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Abstract

An analytic solution is obtained for free-boundary, high-beta equi-

libria in large aspect ratio tokamaks with a nearly circular plasma

boundary. In the absence of surface currents at the plasma-vacuum in-

terface, the free-boundary equilibrium solution introduces constraints

arising from the need to couple to an external vacuum �eld which is

physically realizable with a reasonable set of external �eld coils. This

places a strong constraint on the pressure pro�les that are consistent

with a given boundary shape at high ��p. The equilibrium solution

also provides information on the ux surface topology. The plasma

is bounded by a separatrix. Increasing the plasma pressure at �xed

total current causes the plasma aperture to decrease in a manner that

is described.

PACS: 52.30.Bt, 52.55.Fa, 52.55.-s, 52.65.Kj

1 Introduction

It is desirable to achieve high � in tokamaks for the purpose of developing

an economic fusion reactor. It has long been recognized that there is an

equilibrium constraint on high � tokamaks arising from the appearance of

a separatrix which moves into the plasma. This e�ect has been observed

in TFTR.[1, 2] When ��p is raised to a su�ciently high value, the plasma

aperture becomes constricted by a naturally arising inboard poloidal �eld

null which prevents further increase of the plasma pressure. This is easily

understood in terms of a simple physical model. As the plasma pressure

is increased, the externally applied vertical �eld is increased to maintain
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equilibrium. On the inboard side of the tokamak, the applied vertical �eld

opposes the poloidal �eld produced by the plasma current. A null point is

produced, which moves into the plasma as the the vertical �eld is increased for

a �xed plasma current. This simplemodel, while explaining the main features

of the experimentally observed e�ect, does not take into account the e�ects

of changing current and pressure pro�les, or the application of multipolar

external �elds. In particular, it has been suggested that the equilibrium �

limit can be circumvented by a sequence of \ux-conserving equilibria" which

maintain the q pro�le. We address these issues in this paper in the context

of an analytic solution for free-boundary, high-beta equilibria in large aspect

ratio tokamaks with a nearly circular plasma boundary.

Cowley et al[3] have obtained a �xed boundary tokamak equilibrium so-

lution valid for large aspect ratio and very high �. In this paper, we extend

that solution to include the matching to an externally imposed vacuum �eld,

under the added assumption that the shape of the plasma boundary is nearly

circular. For a �xed boundary solution it is possible to arbitrarily and inde-

pendently specify the shape of the plasma boundary, as well as the pressure

and q pro�les in the plasma (where q is the \safety factor"). The free-

boundary equilibrium introduces constraints arising from the need to couple

to an external vacuum �eld which is physically realizable with a reasonable

set of external �eld coils. We will see that this places a strong constraint on

the pro�les that are consistent with a given boundary shape at high ��p.

In Section 2 we obtain the solution to the Grad-Shafranov equation in

the plasma interior, assuming � � � � 1 (where � is the inverse aspect

ratio). This is a generalization of the treatment of Cowley et al, who assume

� = O(1).

In Section 3 we match to the solution in the vacuum region under the

assumption that the plasma boundary is circular, and we describe the topol-

ogy of the solution. We take the �eld to be continuous across the plasma-

vacuum interface. In taking the component of the magnetic �eld parallel

to the boundary to be continuous, we are assuming that there is no surface

current.

In Section 4 we perturb about the solution obtained in the previous sec-

tion to investigate the e�ect of a small modi�cation in the shape of the plasma

boundary.

Finally, in Section 5 we discuss our solutions and present some conclu-

sions.
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2 Solution of Grad-Shafranov equation in the

Plasma Interior for �� � � 1

In this section we obtain the solution to the Grad-Shafranov equation in the

plasma interior, assuming �� � � 1. We generalize the treatment of Cowley

et al, who assume � = O(1). We take � = O(�) ( 0 �  < 1). This is to be

compared with the conventional low � tokamak ordering, � = O(�2), and the

conventional high � tokamak ordering, � = O(�)[4]. For  < 1 a boundary

layer appears in the solution of the Grad-Shafranov equation, with the width

of the boundary layer depending on the value of .

It is convenient to introduce the following normalization[3]:

�x = x=a; �z = z=a; �R = R0(1 + ��x); � = a=R0; � =  = max: (1)

�F =
a2

R0 max
F � 1; �p =

�0a
4

 2
max

p � �(0 �  < 1): (2)

Here  max is  at the plasma boundary, corresponding to p( max) = 0,

and a is the scale length of the plasma in a poloidal cross-section. In the

circular boundary case, a is the minor radius. By choosing �F = O(1) and �p =

O(�)(0 �  < 1), we imply that q = O(1) and � = O(�2 ��p) = O(�)(0 �  <

1), where ��p � (a2R2
0= 

2
max)�0pmax, and  is chosen such that � = �2 ��p. In

the normalized variables, we get the dimensionless Grad-Shafranov equation:

�2[(1 + ��x)
@

@�x

1

1 + ��x

@

@�x
+

@2

@�z2
] � = (1 + ��x)2

d�p

d � 
+ �F

d �F

d � 
: (3)

The perturbative solution of this equation with respect to small � is sin-

gular. It is a boundary layer problem. Physically, the leading order force

balance is between plasma pressure and toroidal �eld which does not involve

the di�erential operator. Compared with the conventional low � and high

� ordering, this ordering actually simpli�es the problem. From now on, we

will drop the bars on the normalized variables except where explicitly stated.

Let:

 = m=n;� = �1=n: (4)

Where m;n are integers and m < n. When  = 0, we choose m = 0; n = 1.

Expanding  and FF
0 � G in the small parameter � = �1=n, we have:

 =  0 + �1 1 + �2 2 + :::::: ; (5)

FF
0 � G = G0 + �1G1 + �2G2 + :::::: : (6)
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After expanding the Grad-Shafranov equation (see Appendix A for de-

tails), we obtain the equation determining the core solution:

2xp
0

( 0) +Gm+n( 0) = 0: (7)

For given p and G pro�les, this equation determines x( 0). In the form of

unnormalized variables, (7) is:

2�0R
2
0xp

0

( 0) + aGm+n( 0) = 0: (8)

The domain of validity of the core solution extends to the plasma boundary on

the inboard side of the mid-plane. If we let a correspond to the x coordinate

of the inboard intersection of the plasma boundary with the mid-plane, we

get the relation

�2�0R2
0p

0

( max) +Gm+n( max) = 0: (9)

The value of q on each ux surface is dominated by the contribution from

the core, so that[3]

q( 0) =
�F0( 0)

�

p
1� x2

d 0=dx
: (10)

When  > 0, F 00 = 0, so F0 is a constant. In this case, integration of equation

(10) yields F0 = 2	t, where 	t is the total toroidal ux.

For the boundary layer, the di�erential equation for  0 is:

�[1 + (
r

0

b(�)

rb(�)
)2]
@2 0

@t2
= 2rb(�) cos �

dp

d 0

+Gm+n( 0); (11)

where

r = rb(�)� ��t; (12)

and rb(�) is the radial coordinate of the plasma-vacuum boundary. The

quantity �� is the width of the boundary layer,where � is de�ned to be � �
(1� )=2.

To 0th and 1st order in � the coe�cient [1 + (
r
0

b
(�)

rb(�)
)2] can be dropped,

where � is the small parameter measuring the deviation of the boundary

from circularity. Substituting Gm+n( 0) from equation (7), we obtain

�@
2 0

@t2
= 2[xcore( 0)� cos �rb(�)]

dp

d 0

: (13)
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Multiplying equation (13) by @ 0=@t, integrating from t = 1 and choosing

@ 0=@t! 0 as  !  core, we get

(
@ 0

@t
)2 = 4

Z  0

 core0(cos �rb(�))
d 

0

[x( 
0

)� cos �rb(�)]
dp

d 
0

(14)

= 4p[x( 
0

)� cos �rb(�)]j 0 core0(cos �rb(�)) � 4
Z x( 0)

cos �rb(�)
p( 0(x))dx; (15)

where  0(x) is the core solution for  0 as a function of x. To obtain this

expression, we have integrated by parts. Assuming that p = 0 on the plasma

boundary, the radial derivative of  0 there is given by

(
@ 0

@r
)2j 0=1 = 4� ��p

Z cos �rb(�)

x(1)
p( 0(x))dx: (16)

The � ��p scaling reects the fact that the width of the boundary layer scales

like (� ��p)
�1=2.

The thickness of the boundary layer goes to zero at � = �. The boundary

layer may terminate at a smaller value of �. In that case, a segment of the

plasma boundary is described by the core solution, and must be a straight

line. If the boundary layer extends all the way to � = �, then it follows from

equation (16) that

(
@ 0

@r
)2j 0=1;�=� = 0: (17)

The leftmost boundary on the mid-plane is then a zero point of the poloidal

�eld.

3 Free-Boundary Solution with Circular Bound-

ary

In this section we will match the equilibrium solution in the plasma interior

to the solution in the vacuum region under the assumption that the plasma

boundary is circular. We adopt boundary conditions at in�nity appropriate

for the situation where we have a set of equilibrium coils located far from the

plasma. The matching at the plasma-vacuum boundary will impose a strong

constraint, uniquely determining the value of the quantity p( 0(x)) in the

plasma interior. We will also look at the topology of the magnetic �eld, and

will �nd that the plasma-vacuum boundary coincides with a separatrix.

To the lowest order in �, the vacuum ux  v satis�es Laplace equation:

r2 v = 0; (18)
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whose general solution is:

 v = a0 + b0 ln r +
1X
n=1

(anr
n + bnr

�n) cos n�: (19)

We take the plasma-vacuum boundary to be a circle. The radius of the circle,

a must be consistent with Eq. (9). In normalized form, the equation for the

boundary is:

rb(�) = 1: (20)

Due to the continuity of the normal component of the magnetic �eld,  must

be continuous across the plasma-vacuum interface:

 vjrb(�) =  0jrb(�) = 1: (21)

Therefore,

a0 = 1; an = �bn(n > 0) (22)

There are two pieces to the magnetic �eld solution in the vacuum region.

One piece decays radially outward as we move away from the plasma, and

it corresponds to the �eld produced by the plasma currents. The second

piece increases as we move away from the plasma boundary into the vacuum

region. This part of the �eld is produced by the currents in the external �eld

coils.

The quantity b0 is related to the total current through the plasma. From

Bp =
r 

R
� �̂ and �0It =

H
Bpdl, we get:

It =
2� max

�0R0

b0: (23)

We regard the external equilibriumcoils as being far from our large aspect

ratio tokamak plasma. Far from the plasma, the � dependent part of the �eld

that is driven by the plasma currents decays like r�n, and is small compared

to the � dependent part of the �eld that is driven by the external coils. The

�eld produced by the coils at large r determines the an for n > 0. On a

circular reference surface at r = rl, rl � a, we have

an =
1

rnl �

Z 2�

0
 v(r = rl; �) cos n�d�: (24)

The � independent part of the �eld far from the plasma is determined by b0:

b0 =
1

ln rl2�

Z 2�

0
 v(r = rl; �)d� � 1: (25)
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This part of the �eld is determined by the total plasma current, and is inde-

pendent of the external coils.

If we make no further assumptions, there will in general be a discontinuity

in the radial derivative of  at the plasma vacuum interface. This would

correspond to a surface current. If the equilibrium is rapidly changing, for

example if the plasma � is being rapidly ramped up, then we have no reason

to rule out the existence of a localized edge current, and the equations tell

us that in general such a current will exist. On the other hand, a strongly

localized current is dissipated quite rapidly by any �nite resistivity. If we are

interested in the equilibrium solution on a somewhat longer time scale, it is

reasonable to make the assumption that there is no surface current. That

is what we will assume. The zero surface-current assumption implies the

continuity of the parallel component of the magnetic �eld plasma-vacuum

boundary, giving:

(
@ v

@r
j v=1)2 = (

@ 0

@r
j 0=1)2: (26)

The boundary layer extends to � = �. (If it did not, that would imply that

a segment of the plasma boundary would be a straight line, which contradicts

the assumption that the boundary is circular.) At � = � we get

(
@ v

@r
j v=1)2 = 0: (27)

This gives an equilibrium constraint that must be satis�ed between the ex-

ternally imposed equilibrium �eld and the plasma current:

b0 +
1X
n=1

ann(�1)n = 0: (28)

The continuity of the parallel component of the magnetic �eld, along

with equations (20) and (16), give us an equilibrium constraint that must be

satis�ed everywhere along the plasma-vacuum interface:

(
@ v

@r
j v=1)2 = 4� ��p

Z cos �

�1
p(x)dx; (29)

where we have written p(x) � p( 0(x)). Di�erentiating, we obtain an ex-

pression for p:

p(cos �) =
1

2� ��p
(
@ v

@r
j v=1)

d

d cos �
(
@ v

@r
j v=1):

This gives

p( 0(x)) =
1

2� ��p
[b0 +

1X
n=1

annTn(x)]
1X
n=1

annT
0

n(x); (30)
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where the Tn(x)(n = 1; 2; :::) are Chebyshev polynomials.

For a given externally applied equilibrium �eld, and a given total plasma

current, Eq. (30) determines the pressure as a function of x in the plasma

core. We still have the freedom to specify one additional pro�le in the interior

(e.g. the current pro�le) to uniquely determine the interior solution. Alter-

natively, if we are given the solution in the plasma interior, p(x) is speci�ed,

and we can take the square root of Eq. (29) to construct the unique external

�eld required to maintain the equilibrium with a circular boundary.

In practice, only a few low n values of the an will be non-negligible. The

higher n Fourier components of the vacuum �eld decay rapidly away from

the external �eld coils. Retaining only the �rst few terms on the right hand

side of Eq. (30), we �nd that only a restricted set of p(x) pro�les can be

reasonably supported with a circular boundary. This is to be contrasted with

the �xed boundary solution, where the pressure and current pro�les could

be arbitrarily speci�ed.

Let's look at the special case where the external �eld is uniform and

vertical at in�nity. Now the boundary condition for  v at a large radius rl is

B =
r 
R
� �̂! Bv ẑ: (31)

In this case, it is easy to get

 v = 1 + b0 ln r + a1(r � 1=r) cos �; (32)

and the constraint on the coe�cients

b0 = 2a1; (33)

which is the special form of equation (28). The special form here for equation

(30) is

p( 0(x)) =
1

2� ��p
b20(1 + x): (34)

The quantity a1 is related to the vertical �eld at in�nity,

Bv =
 max

R0a
a1: (35)

Equation (33) is the hoop force balance in the high � case,

It�0 = 4�aBv: (36)
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With equation (34) we get an expression for the required vertical �eld as a

function of the pressure. Expressing the result in unnormalized variables,

and using

p(
x

a
) =

pmax(1 +
x
a
)

2
; (37)

we get

Bv =
�0�

5=2R2
0pmax

2 max
: (38)

This is to be compared with the low-� result (see, for example, [4]) where be-

sides pressure several other terms come into the expression for Bv. However,

it is already the case in the conventional high-� ordering that the pressure

dependence dominates the other terms.[4]

An important �gure of merit for tokamak equilibria is

�I �
4
R
p dV

R0�0I
2
t

: (39)

This measures the plasma pressure that is supported for a given plasma

current. In our solution �I can be obtained explicitly from equation (34),

Z 1

�1
p(x)2(1 � x2)1=2 dx = b20�

2� ��p
: (40)

In unnormalized form, we have
Z
p dV = 2�R0

Z a

�a
p(x)2(a2 � x2)1=2 dx

= 2�R0

b20�

2� ��p
a2
 2
max

�0a4
=
��2�0I

2
tR0

4� ��p
: (41)

Thus,

�I ��p = ��3: (42)

This relation is a consequence of our assumption that there is no surface

current at the plasma-vacuum interface.

Now we turn to the topological structure of the vacuum �eld associated

with a circular plasma boundary. On the plasma-vacuum boundary, the

poloidal �eld vanishes at � = � and is �nite elsewhere. It is straightforward
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to verify that at the point (r = 1; � = �), the �rst and the second derivatives

are all zero. The third derivatives at this point are as follows:

@3 v

@r3
=

2b0

r3
+

1X
n=1

ann[(n�1)(n�2)rn�3+(n+1)(n+2)r�n�3]Tn(y);(43)

@3 v

@r3
jr=1;�=� =

1X
n=1

2n3an(�1)n; (44)

@3 v

@r2@�
jr=1;�=� = 0; (45)

@3 v

@r@�2
=

1X
n=1

ann(r
n�1 + r�n�1)[T

00

n (y)(1� y2)� T
0

n(y)y]; (46)

@3 v

@r@�2
jr=1;�=� =

1X
n=1

2annT
0

n(�1) = �
@3 v

@r3
jr=1;�=� ; (47)

@3 v

@�3
jr=1;�=� = 0: (48)

The identity T
0

n(�1) = (�1)n+1n2 has been used. The Taylor's expansion at

(r = 1; � = �) is :

 v = 1 +
@3 v

@r3
jr=1;�=�

(r � 1)3

3!
+ 3

@3 v

@r@�2
jr=1;�=�

(r � 1)(� � �)2
3!

: (49)

The equations for the level lines passing through this point can be obtained

by setting  v = 1,

(r � 1)3 � 3(r � 1)(� � �)2 = 0: (50)

Thus there are three such lines:

r � 1 = �
p
3(� � �); r = 1: (51)

Since the vacuum solution is valid onto the surface r(�) = 1, which is

itself a ux surface, we conclude that the topological structure of the ux

surfaces near the point (r = 1; � = �) is \K-shaped". More precisely, we can

verify that at this point all the three angles between these three lines are

equal (see �gure 1),

6 A1 = 6 A2 = 6 A3 = �=3: (52)

Figure 1 is the contour plot for the  v described by equation (32), where the

vacuum �eld is uniform and vertical at in�nity.
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Fig.1

Figure 1: Contour plot for vacuum solution with circular boundary

4 Free-Boundary Solution with Perturbed Cir-

cular Boundary

In this section we perturb about the solution obtained in the previous section

to investigate the e�ect of a small modi�cation in the shape of the plasma

boundary. We use a parameter � � 1 to measure the deviation of the

boundary from circularity, rb1(�) � [rb(�) � 1] = O(�). The corresponding

perturbations in Gm+n and p from those which give a circular boundary are

also of order �. Our approach is to specify the perturbed plasma boundary

rb1(�) and solve for the perturbed pressure pro�le p1(x) � p1( 0(x)).

Let

p(x) = p0(x) + p1(x); (53)

rb(�) = 1 + rb1(�); (54)

an = a(0)n + a(1)n ; bn = b(0)n + b(1)n ; (55)

 0 =  
(0)
0 +  

(1)
0 ; (56)

 v =  (0)
v +  (1)

v : (57)
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As before, the an; bn are the coe�cients in the series solution of  v which

satis�es the Laplace equation. The a(0)n ; b(0)n are the unperturbed coe�cients,

and a(1)n ; b(1)n are the �rst order coe�cients with respect to the small distortion

from a circular boundary. Also, rb1 is the �rst order plasma boundary, and

 
(1)
0 and  (1)

v are the �rst order core and vacuum solution. We expand about

a conveniently chosen circular boundary equilibrium solution. We can arbi-

trarily specify the major and minor radii of the circular boundary solution.

We choose them so that the circular boundary coincides with the perturbed

plasma boundary at the two points where it crosses the mid-plane. The

perturbed plasma boundary then goes through x = �1, that is:

rb1(��) = 0: (58)

This simpli�es the calculation, because p(x) and p0(x) have the same domains

in x. We are also free to choose  max to have the same value for the circular

boundary solution and the perturbed solution. The common value of  max
can be normalized to 1.

One of the boundary conditions at the plasma boundary is:

 vjr=1+rb1(�) =  (0)
v +  (1)

v jr=1+rb1(�) = 1 =

A
(0)
0 + a

(1)
0 + b

(0)
0 rb1(�) +

1X
n=1

[(a(1)n + b(1)n ) + 2a(0)n nrb1(�)] cosn�: (59)

To 1st order in � this gives:

a
(1)
0 +

1X
n=1

(a(1)n + b(1)n ) cos n� + (b
(0)
0 + 2

1X
n=1

a(0)n n cos n�)rb1(�) = 0; (60)

or

rb1(�) = �
a
(1)
0 +

P1
n=1(a

(1)
n + b(1)n ) cos n�

b
(0)
0 + 2

P1
n=1 a

(0)
n n cos n�

: (61)

To 1st order in �, the radial derivative at the perturbed boundary is:

@ (1)
v

@r
jr=1+rb1(�) = b

(1)
0 � b(0)0 rb1(�)

+
1X
n=1

[(a(1)n � b(1)n )� 2a(0)n rb1(�)]n cos n�: (62)

We expand the relation (16) to 1st order:

2(
@ 

(0)
0

@r
) 0=1(

@ 
(1)
0

@r
) 0=1 = 4� ��p

�
4p0(y)yrb1(�) + 4

Z y

�1
p1(x)dx

�
; (63)
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where again y � cos �. It follows that

(
@ 

(1)
0

@r
) 0=1 = 2(� ��p)

1=2

2
4 p0yqR y

�1 p0(x)dx
rb1(�) +

R y
�1 p1(x)dxqR y
�1 p0(x)dx

3
5 (64)

The zero surface-current assumption connects (64) and (62) and gives:

a
(1)
0 + b

(1)
0 +

1X
n=1

[(n+ 1)a(1)n � (n� 1)b(1)n ] cosn� =

p0y(� ��p)
1=2qR y

�1 p0(x)dx
rb1(�) +

(� ��p)
1=2

R y
�1 p1(x)dxqR y

�1 p0(x)dx
; (65)

where we have made use of equation(60).

We specify the perturbed boundary, rb1(�) =
P1
n=0 �n cosn�. Eq. (60)

then determines the perturbed vacuum �eld. Substituting the perturbed

coe�cients into Eq. (65), we get an equation that determines p1(x) when we

impose the constraints:

p1(�1) = 0 (66)

When the magnetic �eld is vertical and uniform at in�nity, (60) and (65)

can be simpli�ed into:

rb1(�) =
1X
n=0

�n cosn� = �
a
(1)
0 + a

(1)
1 cos � +

P1
n=1 b

(1)
n cos n�

b
(0)
0 (1 + cos �)

; (67)

and

a
(1)
0 + b

(1)
0 + 2a

(1)
1 cos � +

1X
n=1

(1 � n)b(1)n cosn� =

p0y(� ��p)
1=2qR y

�1 p0(x)dx
rb1(�) +

(� ��p)
1=2

R y
�1 p1(x)dxqR y

�1 p0(x)dx
: (68)

Fig. 2 shows the equilibrium solution for a perturbed plasma boundary

with small ellipticity,

rb1(�) = �0:03(1 � cos 2�): (69)

The detailed calculation for the perturbed vacuum �eld and the perturbed

pressure is given in Appendix B.
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Figure 2: (a) Contour plot for vacuum solution, (b) Pressure pro�le. The

dashed line is the unperturbed solution, and the solid line is the perturbed

one.
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Figure 3: (a) Contour plot for vacuum solution, (b) Pressure pro�le. The

dashed line is the unperturbed solution, and the solid line is the perturbed

one.
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Fig. 3 shows the equilibrium solution for a perturbed plasma boundary

with small ellipticity and triangularity,

rb1(�) = �0:05(1 � cos 2�) + 0:015(cos � � cos 3�): (70)

The detailed calculation is again given in Appendix B.

The perturbation does not alter the main topological features we found

in the presence of a circular boundary. Even though the global picture of

 v changes after the perturbation, the K-shaped structure with three equal

angles at the leftmost boundary is kept to �rst order of �.

Considering equation (58) and (60), we must have two relations between

the a(1)n ; b(1)n :

a
(1)
0 +

1X
n=1

(a(1)n + b(1)n )(�1)n = 0; (71)

and

�
1X
n=1

(a(1)n + b(1)n )(�1)nn2 = 0: (72)

From equation (65) and (58), we obtain another relation between the coe�-

cients:

a
(1)
0 + b

(1)
0 +

1X
n=1

[(n+ 1)a(1)n � (n� 1)b(1)n ](�1)n = 0: (73)

Physically, this means that to 1st order in � the poloidal �eld at the left-

most boundary in the mid-plane is zero. This conclusion is consistent with

equation (17).

Using the relations (71), (72) and (73), we �nd that to �rst order in �

all the �rst and second derivatives vanish at the leftmost boundary in the

mid-plane. As in section 3.2, we �nd:

@3 (1)
v

@r@�2
jr=1;�=� = �

@3 (1)
v

@r3
jr=1;�=�; (74)

@3 (1)
v

@r2@�
jr=1;�=� =

@3 (1)
v

@�3
jr=1;�=� = 0: (75)

Here we have taken the radial and poloidal derivatives of the Laplace equation

for  (1)
v with the conditions that all the second derivatives at the leftmost

boundary in the mid-plane vanish.

Following the argument in section 3.2, we �nd that the topological struc-

ture for  v =  (0)
v +  (1)

v is the same as that for the unperturbed  (0)
v with

a circular boundary. See Fig. 2 and Fig. 3 for the perturbed boundary and

perturbed vacuum solution.
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5 Discussion and Conclusions

For a �xed boundary equilibrium solution, such as that described in reference

[3], we are free to independently specify the shape of the boundary as well

as two pro�les. We can, for example, specify p( ) plus one other pro�le such

as q( ), or G( ), or x( ). The �xed boundary equilibrium solution does

not take into account the constraints arising from coupling to a vacuum �eld

outside the plasma. The extension to a free-boundary solution requires the

existence of an appropriate vacuum �eld that can support the given pro�les

and plasma shape. We need to be concerned about whether the the vacuum

�eld to which we couple is physically realizable with a reasonable set of

external �eld coils.

Speci�cation of the �xed boundary solution determines p( 0(x)). For

a circular boundary, this quantity is related to the external vacuum �eld

through equation (30). The higher n Fourier components of the vacuum �eld

decay rapidly away from the external �eld coils. It is not desirable to have

the external �eld coils very close to the plasma, and in practice only a few

low n values of the an will be non-negligible. Equation (30) then dictates the

limited class of p( 0(x)) pro�les that are in practice consistent with a circular

plasma boundary. This is a strong constraint on the practically realizable

high ��p equilibrium solutions that emerges from our analysis.

In experiments, we impose the part of the vacuum �eld produced by the

coils. The pro�les in the plasma are determined by the ohmic current drive

and by any supplementary current drive, and by the density and tempera-

ture pro�les, which are in turn determined through transport processes. The

equilibrium equations self-consistently determine the shape of the plasma

boundary in the presence of these pro�les and the imposed external �eld.

The solutions obtained in this paper correspond to those pro�les which yield

a nearly circular boundary. For a given boundary shape, and a set of an
determined by the external coils, the vacuum �eld is determined by equa-

tion (60). Equation (65) in turn gives the p(x) pro�le required to yield the

speci�ed boundary with the given external �eld. One pro�le in the plasma

interior remains arbitrary. We �nd that at high ��p the pressure pro�le plays

a key role in determining the boundary shape, in contrast with the situation

at low �, where the shape is only weakly a�ected by the pressure pro�le.

Matching to the external vacuum �eld enables us to examine the topology

of the ux surfaces. Consistent with the picture of a separatrix moving

in as ��p is increased, the plasma is bounded by a separatrix in our high

��p equilibrium solutions. As we raise �I ��p in an equilibrium with circular

boundary, the aperture decreases as described by Eq. (42). This relation is a

consequence of our assumption that there is no surface current at the plasma-
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vacuum interface. If we allow a surface current to exist at the plasm-vacuum

interface, it can prevent the separatrix from moving in as the pressure is

increased. Even in the absence of a surface current, we can construct a ux

conserving sequence of equilibria by controlling the current pro�le as pmax is

raised to keep the q pro�le invariant. In that case, the current increases with

pmax to keep �I ��p invariant, consistent with Eq. (42).

Appendix A The Derivation of Equation (7)

We expand equation (3) order by order in the parameter �. To the order �0

we get:

G0( 0) = 0: (76)

To the order �1; �2; :::; �m�1:

G1( 0) = 0; G2( 0) = 0; :::; Gm�1( 0) = 0: (77)

To the order �m:

p
0

( 0) +Gm( 0) = 0: (78)

To the order of �m+1; �m+2; :::; �m+n�1:

Gm+1( 0) = 0; Gm+2( 0) = 0; :::; Gm+n�1( 0) = 0: (79)

To the order of �m+n

2xp
0

( 0) +Gm+n( 0) = 0: (80)

The last equation is equation (7).

Appendix B Calculation of the First Order

Solution with a Perturbed Bound-

ary

We normalize p0(x), p1(x) by (� ��p)
�1(b

(0)
0 )2 and a

(1)
0 ,a

(1)
1 and b(1)n by b

(0)
0 , then

substitute equation (67) into (68), multiply both sides of the equation by

1+cos(�), and equate the corresponding Fourier coe�cients. This procedure

leads us to the following set of equations:

2f0 = a
(1)
0 + 1:5a

(1)
1 + b

(1)
0 + 0:5b

(1)
1 ;
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2f1 = 2a
(1)
0 + 2a

(1)
1 + b

(1)
0 ;

2f2 = 1:5a
(1)
1 + 0:5b

(1)
1 � b(1)2 � 0:5b

(1)
3 ;

2f3 = �2b(1)3 � b(1)4 ;

::::::

2fm = �m� 3

2
b
(1)
m�1 � (m� 1)b(1)m � m� 1

2
b
(1)
m+1 (m > 2); (81)

where the fn are the Fourier component of
R cos(�)
�1 p1(x)dx,

Z cos(�)

�1
p1(x)dx =

1X
n=0

fn cosn�:

The quantity p1(x) is given by

p1(x) =
1X
n=0

fn
dTn(x)

dx
=

1X
n=0

fnnUn�1(x); (82)

where Tn(x) and Un(x) are Chebyshev polynomials of the �rst kind and

second kind.

Equation (67) gives:

a
(1)
0 = ��0 � 0:5�1;

a
(1)
1 + b

(1)
1 = ��0 � �1 � 0:5�2;

b
(1)
2 = �0:5�1 � �2 � 0:5�3;

::::::

b(1)n = �0:5�n�1 � �n � 0:5�n+1 (n > 1):

When �n is speci�ed, a
(1)
0 , a

(1)
1 , b(1)n , and p1(x) can be determined from

the above equations together with constraint p1(�1) = 0. The constraint

is needed because the above equations have two undetermined degrees of

freedom. b
(1)
0 is determined through equation (73).

For example, when rb1(�) = �0:03(1 � cos 2�), we obtain a
(1)
0 = 0:03,

a
(1)
1 = �0:075, a(1)n = 0 (n > 1), b

(1)
0 = �0:18, b(1)1 = 0:09, b

(1)
2 = �0:03,

b
(1)
3 = �0:015, b(1)n = 0 (n > 3), and p1(x) = �0:18�0:12x+0:18x2 +0:12x3.

The solution is shown in Fig. 2.

When rb1(�) = �0:05(1� cos 2�) + 0:015(cos �� cos 3�), we obtain a
(1)
0 =

0:0425, a
(1)
1 = 0:01, a(1)n = 0 (n > 1), b

(1)
0 = �0:03, b(1)1 = 0, b

(1)
2 = �0:05,

b
(1)
3 = �0:01, b(1)4 = 0:0075, b(1)n = 0 (n > 4), and p1(x) = 0:28x + 0:3x2 �
0:28x3 � 0:3x4. The solution is shown in Fig. 3 .
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