55.Fa, 52.55.Hc, 52.35.Bj

I. Introduction

The solution of the perturbed magnetic �eld in the vacuum region external to the plasma in

toroidally symmetric tokamak discharges is essential for determining the external boundary con-

ditions for stability analyses. As opposed to the cylindrical problem where the solutions of the

magnetic scalar potential is readily obtained in terms of Bessel functions, the tokamak problem is

two-dimensional and more general methods must be developed to incorporate the large variety of

plasma cross-sectional shapes which now exist or are envisioned. In addition, there is usually a closed

or partially closed shell surrounding the plasma, linking it toroidally or wholly enclosing it spheri-

cally, and quite often these have non-trivial geometrical con�guration. It is convenient if a robust

and accurate calculation of these e�ects is available to insure that numerical uncertainties in the

overall stability calculations is isolated elsewhere. A good amount of `overkill' is therefore built into

the calculations for such assurances in the numerical accuracy. The code, `vacuum', described in

the present work has undergone a steady evolution over the past several years and has been incorpo-

rated into many of the important mhd stability codes used in the present state-of-the-art numerical

analyses for simulating plasma discharges and designing new devices. These stability codes initially

include the pest1,2 and the nova3 system of codes, and the modularity and exibility built into

the vacuum code enables easy subsequent interfacing to other stability codes such as gato4 and

dcon
5 as well. The evolution includes the ability to calculate and display the eddy current pattern

in the conducting shells due to plasma perturbations, as well as the facility to simulate the Mirnov

loop measurements of the perturbed magnetic �eld in the vacuum region in tokamak discharges. An

important feature is the capability to incorporate the e�ects of a toroidally symmetric gap in the

�
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shell since most tokamak devices need to have such a gap for heating beam lines, diagnostics, etc.

Another feature mentioned above, the treatment of topologically spherical shell enclosing the whole

plasma discharge, was used for analyzing the SPHEROMAK device.6

Although the method of solution given here is applicable to general problems requiring the

solution of Laplace's equation in geometries with azimuthal symmetry, the emphasis here is on the

mhd �W problem as formulated by Bernstein, et al.7 There one needs only the volume integrated

perturbed magnetic energy in the vacuum region as driven by the normal component of the surface

perturbation of the plasma. In addition, the external shells are assumed perfectly conducting, and

the volume energy can be easily transformed to a surface integral on the plasma-vacuum interface.

The solution is obtained through the use of Green's second identity in which one of the functions

is the free space Green's function for Laplace's equation. An integral equation is obtained in which

the boundary conditions are naturally incorporated. This method has been used in a straight two-

dimensional model with arbitrary cross-section in an investigation of the stability of the kink mode.8

The fundamental numerical technique used is the method of `collocation'.9 This is very e�ective

when used with the free space Green's function, giving well-conditioned matrices, and its accuracy,

as opposed to Fourier methods e.g., is based primarily only on the number of grid points de�ning

the surfaces and the weights used to evaluate the quadratures. Because of the singular nature

of the free space Green's function, great care must be taken when performing the integrals in the

neighborhood of the singularities. These are dealt with accurately and appropriately so as to preserve

the grid integrity of the collocation method. This method can incorporate the full grid information

in the matrix manipulations, but Fourier, or �nite element decomposition can be introduced when

necessary for reducing cpu storage, or when it is used in the inhomogeneous source terms (i.e.,

the plasma-vacuum boundary conditions) as dictated by the speci�c application; in the latter case

the basic accuracy of the method is not a�ected since the method of solution is independent of

the sources. A comparison of a more primitive form of the present method and other methods

have been presented elsewhere.10 It is in contrast to the method used originally in the pest code.1

There, Green's second identity is also used but the Fourier decomposition is carried out before the

quadratures, and thus inaccuracies involving the early truncation of the Fourier series are introduced.

Another method using the Green's function technique is the original method used for the erato

code,11 in which the magnetic scalar potential is expanded in discrete �nite elements in the plasma

surface. This method has been replaced with one in which an equivalent magnetic vector potential

instead is solved throughout the vacuum region.12 Although this obviates some of the problems

associated with singular kernels this can be inconvenient if the wall is far away or is made up of

discrete conductors. The vector potential can be easily obtained from the scalar potential calculated

in vacuum and there is an option in the code which takes the vacuum energy from the Fourier basis

to the �nite element basis.

This paper discusses perturbations for which the toroidal mode number, n, is non-zero. The

modi�cation of the scalar potential method for axisymmetric modes as described by L�ust and

Martensen13 is positive de�nite so that the present rendition of the present code can still give a

su�cient condition for stability for these modes.
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II. Basic considerations

In rationalized Gaussian units with the speed of light, c = 1, the mhd system of equations

relevant to this work are:7

J�B = rP; (1)

with

J = r�B; (2)

and

Q = r� (� �B): (3)

In the vacuum region

Qv = r�A = r�; (4)

where

r�r�A = 0; (5)

and

r2� = 0: (6)

Here, the equilibrium current, magnetic �eld and pressure are denoted respectively by J, B and P ,

the perturbed magnetic �eld by Q, and the plasma Lagrangian displacement by �. A and � are the

magnetic vector and scalar potentials in the vacuum region. It is shown in the Appendix how one

can determine these potentials from each other. The scalar potential will be calculated in terms of

the radial component of the plasma displacement, � (� � �r ), i.e., formally,

� = C[� ]: (7)

As will be seen later, only the condition that the normal component of the perturbed magnetic �eld

is continuous across the unperturbed plasma vacuum interface is used in deriving Eq. (7). The radial

coordinate  , is taken to be proportional to the poloidal ux, 2� , and the equilibrium magnetic

�eld can be represented as

B = r��r + g( )r�; (8)

� being the toroidal angle.

The e�ect of the perturbed magnetic �eld in the exterior region of the plasma discharge can be

incorporated into the solution for the mhd equations for a tokamak by treating the problem as either

a second order di�erential equation in the radial coordinate with appropriate boundary conditions

on the dependent variables at the vacuum interface,3 or as an integral variational problem where

the vacuum e�ects enter as integral relations. The dependent mhd variables can be written in terms

of � , together with its radial derivative, �0 (� @� =@ ), or the total plasma perturbed pressure,

p � �p+B�Q. Since there is no uid pressure in the vacuum, the total perturbed pressure there is

given by:

pv = Bv �Qv = Bv �r� (9)

= Bv �r(C[� ]); (10)
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using Eq. (7), so that pv is also cast in terms of the plasma displacement at the boundary. In the

plasma, �0 can be written in terms of p and � .3 Using the pressure balance constraint at the

boundary, p = pv, and Eq. (10), a relation for �0 =� at the boundary is obtained, and provides the

boundary conditions required by the second order di�erential equation method.

In the case of the integral method, the extended energy principle7,14 identi�es the relevant

integrals as contributions to the energy in the system and gives the widely used prescription for

incorporating the surface and vacuum contributions into the total perturbed energy. In the extended

form, the plasma perturbation satisfy the continuity of the normal component of the magnetic �eld,

but, conveniently, need not satisfy pressure balance across the plasma-vacuum interface. The present

work calculates both these relations, cf. Eqs. (7) and (10), so that the results are applicable to both

the di�erential and integral methods.

For a Lagrangian plasma displacement, �, the surface term is given by,

�Ws =
1

2

Z
d�(n��)2n�

�
r
�
P +

B2

2

��
; (11)

where hXi denotes the discontinuity of X across the boundary in the direction n(= r =jr j). If
there is no skin current on the surface of the plasma, this term vanishes. To see this, note that if

b = B=B, the curvature, �, of the magnetic �eld can be written as

� = b�rb (12)

=
1

B4
B�

�
r
�
P +

B2

2

�
�B

�
: (13)

Then

n�r
�
P +

B2

2

�
= B2n��: (14)

Since the magnetic �eld together with its curvature is continuous if there is no skin current at the

plasma-vacuum interface, it follows that the surface contribution given by Eq. (11) vanishes.

The volume term can be expressed in terms of the vector or scalar potential for the magnetic

�eld:

�Wv =
1

2

Z
d�̂ jr�Aj2 = 1

2

Z
d�̂ jr�j2: (15)

The calculation of this last quantity is the main focus of this work.

III. The solution for � on the surfaces

The scalar potential is solved directly from an inhomogeneous Fredholm equation of the second

kind with a non-symmetric singular kernel. Since the present numerical technique was intended for

the pest system of codes the emphasis here is to obtain a Fourier representation of the vacuum �W

matrix. However, one can equally as well choose alternative representations, such as for example, the

�nite element decomposition used in the erato or gato system of codes. In the section describing

the Fourier analysis, Sec. IX, one should be able to replace the harmonic functions with other

choices of expansion functions and recast the �Wv in the corresponding space. The analysis should

be quite analogous. However, di�culties can be encountered because of the singular nature of the
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kernels. Alternatively, one can obtain the transformation which takes the vacuum matrix between

the di�erent representations. This is done in Sec. X

Green's second identity for the Laplacian with the observer points in the vacuum region and the

source points on the plasma and conductor surfaces surrounding it givesy

4���(r) +

Z
S

��(r0)r0G(r; r0)�dS0 =

Z
Sp

G(r; r0)r0��(r0)�dS0; (16)

where ��, the magnetic scalar potential satis�es r2�� = 0 in the vacuum region. G(r; r0) is chosen

to be the free space Green's function for the Laplacian, i.e., r2G(r; r0) = �4��(r� r0). P denotes

the principal value of the integral, and barred quantities here denote that the quantities contain

their � dependence. The boundary conditions are that the normal component of r� is continuous

across the plasma vacuum-interface but vanishes on a conducting surface so that the second integral

involves only the plasma surface Sp, and S = Sp [ Sc. If there are no conductors then S = Sp,

and the choice of the free space Green's function satis�es the appropriate boundary conditions at

in�nity. Writing ��(r) = �(�) exp(�in�) because of toroidal symmetry, and suppressing the implicit

n dependence of �n; one has

2�(�) +
1

2�

Z
S

ein(���
0)�(�0)r0G(r; r0)�dS0 =

1

2�

Z
Sp

ein(���
0)G(r; r0)r0�(�0)�dS0: (17)

Because of the boundary conditions, the right hand side of Eq. (17) is treated as a known quantity so

that one can solve for � on S in terms of the plasma displacement on Sp. Using dS0 = Jr0Z d�0d�0,

where r0Z is normal to the vacuum surface in a coordinate system with J = (rZ � r� �r�)�1,

one can write

2�(�) +

Z
C

�(�0)K(�; �0) d�0 =

Z
Cp

G(�; �0)B(�0) d�0; (18)

where C is now the contour bounding the surface S in the (X;Z) plane. The function G is now a

two-dimensional Green's function:

G(�; �0) � 1

2�

I
G(r; r0)ein(���

0) d�0; (19)

K(�; �0) � 1

2�

I
Jr0G(r; r0)�r0Zein(���0) d�0; (20)

and the source term is written as

B(�0) = Jr0��r0Z: (21)

In the ensuing calculations, the Jacobian information enters only implicitly through the distribution

of observer and source points on S, i.e., through the parameterization, [X(�); Z(�)]. Some relevant

properties of G and K will be described below.

To proceed, we need �rst only to calculate the � on the surfaces. Since the kernels in the integrals

are singular one needs to be careful to take the appropriate analytic continuation of Eq. (18). Then,

yThe coordinate system used here is such that r = (x; y; z) = (Z; �; �) = ( ; �; �) = (X;�; Z) = (�; �). Here � is

the position vector in the (X;Z) plane.
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separately denoting the scalar potential on the plasma and conducting surfaces by �p and �c, we

arrive at a set of coupled integral equations for the surface perturbations. For � on the plasma

surface,

�p(�p) + P

I
Cp

�p(�
0

p)K(�p; �0p)d�0p +
I
Cc

�c(�
0

c)K(�p; �0c)d�0c

=

I
G(�p; �0p)B(�0p)d�0p: (22)

Similarly, for � on the conducting surfaces,

�c(�c) + P

I
Cc

�c(�
0

c)K(�c; �0c)d�0c +
I
Cp

�p(�
0

p)K(�c; �0p)d�0p

=

I
G(�c; �0p)B(�0p)d�0p: (23)

In both of the preceding equations, the residue from the analytic continuation has cancelled one

factor of �p and �c respectively, from the left hand sides. In the event that the conducting shells

are far away only Eq. (22) survives with �c ! 0.

Eqs. (22) and (23) must be solved for �p and �c in terms of B. Formally, one can write the

solution as

�(�) =

I
C(�; �0)B(�0) d�0; (24)

C being the response function of � to the source B.

IV. The response function for �Wv

The energy contribution in the vacuum region is given by

2�Wv =

Z
v

jr��(Z; �0; �0)j2 dV (25)

=

Z
v

r�(���r��) dV (26)

=

Z
Sp

���pr��p �dS; (27)

using the relation, r2 �� = 0, and Gauss's theorem. This can be further expressed as

2�Wv =

Z
Sp

���pr��p �rZ J d�0d�0 (28)

=

Z
Sp

��p(�
0)B(�0)e�i(n�n0)�0d�0d�0 (29)

= 2�

Z
Cp

��p(�
0)B(�0) d�0; (30)

= 2�

Z
Cp

d�0
Z
Cp

d�00 C(�0; �00)B�(�0)B(�00); (31)

where we used Eqs. (21) and (24).
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Although the formalism described so far is straightforward the actual numerical implementation

is complicated by the singular nature of the kernels in the integrals. To e�ciently perform the

quadratures over these integrable kernels some relevant features of the Green's function must be

understood. These are described in the next section.

V. The Green's function and its properties

The three dimensional free space Green's function is

G(r; r) =
1

jr� r0j : (32)

Integration over the toroidal angle �0, gives the two dimensional Green's function in (X;Z):

Gn(�; �0) � 1

2�

I
G(r; r0)ein(���

0) d�0; (33)

which can be written as:

2�Gn(�; �0) =

I
d�

e�in�q
�2 + 4XX0 sin2(�=2)

; (34)

=
2p
XX0

Z �=2

0

d�
cos 2n�p
h2 + sin2 �

; (35)

=
2�1=2�(1=2� n)

R Pn
�1=2(s); (36)

where Pn
�1=2 is the associated Legendre function of the �rst kind and h2 = �2=4XX0, �2 = (X �

X0)2 + (Z � Z0)2, and

R2 =
p
�2(�2 + 4XX0); (37)

s =
X2 +X02 + (Z � Z0)2

R2
: (38)

Note that Gn is symmetric with respect to interchange of (X;Z) and (X0; Z0) so that Heisenberg

matrices formed from Gn will also have this property.

The gradient of Gn is written as:

r0Gn = êX
@Gn
@X0

+ êZ
@Gn
@Z0

(39)

=
2�1=2�(1=2� n)

R5

�
êX

X0

n
2XX0(X2 �X02 + �2)Pn+1

�1=2(s)

+
�
n(X2 +X02 + �2)(X2 �X02 + �2)�X02(X02 �X2 + �2)

	
Pn
�1=2

o
+ êZ�

n
4XX0Pn+1

�1=2(s) + (2n+ 1)(X2 +X02 + �2)Pn
�1=2(s)

o�
; (40)

where � � (Z � Z0), and to calculate the derivatives of the Legendre functions, we have made use

of the recurrence relation,

(s2 � 1)
dP��
ds

(s) = (s2 � 1)1=2P�+1
� (s) + �sP�� (s); (41)
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with

(s2 � 1) =
4X2X02

�2(�2 + 4XX0)
=

(2XX0)2

R4
: (42)

The Legendre functions are generated from the upward recurrence relation,

Pn+1
�1=2(s) = � 2ns

(s2 � 1)1=2
Pn
�1=2(s) � (n � 1=2)2Pn�1

�1=2(s); n = 1; 2; : : : (43)

P 1
�1=2(s) =

1=2

(s2 � 1)1=2

n
P 0
1=2(s) � sP 0

�1=2(s)
o
: (44)

These are initiated by their relations to the complete elliptic integrals of the �rst and second kinds,

K and E, respectively:

P 0
�1=2(s) =

2

�
m

1=2
1 K(m1); m1 =

2

s+ 1
; (45)

and

P 0
1=2(s) =

2

�
m

1=2
1 E(m1); m1 =

h
s + (s2 � 1)1=2

i�2

: (46)

The relations used here can be derived from equations found in Erd�elyi15 and Abramowitz and

Stegun.16 The latter reference also contains polynomial approximations for the elliptic integrals

which are accurate to O(10�8). It should be noted that no truncation problems associated with

using the upward recurrence relations have been encountered for the practical values of n used in

the applications.

The radial gradient of Gn is needed to calculate K in Eq. (20):

Jr0Gn �r0Z = �X0

�
Z0�

@Gn
@X0

�X0

�

@Gn
@Z0

�
; (47)

where we have used the relations,

ZX = �Z�XJ ; (48)

and

ZZ = X�
X

J : (49)

Here X0
� = @X0=@�, etc. We note that, unlike Gn, the kernel in K is not symmetric with respect to

(X;Z) and (X0; Z0).

V.A. Limiting values

It can be shown that

2�Gn ��!
�!0

� 2

X0
log �: (50)

To see this, one can write the two-dimensional Green's function as:

2�G =
1

�

I 2�

0

d�00
exp�in�00q

1 + (4XX0=�2) sin2 �00=2
(51)

=
4

�

Z �=2

0

d�0
cos 2n�0q

1 + (4XX0=�2) sin2 �0
; (52)
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where the explicit exp�in� behavior has been dropped.

The leading singular term can be extracted by writing the integral as:

2�G =
4

�

24Z �=2

0

d�0
cos 2n�0 � cos�0q

1 + (4XX0=�2) sin2 �0

+

Z �=2

0

d�0
cos �0q

1 + (4XX0=�2) sin2 �0

35 (53)

� 2�[Greg + Gsing]: (54)

Greg is now well behaved as �! 0, and the singularity is contained in Gsing which can be evaluated

analytically. This gives:

2�Gsing =
2p
XX0

h
� log �+ log

�
2
p
XX0 +

p
�2 + 4XX0

�i
: (55)

Thus,

2�G = ��!
�!0

� 2p
XX0

log �: (56)

And since

�2 = (X �X0)2 + (Z � Z0)2 (57)

! (X2
� + Z2

� )(� � �0)2; (58)

then,

2�G(�; �0) ! � 1p
XX0

log(� � �0)2: (59)

Another useful limiting relation arises from the behavior as the source point, (X 0; Z0), approaches

the major axis:

Gn ��!

X0!0

1

�

�
�n;0 � XX0

�2

�
�n;0 � �n;1 + �n;�1

2

�
+ � � �

�
(60)

@Gn
@X0

��!

X0!0

X

�

�
�n;1 + �n;�1

2
� X0

X
�n;0 + � � �

�
: (61)

Thus,

� ��!

X
0

!0
0; for n 6= 0; (62)

and

�BX =
@�

@X0
(63)

is �nite only for n = �1.
(64)

This last property is an intrinsic property of vector �elds. Any vector �eld which has �nite contri-

bution across the major axis must be a perturbation with n = 1 at the axis. In particular, the tilt
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and the shift mode perturbations6 in spheromak type plasmas are perturbations allowed by Gn, so
the result of this work is naturally applicable to these con�gurations.

Because of the derivatives, the singularity in the radial gradient of the Green's function, as given

by Eqs. (40) and (47), is stronger than logarithmic. However, if r approaches r0 along a constant Z
surface the singularity is at most only logarithmic. This can be seen by substituting Eq. (50) into

Eq. (47) and using X �X0 � X0

�(� � �0), etc. Then the coe�cient multiplying (� � �0)�2 is seen to

behave like (� � �0)(Z0�X
0

� �X0

�Z
0

�) and hence eliminates this singular term.

VI. Solution by collocation

The solution of Eq. (18) for the response function C of the scalar potential, �, can be found by

a variety of ways, among which are the Fourier method of the pest1 code, and the �nite elements

method of the erato17 code. In those Galerkin techniques, the perturbation is expanded in a �nite

set of functions and the coe�cients are obtained from the ensuing matrix equivalent of Eq. (18).

Usually, the number of expansion functions used is a fraction of the available grid points thus

introducing further truncation errors in the inversion of the matrix. Here, it is found directly by

discretizing the integrals on C in the space of the total available grid points. In this way one attains

maximal accuracy in the inversion. From Eqs. (22) and (23), the collocation method formally gives,

"
�ji +Knji(p; p0) Knji(p; c0)

Knji(c; p0) �ji +Knji(c; c0)

#"
�pi

�ci

#
=

"
Gnjk(p; p0)
Gnjk(c; p0)

#
Bk(�0p) (65)

where repeated indices are to be summed over. Here,

Knji(c; p0) � wiKn(�cj ; �0pi) (66)

and Gnjk(c; p0) � wkGn(�cj ; �0pk) (67)

etc.; (68)

where w is a weight function chosen appropriately for the quadratures. Because of the extremely high

accuracy o�ered by the Euler-Maclaurin e�ect,18 trapezoidal weights are chosen if the integrands

are periodic and the integration range spans the period. Otherwise, Simpson weights are used.

In actuality, this method of collocation cannot be directly applied because of the singular nature

of the kernels. However, the technique described in the next section to integrate over the singularities

ensure that the advantage of the collocative method is preserved.

VII. Treatment of the singular regions

The accurate evaluation of the integrals in the neighborhood of the singularity of the kernels,

Gn(�; �0) and Kn(�; �0) in Eqs. (22) and (23), is e�ected by subtracting and adding the analytically

known behavior of the kernels in the singular region. The singular region occupies the range,

[�j�I ; �j+I ] about the singular point �j . There it is convenient to perform a 2I+1 order interpolation

on the unknown function. This maintains global grid uniformity and allows for very high accuracy

since the interpolating functions are known and the singular integrals can be evaluated analytically.

The modi�ed, well behaved integrals involving the known kernel and interpolating polynomials are
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evaluated using a high order (eighth order here) Gaussian quadrature to ensure more than enough

accuracy for the majority of applications. Since no grid points of the quadrature lie at a singular

point numerical di�culties there are avoided.

VII.A. The �rst type of singularity

We write

S1(�j) =

Z �j+I

�j�I

Gn(�j ; �0)f(�0) d�0 (69)

=
IX

i=�I

fj+i

Z �j+I

�j�I

Gn(�j ; �0)�i(�0) d�0; (70)

where the unknown function , f(�0) = Jr0Z�r0�(�0), and �i(�0) is the set of interpolating functions

spanning [�j�I; �j+I ]. Then let

2�Gn(�j ; �0) =

"
2�Gn(�j ; �0) + 1

X0
j

log(�j � �0)2

#
� 1

X0
j

log(�j � �0)2; (71)

thus isolating the singular behavior so that the quantity in the square brackets is well behaved, and

integrals of the form

S1i(�j) �
Z �j+I

�j�I

�i(�
0) log(�j � �0)2 d�0 (72)

are done analytically. If �ve-points Lagrange interpolating polynomials are used for �i, i.e., I = 2,

then one �nds

S1i(�j) =

Z 2�

0

Ai(�) log �
2 d�; (73)

where � = �k � �k�1, the grid size, and Ai(�) � [�i(�j � �) + �i(�j + �)]. De�ning p � �=�, the

values for the integrals are,

i Ai S1i

0 (p2 � 1)(p2 � 4)=2 16�(log2�� 68=15)=15

1 �p2(p2 � 4)=3 128�(log2�� 8=15)=45

2 p2(p2 � 1)=12 28�(log2�� 11=105)=45

(74)

The integral of the well-behaved contribution is carried out using, as mentioned above, eight point

Gaussian quadratures on either side of the singularity. Note that, formally, one can now express the

relation about the singular region as,

S1(�j) =
IX

i=�I

fj+iGne� (�j ; �0j+i); (75)

where the e�ective kernel is now well behaved and the collocative form of the right hand side of

Eq. (65) is thus preserved.
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Enclosing shell Open type shell

�0p �0c �0p �0c

�p 1 �2 1 0

�c 0 �1 0 1

Table 1: Residues, K0
Res, of Eq. (77) for source contours with coordinate, �

0, and observer coordinate,

� on the plasma and conducting shell.

VII.B. The second type of singularity

We have integrals of the type

I(�) =

I
�(�0)Kn(�; �0) d�0 (76)

where the kernel Kn is singular. K0 has the same dominant singular behavior and we can exploit its

properties to isolate and evaluate the integrals over the singularities. Thus, by integrating Laplace's

equation for G(r; r0) over the volume occupied by the vacuum region and using Gauss's theorem

together with the de�nition of K given by Eq. (20) with n = 0, one can show that17I
K0(�; �0) d�0 � K0

Res (77)

where K0
Res is given in Table 1. Both the case for toroidal shells enclosing the plasma, Fig. 1a,b, and

for toroidal shells only partially enclosing the plasma, Fig. 1c,d, are shown. In the latter case the

closed contour of integration is the circumference of the shell whose thickness must be greater than

the distance between grids points describing the shell. If both source and observer points are on the

same surface, i.e., along the diagonals of Table 1, then the principal part of the Eq. (77) is taken.

When � and �0 are on di�erent surfaces their values are parameterized and indexed for the numerics

such that the kernels are singular when �i = �0j with i = j. This is most easily accomplished when

the wall is of the type as shown in Fig. 1a.

Subtracting and adding the singular behavior at �0s yields, formally, for integrals on either the

plasma or conductor surface,

I(�) =

I �
�(�0)Kn(�; �0)� �(�0s)K0(�; �0)

�
d�0 + K0

Res�(�
0

s); (78)

and the integrand is now well-behaved. The regular integral over the region outside the singular

region is directly discretized with weights, wi, as

Ir(�j) =
X
i

0

wi

"
Kn(�j ; �0i)� �ji

X
k

0K0(�j ; �
0

k)

#
�(�0i); (79)

where the restricted sum is taken over the closed set of points excluding the singular region [�j�I ; �j+I ].

This last relation can be e�ectively written as

Ir(�j) =
X
i

0Kne� (�j ; �0i)�(�0i): (80)

In the singular region, �(�) is expanded into interpolating polynomials, �i(�), about the singular

point, �0s = �0j , then the integral there is evaluated as follows:

Is(�j) =
IX

i=�I

�(�0j+i)

Z �j+I

�j�I

Kn(�j ; �0)�i(�0) d�0 � �(�0j)

Z �j+I

�j�I

K0(�j ; �
0) d�0 (81)
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=
IX

i=�I

�(�0j+i)

Z �j+I

�j�I

�Kn(�j ; �0)�i(�0) � �i;0K0(�j ; �
0)
	
d�0; (82)

and the integral, as for the �rst type, is evaluated to very high accuracy using eight-point Gaussian

quadratures. The Lagrange polynomials used here satisfy �i(�j) = �ij on the grid so that the

integrands with i 6= 0 are �nite.

Note that again, as for Ir , we can still express the the relation around singular region in terms

of a well behaved kernel as,

Is(�j) =
IX

i=�I

Kne� (�j ; �0j+i)�(�0j+i); (83)

so that for the whole range we have essentially the relation,

I(�j) =
X
i

Ke� (�j ; �0i)�(�0i) +K0
Res: (84)

VIII. The coe�cient matrix

When the singularities are treated as described in the previous section and the residues explicitly

included, the matrix equation, Eq. (65), is recast in terms of e�ective, well-behaved kernels, Kji and
Gji, as follows,"

2�ji +Kji(p; p0) �2�ji +Kji(p; c0)
Kji(c; p0) Kji(c; c0)

#"
�pi

�ci

#
=

"
Gjk(p; p0)
Gjk(c; p0)

#
Bk(�0p) (85)

If the conducting shell does not enclose the plasma then the sense of the integrals around the shell

is di�erent and Eq. (85) is modi�ed in accordance with Table 1. Thus:"
2�ji + Kji(p; p0) Kji(p; c0)

Kji(c; p0) 2�ji +Kji(c; c0)

#"
�pi

�ci

#
=

"
Gjk(p; p0)
Gjk(c; p0)

#
Bik�0p) (86)

The latter form is used if there is a poloidal gap in the shell as shown in Fig. 1c,d. For the case of

no conductors only the upper left block in Eqs. (85) and (86) survives, and if there are more than

one discrete conductor external to the plasma, these formulas are easily generalized. Formally then,

we can write the discretized form of Eqs. (22) and (23) as,X
i

Aji�(�i) =

I
Cp

G(�j ; �0)B(�0) d�0; (87)

which can be solved directly for �:

�(�i) =
X
j

A�1
ji

I
Cp

G(�j ; �0)B(�0) d�0; (88)

so that

C(�i; �0) =
X
j

A�1
ji G(�j ; �0); (89)

where Aji is given by Eq. (85) or (86). The summation is taken over all the surfaces enclosing the

vacuum, i.e., those of the plasma and all the conductors, if any.
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We note here that the single matrix Aji contains the contributions in toto from the plasma

surface and all the conductors. This is in contrast to other methods1,17 which separate out individ-

ual contributions of � on the plasma and conductor surfaces, leaving a set of linear simultaneous

equations to be solved. This method is useful if computational storage space is limited since the

individual matrices are smaller. Unless one is careful however, the order in which the various �

contributions are eliminated can lead to singularities, especially when n = 0.

Substituting C from Eq. (89) into Eq. (31) and discretizing the integrals, one obtains

2�Wv =

pX
ik

RikB�(�0k)B(�0i); (90)

where the index i corresponds to descretizing the integral in Eq. (30), and k to the one in Eq. (87),

both over the plasma surface. The notation
Pp denotes that the summation involves only the points

on the plasma surface. The response function, R, to the plasma perturbation, B, is thus found to

be

Rik � 2�wiwk
X
j

A�1
ji G(�j ; �0k); (91)

= 2�wiwkC(�i; �0k): (92)

As mentioned before, although G is symmetric with respect to its arguments, the matrix. Aji is not

symmetric. It turns out, however, that the �nal response function is in fact symmetric.

IX. Fourier analysis

For the pest codes, the sources are Fourier analyzed in a coordinate system where the �eld lines

are straight in the �{� plane. Here � is chosen to have some exibility by specifying J , and � is the

resulting ignorable toroidal angle, which is expressed as

� = �+ �(�) (93)

= �+ q( )� �
Z �

0

B�r�
B�r� d� � �+ q( )(� � �p); (94)

where the notation in the pest code is such that �( ; �) = �q( )�( ; �). Here q( ) is the safety

factor and �p is the poloidal angle in the straight �eld line coordinates (�p; �), so that �( ; �) is the

deviation of � from this angle.

Linear perturbed quantities are assumed to have the behavior

� ei(l��n�) = ei[l��n�(�)]�in� (95)

and the ancillary � dependence involved in �(�) must be explicitly included in the Fourier decom-

position of B, i.e.,

B(�0) =
X
l

Blei[l�
0

�n�(�0)]; (96)

so that from Eq. (90)

2�Wv = 2�
X
ll0

B�l0Bl
pX
ik

wiwk
X
j

A�1
ji G(�j ; �0k)e�i[l

0�0
k
�n�(�0

k
)]ei[l�

0

i
�n�(�0

i
)] (97)
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=
X
ll0

Rll0B�l0Bl; (98)

where, in Fourier space, the response function has the form,

Rll0 = 2�

pX
ik

wiwk
X
j

A�1
ji G(�j ; �0k)e�i[l

0�0k�n�(�
0

k)]ei[l�
0

i�n�(�
0

i)]; (99)

or

= 2�

pX
ik

wiwkC(�i; �0k)e�i[l
0�0k�n�(�

0

k)]ei[l�
0

i�n�(�
0

i)]: (100)

In practice, to save on computational storage space, the sum over the index k is carried out early

in the calculation. This corresponds to integrating Eq. (87) with the explicit � dependence of B
given by the complex conjugate of Eq. (96). This does not a�ect the basic accuracy of the method

since the source term is considered here as the external driver for the problem. One can then write

Rll0 = 2�

pX
i

X
j

wiA
�1
ji G�l0 (�j)ei[l�

0

i�n�(�
0

i)]; (101)

where

G�l0 (�j) �
I
Cp

G(�j ; �0k)e�i[l
0�0k�n�(�

0

k)] d�0k (102)

=

pX
k

wkG(�j ; �0k)e�i[l
0�0k�n�(�

0

k)] (103)

= G�Rl0 (�j) + iG�Il0 (�j); (104)

where

GRl0 (�j) =

I
Cp

G(�j ; �0k) cos[l0�0k � n�(�0k)] d�
0

k; (105)

and

GIl0 (�j) =

I
Cp

G(�j ; �0k) sin[l0�0k � n�(�0k)] d�
0

k: (106)

Note that from Eq. (88) the response function of �(�) can also be expressed as

�(�i) =
X
l

Cl(�i)Bl; (107)

where

Cl(�i) =
X
j

A�1
ij Gl(�j); (108)

= CRl (�i) + iCIl (�i): (109)

Separating real and imaginary parts, and substituting these expressions into Eq. (101) gives �nally,

Rll0 = [ARRll0 +AIIll0 ] + i[AIRll0 �ARIll0 ]; (110)

where

ARRll0 � 2�

pX
i

wi cos[l�
0

i � n�(�0i)]CRl0 (�i) (111)
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AIIll0 � 2�

pX
i

wi sin[l�
0

i � n�(�0i)]CIl0(�i) (112)

AIRll0 � 2�

pX
i

wi sin[l�
0

i � n�(�0i)]CRl0 (�i) (113)

ARIll0 � 2�

pX
i

wi cos[l�
0

i � n�(�0i)]CIl0(�i): (114)

For vertically symmetric con�gurations, AIRll0 and ARIll0 vanishes. The explicit form of the source

term given by Eq. (87) or (96) have been purposely treated as unknown up to this point since the

analysis is valid for an arbitrary source. In the mhd stability problem this is given by the continuity

of the normal magnetic �eld across the plasma-vacuum interface. Thus, if Z is chosen to be the

poloidal ux function,  , as in the pest codes, then

�B(�0) = J �Q�r ; (115)

where �Q is the perturbed magnetic �eld in the plasma:
�Q = r� (�� �B); (116)

and

J �Q�r = JB�r�� (117)

= i
X
l

(l � nq)�le
i(l��n�); (118)

where Eqs. (94) and (8) are used. Barred quantities again signify that they have their dependence

on �. Here, �� � �� �r ; is the normal component of the plasma displacement on the surface.

Thus, one has

Bl = i(l � nq)�l; (119)

so that from Eq. (107),

�(�i) = i
X
l

(l � nq)Cl(�i)�l (120)

and from Eq. (98),

2�Wv =
X
ll0

(l � nq)(l0 � nq)Rll0 �
�

l0�l: (121)

The vacuum response matrix to the plasma perturbation, ��l, is therefore given by

Vll0 = (l � nq)(l0 � nq)Rll0 : (122)

X. Transformation between bases

The vacuum matrices in di�erent bases bases can be transformed into each other by the appro-

priate orthogonal transformation which is described here.

Denoting the transpose of v by ~v, the sources can be expanded in both bases as follows:

B(�) =
X
k

~Bk�k(�) =
X
l

~Bl'l(�); (123)
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where both �k and 'l are orthonormal basis elements satisfying

1

2�

I
~�k(�)�k0 (�)d� = �kk0 (124)

and
1

2�

I
~'l(�)'l0 (�)d� = �ll0 ; (125)

then Eq. (123) gives

1

2�

I
~�k(�)B(�)d� = Bk =

X
l

Bl
I

~�k(�)'l(�)d�; (126)

=
X
l

TklBl; (127)

where Tkl =
1

2�

I
~�k(�)'l(�)d�: (128)

Similarly, one �nds

Bl =
X
k

TlkBk; (129)

where Tlk =
1

2�

I
~'l(�)�k(�)d�: (130)

The transformation of the vacuum matrix from ' basis to the � basis is as follows:

2�Wv =
X
ll0

~B�l Vll0Bl0 (131)

=
X
ll0

X
k

~B�k ~TklVll0
X
k0

Tl0k0Bk0 (132)

=
X
kk0

~B�kVkk0Bk0; (133)

where Vkk0 =
X
ll0

~T �klVll0Tl0k0 : (134)

Since

Bk =
X
l

TklBl =
X
l

Tkl
X
k0

Tlk0Bk0 (135)

=
X
k0

Bk0
 X

l

TklTlk0

!
; (136)

the transformation matrix Tkl satis�es the orthonormality condition,X
l

TklTlk0 = �kk0 ; (137)

and so T is orthogonal.

Specializing to the case where 'l = eil�, and �k is a (tophat) �nite element, let �k(�) be piecewise

constant spanning two or more grid points on �:

�k(�) =

(
N1=2; if �k � �=N � � � �k + �=N

0; otherwise
(138)

where �k = (2k � 1)
�

N
; (139)
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and N is the number of �nite elements in the interval [0; 2�]. The normalization is chosen so that

1

2�

Z 2�

0

~��k0(�)�k(�)d� = �kk0 ; (140)

in analogy to the Fourier orthonormality property. Then one obtains:

Tlk =
1

2�

I
�k(�)e

�il�d� (141)

=
1

2�

I
�k(�)(cos l� � i sin l�)d� (142)

� TClk � iTSlk: (143)

Similarly,

Tkl = TCkl + iTSkl; (144)

so that X
l

�
TCklT

C
lk0 + TSklT

S
lk0

�
+ i
�
TSklT

C
lk0 � TCklT

S
lk0

�
= �kk0; (145)

or h
T
C ~T

C + T
S ~T

S
i
+ i
h
T
S ~T

C � T
C ~T

S
i

= I: (146)

Since �k is piecewise constant one can get analytic expressions for Tkl:

TCkl =
N1=2

�l
cos

l�

N
(2k � 1) sin

l�

N
(147)

TSkl =
N1=2

�l
sin

l�

N
(2k � 1) sin

l�

N
; (148)

or

Tkl =
N1=2

�l
sin

l�

N
exp

�
i
l�

N
(2k � 1)

�
; (149)

and the orthonormality relation takes the form,

LX
l=�L

N

�2l2
sin2

l�

N
exp

�
i
2l�

N
(k � k0)

�
= �kk0 ; (150)

where the imaginary part vanishes because of the odd parity in l. In practice, this relation need not

be satis�ed precisely to obtain very high accuracy in the calculation of Vkk0 in Eq. (134).

The complementary relation is

NX
k=1

N

�2ll0
sin

l�

N
sin

l0�

N
exp

n
i
�

N
(2k � 1)(l � l0)

o
= �ll0 ; (151)

and performing the sum over k in this case gives

N

�2ll0
sin

l�

N
sin

l0�

N

sin�(l � l0)

sinf�(l � l0)=Ng expfi�(l � l0)g = �ll0 : (152)

The imaginary part clearly vanishes for integer l � l0. For l = l0, the real part satis�es:

N2

�2l2
sin2

l�

N
! 1; (153)

as N=l !1.
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XI. Conducting shell options

There are several options for the shape of the conducting shell in the vacuum region surrounding

the plasma. These di�erent topologies are illustrated in Fig. 1.

These range from a simple circular or D-shaped con�guration Fig. 1a, to more complex shapes

which need not fully enclose the plasma but can be arbitrarily shaped solid entities themselves in

the vacuum region, Fig. 1c), d). A shell which has a toroidal gap as demanded by the accessibility

in a tokamak device for beam lines, diagnostics etc., falls in the latter category. Similarly, the

spheromak6 device demands that the shell is topologically spherical, fully enclosing but not linking

the toroidal plasma, Fig. 1b. This feature of the present work depends on the properties of the

Green's function discussed in Sec. V.A and has been used to study the stability properties of the

tilting and shifting modes in the spheromak device.6 While the shapes can be numerically given,

especially if the shape originates from an actual device, the con�gurations are more conveniently

given analytically. Then we are assured that at least the �rst few derivatives are `smooth' enough for

numerical accuracy, especially if one needs to do interpolations during the numerical procedures. The

following subsections describes some available options for the shape of the conductors. Some care

must be taken when parameterizing the shell that it doesn't intersect the plasma. Some de�nitions

used here are the plasma `radius', prad and the plasma center (Xcen; Xcen), which are de�ned by:

prad � 1

2
(Xmax �Xmin); (154)

Xcen =
1

2
(Xmax +Xmin); (155)

and

Zcen =
1

2
(Zmin + Zmax); (156)

where Xmin and Xmax are respectively, the minimumand the maximumx-values of the plasma, etc.

XI.A. Simple toroidal D-shaped shell

This con�guration where the shell is centered at cw, has an elongation factor of bw, a triangularity

skewness dw, and a radius in the equatorial plane of a, is given by the relation,

Xwi = cw + a cos(�i + dw sin �i); (157)

Zwi = � bwa sin �i: (158)

This gives a free-standing shell independent of the plasma position or dimensions, and is useful if

the shell is from the simulation of an actual device. A convenient parameterization which is scaled

to the plasma is given by,

Xwi = Xcen + pradcw + prad(1 + a� cw) cos(�i + dw sin �i); (159)

Zwi = � bwprad(1 + a � cw) sin �i: (160)

Here the center of the shell is o�set by pradcw in the equatorial plane and is still a distance prada

from the outer major radius side of the plasma.
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Figure 1: The three types of external conductors which are treated. a) Toroidal shell totally enclosing

the plasma, and here placed equidistantly at 0:4prad from the plasma. The D{shaped plasma surface

parameters are Xcen = 2:25; prad = 0:5, elongation = 1.8 and triangularity = 0.5. b) A spherical

shell which doesn't link the plasma. c), d) Toroidal shells only partially enclosing the plasma.
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XI.B. Toroidal equidistant shell

The equidistant option places the shell at a constant normal distance, prada from the plasma.

This option, illustrated in Fig. 1a, with a = 0:4 is a subset of the aforementioned D-shaped shell

and is used quite frequently for scoping studies. It is convenient for simple repeatable quantizations

of wall e�ects on mhd instabilities. It is also the easiest to place very close to the plasma surface

because of the manner in which the plasma-wall grid points are aligned. These are calculated to �rst

order in the grid size by placing each wall node at a distance prada from the corresponding plasma

node along the perpendicular from the line joining the two adjacent plasma nodes. Thus,

Xwi = Xpi + prada cos�i (161)

Zwi = Zwi + prada sin�i (162)

where

�i = arctan (Xwi+1 �Xwi�1 ; Zwi�1 � Zwi+1 ) (163)

The `arctan' function here is used in the sense of Fortran function, atan2. This conveniently gives

the correct branch of �i throughout the entire perimeter of the plasma cross section. Note that the

plasma and shell points are aligned in indices. As inferred form Sec. VII, this alignment is essential

in the treatment of the singularities when the wall is placed close to the plasma. Care must be taken

when using this option for plasmas with indented cross sections like that of the pbx device, since

the wall could fold back into itself in the indented region.

XI.C. The segmented conducting shell

The class of segmented conducting shells which can be treated so far is basically variations on a

�nite-thickness dee-shaped wall at some variable distance from the plasma. As shown in Fig. 1c), d),

there is only one up-down and toroidally symmetric gap in the shell. More gaps can be added with a

moderate of work, but with a judicious choice of parameters we have found that, for the applications

made so far, for example in pbx,19,20 hbt-ep,21 and tpx,22 this is su�cient to e�ectively evaluate

the e�ects which gaps may have in a surrounding conducting shell. Even within this restriction there

are several options:

� The wall can be positioned and scaled with respect to the plasma dimensions or can be pa-

rameterized independent of the plasma.

� The wall can have the variably sized gap on the outer, Fig. 1c, or inner, Fig. 1d, major radius

side of the torus.

� If the gap is on the inner major radius side, the wall may be further deformed to have a

variably sized bulge at the outer major radius side Fig. 1d. This is useful when the upper and

lower arms need to be electrically connected but the induced currents in the connections do

not provide any direct stabilization.

� The segmented wall must have a thickness (cf. Fig. 1c,d)) because of mathematical and

numerical di�culties associated with grid points across the thickness of the plates being too

close to each other. This thickness can be varied. This is of course the more realistic situation

if �nite resistivity is included in the calculations.
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� The sharpness of the corners of the plate de�ning the wall can be varied.

� The triangularity and elongation is speci�ed as is usual in a closed wall.

XI.C.1. Wall referenced to the plasma size and position

The parameterization of the wall with a toroidally symmetric cut-out on the left
right, with 0 � �0 �

2�, is given in the vacuum code by

Xw(�0) = Xcen + cwprad � � cos(�2 � �w sin �2) + B(ab; �b; �b) (164)

Zw(�0) = � bw� sin �2; (165)

where � contains a Fermi-like function to de�ne the double-sided wall. The sharpness of the corners

of the edges of the wall is determined by the `temperature', �w, of the Fermi distribution:

� = a0 � pradaw

�
1� 2

ecos �=�w + 1

�
: (166)

Note that as �w ! 0 the quantity in the square brackets approaches �1 as cos � !�.
The bulge at the outer radius of the segmented wall is contained in the quantity B(ab; �b; �b),

also de�ned with a Fermi-like distribution:

B(ab; �b; �b) = pradab

�
1

e(cos 2�b�cos 2�2)=�b + 1

�
; (167)

�b, in this case being a measure of the inverse roundedness of the bulge, ab the extent of the bulge

along the major radius, and �b the subtending half-angle of the outer side of the bulge. The inner

side of bulge subtends an angle which is smaller by the quantity, ��b, given by

��b =
2aw

bw(1 + a� cw + 2aw)

1� sin �b
cos �b

; (168)

this so that the wall thickness, 2aw, remains approximately uniform throughout the bulge.

In these expressions we have

�2 =
��

180
sin �; (169)

� = �0 � awprad

a0
sin 2�0; (170)

and

a0 = prad(1 + aw � cw + a): (171)

Here, note that aw; cw; and a are in units of the plasma `radius', prad de�ned above. The wall

distance, a, is measured along the equatorial plane from the outer edge of the plasma to the inner

edge of the conductor. a0; �w and bw are the radius, triangularity and elongation of the shape of the

wall. aw and �w are its half-width, and degree of sharpness of its ends, respectively. The inner/outer

radii are thus a0 � awprad. Its center is displaced by cw from Xcen, and � is the half-angle which it

subtends. The concepts of `center' and `radius' of the shell here is referenced to the equatorial plane.

The transformation given in Eq. (170) makes the distribution of the grid points de�ning the shell

more uniform, especially at its corners. The parameters of Fig. 1d are a = 0:20; � = 65:0�; aw =

0:075; bw = 1:90; cw = 0:20; �w = 0:50; �w = 0:025; ab = 0:50; �b = 47:0� and �b = 0:02.
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XI.C.2. Wall independent of plasma

This is useful for the case when the wall for a real device is already in place like pbx and the

wall is �xed but the plasma shape and position can be varied. The parameterization is similar to

the above but all references to the plasma are taken out:

Xw(�0) = cw � � cos(�2 � �w sin �2) (172)

Zw(�0) = � bw� sin �2; (173)

where

� = a0 � aw

�
1� 2

1 + ecos �=�w

�
(174)

� = �0 � aw

a0
sin 2�0; (175)

a0 = a+ aw; (176)

and the rest of the de�nitions are as described in the previous section. The lengths now are absolute,

ie., not scaled to the plasma. The shell is now centered at cw and its inner `radius' is a where, as

above, the center and the radius are referenced to the equatorial plane. The parameters making

the shape in Fig. 1c are a = 0:570; � = 152:3�; aw = 0:030; bw = 2:0; cw = 2:22; �w = 0:50 and

�w = 0:02.

XI.D. Topologically spherical shells

This con�guration is an azimuthally symmetric, ellipsoidal shell whose grid points are constructed

along rays originating from the geometric center of the plasma at (Xcen; Zcen) and emanating through

the corresponding plasma grid points to provide alignment for treating the singular integrals if the

shell approaches too close to the plasma. The shape is parameterized relative to the plasma shape

by the pair of values, aw and bw, such that the horizontal and vertical axes in the X{Z plane are

given respectively by hrad = Xmax + awprad, and vrad = Zmax + bw(Zmax � Zcen). Then the shell

coordinates are given by

Xwi = Xcen +Hi; (177)

Zwi = Zcen + tiHi: (178)

Here

Hi =
b

Gi

h
�Xcenvrad + hrad

�
Gi � t2iX

2
cen

�1=2i
; (179)

where Gi = v2rad + t2ih
2
rad, and ti = (Zpi � Zcen)=(Xpi �Xcen). Accommodations must be made for

using only those points projected for positive X. Such a shell is shown in Fig. 1b with aw = 0:3,

bw = 0:3. Shell con�gurations of this type were used for stability studies of spheromak type plasmas.6

XII. Induced �elds on the conducting shell

The eddy currents on the conducting shell induced by the plasma surface motion can be readily

calculated from the magnetic scalar potential at the wall , �c, obtained in section III. This surface
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current is given by

K = n̂�r�c: (180)

The X;Z; �, and poloidal surface components are respectively,

KX = � X�

X(X2
� + Z2

� )
1=2

@�c

@�
; (181)

KZ = � Z�

X(X2
� + Z2

� )
1=2

@�c

@�
; (182)

K� =
1

(X2
� + Z2

� )
1=2

@�c

@�
; (183)

K� � �r �r�jr jjr�j �K = � 1

X

@�c

@�
: (184)

Inserting the exp(�in�) dependence and using Eq. (120), the real parts of @�c=@� and @�c=@� can

be written as:

@�cr
@�

= n
X
l

�CRl (�) cos(n�) + CIl (�) sin(n�)
�
(l � nq)�l (185)

and
@�cr
@�

=
X
l

�
@CRl (�)
@�

sin(n�)� @CIl (�)
@�

cos(n�)

�
(l � nq)�l: (186)

The components in Cartesian coordinates, (x; y; z), useful for constructing projections of the current

patterns are

Kx = KX cos ��K� sin�; (187)

Ky = KX sin�+K� cos�; (188)

Kz = KZ : (189)

The current distribution can also be displayed on an unfolded rectilinear �{� plane. To aid in the

visualization the components of the current are scaled to eK as follows:

eK� = �L�K�; (190)

eK� = �L�(�)K� ; (191)

where

� �
 

K2
� +K2

�

L2
�K

2
� + L2

�(�)K
2
�

!1=2

: (192)

Here, L�(�) = 2�X(�), and L� is the minor circumference of the toroidal shell, or the distance

between the X = 0 points along the longitude in the case of the spheroidal shell. This scaling tends

to preserve the magnitude and direction of the current vectors when seen in the distorted �{� plane.
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 l    ξ(l)

n = 1
  q = 3.55

(a)

γ  =  - 0.0509

(b)

Top view

(c)

z

x

Figure 2: a) The eddy current pattern over one period in the �{� plane on the shell of Fig. 1a. Note

the localization of the current on the outer major radius side of the shell. The side bar shows the

Fourier components of the plasma surface perturbation, �l. The projections of the current pattern

as seen from above b) and the side c) of the shell are also shown
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Knowledge of the magnitude and the distribution of K can be useful since the current pattern

induced on the shell is generated by Lentz's law to suppress the growth of the plasma perturbation.

Examination of the pattern enables economical use of the passive conducting material necessary

for at least slowing down the dangerous external kink modes. This current pattern also provides

valuable information for constructing a positive feedback system since such a system could ideally

(but perhaps not practically) be e�ected by just enhancing the induced current pattern seen in the

shell. Such studies were done for pbx. The calculation of these currents can also provide quantitative

information about the stresses generated in the tokamak vacuum vessels due to perturbations, or

more violent disruption-like processes. An example of such a current pattern on the shell of Fig. 1a

enclosing an n = 1 kink unstable plasma is shown in Fig. 2. There the projection of the induced

current is seen on the shell over one period in the unfolded �{� plane. Top and side views are also

shown in the �gure. Even though the shell is placed equidistantly from the plasma the current is

localized in the vicinity of the outer major radius side of the plasma because of the `bad curvature'

e�ects on the kink mode there. The Fourier components, �l, of the radial plasma displacement at

the surface of the plasma is shown in side bar. This result emphasizes the importance for locating

any stabilizing passive plates or active circuits on the outboard side of the plasma. This is usually

in conict with the requirements for access to the plasma for diagnostics, beam lines, waveguides,

etc. so that a gap in the critical area such as shown in Fig. 1c is present. It's important to assess the

decrease in the e�ectiveness of the shell due to this gap.22,19 The dependency of the growth rates

versus wall coverage using the gapped con�guration is consistent with the induced current pattern

shown here. These patterns are in good agreement with their experimentally observed counterparts

in the hbt-ep device at Columbia University.21

The usefulness of the eddy current pattern is further illustrated by considering an idealized

shifting or tilting mode6 for a spheromak-like plasma with major radius 0.85, minor radius 0.68,

elongation 2.0 and triangularity 0.45 with the topologically spherical conducting shell shown in

Fig. 1b. A pure shifting or tilting mode will result if the plasma con�guration is extremely oblate or

prolate. A single shape is chosen for both for illustrative purposes. For the shifting mode, a surface

perturbative displacement of the form ��1 = +1, and �+1 = +1 is imposed arti�cially, and the safety

factor at the edge is set to zero. This perturbation corresponds to a rigid horizontal displacement of

the plasma which induces a current pattern whose magnetic �eld and the plasma equilibrium current

result in a restoring J�B force.6 The induced current pattern is shown as a projection in the �{�

plane in Fig. 3a, as viewed from the top b), and in two orthogonal views in the equatorial plane c),

d). These considerations were signi�cant factors which led to the design of appropriate stabilizing

\�gure-8" feedback coils against the shift mode in the S-1 spheromak device.23 The corresponding

induced current patterns for the pure tilt mode with ��1 = +1, and �+1 = �1 on the same plasma

con�guration is shown in Fig. 4.

One can also easily calculate the induced magnetic �eld on the shell. Because of the boundary

conditions, the �eld at the shell lies within the plane of the shell. The components are given by:

QX =
X�

X2
� + Z2

�

@�c

@�
;
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(a)

ϕ

θ

(b)

Top view

(c)

Side view

(d)

Side view

Figure 3: The induced current generated in a spherical shell by the shifting mode in a spheromak

plasma. a) The projection in the �{� plane . b) Top view. Note the \�gure-8" pattern centered at

the poles of the shell. c, d) Orthogonal side views from the equatorial plane.
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(a)

ϕ

θ

(b)

Top view

(c)

Side view

(d)

Side view

Figure 4: The eddy current generated in the conducting shell by the tilting mode. The projections

are the same as for those in Fig. 3.

28



QZ =
Z�

X2
� + Z2

�

@�c

@�
; (193)

Q� =
1

X

@�c

@�
:

XIII. Magnetic perturbations at the Mirnov loops

Simulating the Mirnov loop measurements entails �nding the magnetic perturbations throughout

the vacuum region. In the previous sections the scalar potential on the surfaces have been calculated

as a response to the plasma surface perturbation. This is extended into the vacuum region by a

second application of Green's second identity for the observer points in the vacuum region and the

source points on the surfaces:

4���(r) = �
Z
S

��(r0)rG(r; r0)�dS0 +
Z
Sp

G(r; r0)r��(r0)�dS0; (194)

or, after the � integrations,

2�(�) = �
Z
C

�(�0)K(�; �0) d�0 +
Z
Cp

G(�; �0)B(�0) d�0; (195)

where � is the positional vector in the (X;Z) plane and the trivial generalizations of the de�nitions

in Eqs. (19) and (20) have been used. Note that the integrals here are singular if �! C; an e�cient

algorithm to accommodate this situation has not been implemented yet. In this limit, however, the

perturbations can be calculated directly by Eq. (193).

One sees explicitly that the sources needed on the right hand side are the scalar potential, and

its normal derivative on the plasma and conductor surfaces. As mentioned above, the former is

already obtained as a response to the latter as described in the previous sections. The latter can

also be obtained directly from the continuity of Qn, the normal component of the perturbed �eld.

The procedure is thus to carry out the calculations for �Wv, obtain the perturbations on the plasma

surface from a suitable stability (eg. pest) code, and also the response matrix for � on the surfaces,

and �nally use Eq. (195) to determine �(�). Hence, substituting for � in terms of B from Eq. (107),

Fourier analyzing, and using Eq. (119), one �nds,

2�(�) = �i
X
l

(l � nq)�l

"X
k

wkCl(�0k)K(�; �0k)�
pX
k

G(�; �0k)ei[l�
0

k�n�(�
0

k)]

#

� �i
X
l

(l � nq)Pl(�)�l; (196)

where

Pl(�) =
X
k

wkCl(�0k)K(�; �0k)�
pX
k

G(�; �0k)ei[l�
0

k�n�(�
0

k)]: (197)

The X and Z components of the magnetic �eld at the loops are found by calculating � at

four or more neighboring points around each loop position and then taking the appropriate spatial

di�erences.

In the presence of a conducting shell, the normal component of the magnetic �eld calculated by

this procedure correctly tends to zero as the observer point approaches the shell. The remaining

component which lies within the plane of the shell is also seen to approach the value calculated
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Figure 5: a) Magnetic perturbation vectors in the vacuum region and on the shell for the same case

as in Fig. 2. The position of the loops are marked at the center of the arrows. Included are three

sets which indicate the radial fall-o� of the �eld. b) The variation of the perturbations, QX and

QZ , as a function of � simulates the toroidal rotation of the plasma.

directly by Eq. (193) in Sec. XII from � on the surface. For a closed shell the �eld outside is also

seen to vanish, typically to O(10�7) of the interior values. This is consistent with Eq. (195) and its

analytic continuation on and beyond the shell. The algebraic fall-o� of the �eld with minor radius, in

the large aspect ratio circular case, has also been veri�ed to have the behavior, �Br;� � r�l�1. These

properties are illustrated in Fig. 5a by results from the same example of the kink unstable plasma of

Sec. XII. Three sets of magnetic perturbation vectors are illustrated in the �gure. A set of 16 loops

are placed in the vacuum region between the plasma and the shell. Another set of 64 measurements

are made directly on the shell. These latter points are located relative to the � distribution of the

grid points used in the plasma calculation in the pest-1 code and thus are more sparsely spaced at

the outer major radius side of the plasma. The third set of measurements are �ve observation points

each at the inner and outer major radius sides and at the top of the plasma. These are distributed

radially outwards to indicate the radial fall-o� of the perturbation. The consistency between Fig. 2

and Fig. 5 is apparent.

In the experiments the signals on the Mirnov loops are detected because of the changing magnetic

ux through the loops. If the mode is purely growing as is the case for an ideal mhd mode, the

oscillatory part of this change usually arises through the plasma or mode rotation primarily in the

� direction so that the loops, in essence, measure the � dependence of the modes. To simulate this

rotation for comparisons with experimental results, the � dependence is reinstated by appending

the factor exp(�in�) into the expression for �. Separation into real and imaginary parts gives

��(�) =
1

2

X
l

�l(l � nq)
�PRl (�) sinn�� PIl (�) cos n�

+ i (PRl (�) cosn�+ PIl (�) sinn�)
�
: (198)

The X and Z components of the magnetic perturbation for each of the set of the 16 loop positions
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are displayed as a function of � in Fig. 5b. Only two periods of rotation in � are plotted so that the

scale in time seems much more expanded than that usually seen in experimental data. As in the

treatment of such data, the relative phases, magnitudes, etc. can also be simulated.

XIV. Usage and accuracy

The vacuum code can be used as a stand alone unit by taking its input from �les which controls

the options and contain the data for the plasma parameters and, for the diagnostic runs, the surface

mhd perturbations. vacuum outputs the vacuum matrix appropriate for the various mhd stability

codes. There are options for interfacing to the nova, adj, gato, dcon, and the pest codes.

Alternatively, the vacuum code can be hard-wired into these stability codes as is the case with the

pest system of codes.

The code is very robust in the sense that very little intervention is required for satisfactory

accuracy. For almost all cases of interest, an accuracy to within 10�5 is easily achievable with a

simple closed wall. For walls close to the plasma, the grid points of the wall and the plasma must be

aligned properly as described in Sec. VII. For the segmented wall it's di�cult to align the points, so

that for accurate results the wall should not be placed too close to the plasma. A distance of about

5% should be acceptable. For similar reasons, the wall should not be too thin. Trial and error should

determine the accuracy. An e�ective internal test for accuracy is the degree of symmetry of various

matrices obtained in the calculation, including the output vacuum matrices. These symmetry tests

are done routinely in the code. Calculations with the segmented shell have been benchmarked to

ensure that the appropriate limits are approached in the limits of very large and very small gaps.

XV. Conclusions

A reliably accurate numerical procedure for solving Laplace's equation with Neumann boundary

conditions in toroidally symmetric geometry with arbitrary plasma cross-sectional shape is described.

The solution is cast as a response matrix to the plasma surface perturbation. The conducting

material external to the plasma could be topologically spherical or toroidal { both enclosing the

plasma, or toroidal but not enclosing the plasma. The spherical case is necessary for studying

spheromak type plasmas or very small aspect ratio tokamaks, whereas the latter case realistically

models shell con�gurations with toroidal gaps. One important result from using this option is a

demonstration of the necessity for having the conducting shell localized at the major radius side of

the plasma to help stabilize the external kink mode. In contrast to Fourier methods, the method of

collocation used to solve for the surface scalar magnetic potential from the inhomogeneous Fredholm

integral equation of the second kind which is generated from the use of Green's second identity is

a most convenient and e�cient way to treat these various conducting shell options. The vacuum

energy is correspondingly expressed in terms of a plasma surface integral. The eddy currents and

magnetic �elds within the conducting shell proved to be useful diagnostic tools for understanding

the magnetic perturbations in experiments as well as for designing feedback systems for tokamaks

and spheromaks. The scalar potential away from the surfaces is also directly calculated by applying

Green's second identity again but using the previously calculated surface �elds as the new input

boundary values. Together with the surface measurements this enables a direct comparison with the

important experimentally observed Mirnov loop measurements. The driving source perturbation

can, in general, be a set of source points, although conversion to a set of Fourier coe�cients or
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�nite elements makes more e�cient use of computer memory. It is also shown how the magnetic

vector potential can be calculated directly from the scalar potential. The code, vacuum, has been

interfaced quite successfully to a variety of mhd codes, and has the option to transform the vacuum

energy matrix from the Fourier basis to a piecewise-constant �nite element basis. Thus far, the

code is applied to up-down symmetric con�gurations only, and the conducting shells are perfectly

conducting. A non vertically symmetric version of the code is forthcoming. The generalization to

resistive shells is more involved but is being formulated.
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Appendix A. The vector potential

It is convenient to know both � and A. For example, calculations of the magnetic ux would

involve more tractable line integrals ofA rather than surface integrals of the magnetic �eld computed

from r�. The solutions for � and A can be derived from each other as follows. Using

Qv = r� = r�A; (A1)

we can solve for AX and AZ , assuming that A� is arbitrary for now, to obtain,

AX = �iX
n

�
@�

@Z
� 1

X

@

@X
XA�

�
; (A2)

AZ = i
X

n

�
@�

@X
+
@A�

@Z

�
; (A3)

and A� = A�; (A4)

where it is assumed that perturbed quantities have the form � exp(�in�), with the restriction that

n 6= 0.

Since Qv is invariant under the gauge transformation:

~A! A +r�; (A5)

where � can be arbitrary, we choose

� = � i

n
XA�; (A6)

so that, with

r� = � i

n

�
êX

@

@X
XA� + êZ

@

@Z
XA�

�
� A� ê�: (A7)

we �nd

~AX = �iX
n

@�

@Z
; (A8)

~AZ = i
X

n

@�

@X
; (A9)

~A� = 0; (A10)

thus eliminatingA�. Note that for calculating physical quantities like, e.g., the ux through a closed

loop, there is no contribution from � sinceI
r��dl =

I
d� = 0: (A11)

Conversely, one can use the � component of Eq. (A1) to obtain � from A:

� = i
X

n
[
@AX

@Z
� @AZ

@X
] = i

X

n
Qv�: (A12)
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