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Abstract

A set of nonlinear gyrouid equations for simulations of tokamak turbulence are derived by

taking moments of the nonlinear toroidal gyrokinetic equation. The moment hierarchy is closed with

approximations that model the kinetic e�ects of parallel Landau damping, toroidal drift resonances,

and �nite Larmor radius e�ects. These equations generalize the work of Dorland and Hammett

[Phys. Fluids B 5, 812 (1993)] to toroidal geometry by including essential toroidal e�ects. The

closures for phase mixing from toroidal rB and curvature drifts take the basic form presented

in Waltz, et al. [Phys. Fluids B 4, 3138 (1992)], but here a more rigorous procedure is used,

including an extension to higher moments, which provides signi�cantly improved accuracy. In

addition, trapped ion e�ects and collisions are incorporated. This reduced set of nonlinear equations

accurately models most of the physics considered important for ion dynamics in core tokamak

turbulence, and is simple enough to be used in high resolution direct numerical simulations.

PACS numbers: 52.65.Tt, 52.35.Qz, 52.55.Fa, 52.35.Ra
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I. Introduction

Fluid equations have long been used to provide a reduced description of plasma dynamics

and to carry out paradigm studies of plasma turbulence which have provided much insight.1{4 This

paper builds on previous uid descriptions by including important kinetic e�ects necessary for more

realistic simulations of plasma turbulence, especially \toroidal" e�ects arising from variations in the

strength of the magnetic �eld. These toroidal gyrouid (or gyro-Landau uid) equations describe

the time evolution of a few moments of the gyrokinetic equation. We will concentrate on a set of

six guiding center moments: the guiding center density, n, parallel velocity, uk, parallel pressure,

pk, perpendicular pressure, p?, and the parallel uxes of parallel and perpendicular heat, qk and q?.

The moment hierarchy is closed by approximations which model the kinetic e�ects of collisionless

phase mixing from parallel free streaming5,6 and toroidal rB and curvature drifts,7,8 and �nite

Larmor radius (FLR) e�ects.9 The toroidal gyrouid equations presented here incorporate reliable

models of most of the physics considered important for electrostatic ion dynamics in tokamak

turbulence. This reduced set of nonlinear uid equations is simple, yet accurate enough to be used

in three-dimensional high resolution direct numerical simulations of tokamak turbulence.7,10 This

paper presents the �rst detailed derivation of the governing equations used in the toroidal gyrouid

simulations of Refs. 11, 12, and 13.

The inclusion of rB and curvature drift e�ects is an important destabilization mechanism

for tokamak microinstabilities. The growth rates for the toroidal ion temperature gradient (ITG)

driven mode are typically two to three times higher than the growth rates of the slab ITG mode,

and toroidicity changes the character of the instability: in a sheared slab the instability is a modi�ed

ion sound wave, in a torus it is more interchange-like. In addition, nonlinear simulations of toroidal

ITG turbulence �nd much larger uctuation and transport levels than sheared slab simulations

for the same parameters, bringing the predicted ion heat ux up to experimentally measured

levels.7,10 Thus, incorporating toroidal e�ects is essential. The key di�culty here is closing the
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higher moments introduced by the velocity dependence of the toroidal rB and curvature drifts.

We close these terms with closure approximations similar in spirit to Ref. 8, but here we use a

more rigorous procedure to �nd our closure coe�cients, providing signi�cantly improved accuracy.

The derivation presented here is valid for �nite kk, while Ref. 8 focused on the purely toroidal

(kk = 0) limit and a term to remove a singularity for �nite kk was added a posteriori. In addition

to presenting a four moment model (four moments were used in Ref. 8), we have extended our model

to evolve six moments, which provides signi�cantly improved accuracy. These toroidal gyrouid

equations also incorporate linear and nonlinear FLR e�ects as in Ref. 9, although the linear FLR

terms are modi�ed by toroidicity.

Another important toroidal e�ect is the damping of poloidal ows. Slab14,15 and toroidal16,11

gyrouid simulations revealed that an important nonlinear saturation process for core tokamak

turbulence is the nonlinear generation and damping of radially sheared \zonal" E �B ows: ows

which cause ux surfaces to rotate. These sheared ows are very weakly damped in a sheared

slab via classical viscosity; the dominant damping mechanisms arise from toroidal e�ects. The

uid terms arising from the mirroring �b̂ � rB and toroidal drift terms in the gyrokinetic equation

are included to provide accurate models of poloidal ow damping from magnetic pumping. These

mirroring terms also model the e�ects of trapped ions, extending the validity of these equations

into the trapped ion regime at low k��i. Finally, a Krook collision operator has been incorporated,

important for poloidal ow damping in the P�rsch-Schl�uter regime, and for collisional e�ects on

very low frequency modes.

We begin by reducing the toroidal gyrokinetic equation to a convenient form in Sec. II; then

exact moment equations are derived in Sec. III. Finite Larmor radius e�ects are treated in Sec. IV.

The kinetic linear response function is derived in Sec. V and used to optimize the closure approx-

imations in Sec. VI. The �nal equations are presented in Sec. VII. A simpler and slightly less

accurate set of equations evolving four moments is given in Sec. VIII. These equations are thor-

oughly tested against fully kinetic linear theory in Sec. IX. Finally, a summary of these results is
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given in Sec. X, and we discuss the validity of these equations for nonlinear simulations of tokamak

turbulence.

II. The Toroidal Gyrokinetic Equation

The starting point of the derivation of the toroidal ion gyrouid equations is the nonlinear

electrostatic gyrokinetic equation in toroidal geometry,17,18 also see Refs. 19{21. Our uid equations

are therefore based on the usual gyrokinetic ordering:

!



� kkvt



� e�

T
� F1

F0
� �

L
� "� 1; k?� � 1; (1)

where ! is a typical frequency, 
 = eB=mc is the cyclotron frequency, kk is a typical parallel

wavenumber, k? is a typical perpendicular wavenumber, � = vt=
 is the gyroradius, v2t = T=m is

the thermal velocity, and L is a macroscopic equilibrium scale length, e.g. the density scale length

L�1n = �(1=n0)rn0. The equations derived in this paper will apply to any ion species, for which

k?� � 1 and ! � !t = vt=qR: main ions, impurities, or a Maxwellian energetic component (e.g.,

beam ions), although we will usually omit the species index. The ordering k?� � 1 is a \maximal

ordering" and allows for a subsidiary expansion k?�� 1 at a later time, although we will assume

that k? isn't too small, i.e., we will assume k?L � 1. The gyrokinetic equations, at least the

version we are presently using, may need a generalization to be able to handle the plasma edge

where equilibrium gradients may be short enough that k?L � 1 and e�=T � 1. The gyrokinetic

ordering removes the fast cyclotron time scale, which allows averaging over the gyroangle, reducing

the velocity space dimensions from three to two. It also retains the physics of strong turbulence

even though the uctuating quantities e�=T and F1=F0 are ordered small, since rF1=rF0 � 1.

Thus the dominant E �B nonlinearity is retained, and other nonlinearities are O(") smaller. In

conservative form, the resulting equation is:

@

@t
FB +r �

h
FB(vkb̂+ vE + vd)

i
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+
@

@vk

�
FB(� e

m
b̂ � rJ0�� �b̂ � rB + vk(b̂ � rb̂) � vE)

�
= BC(F ); (2)

which is valid up to O("). This equation describes the evolution of the gyrophase independent

part of the guiding center distribution function F = F (R; vk; �; t), where � = v2?=2B, vk is the

parallel guiding center velocity, and R is the guiding center position. This form is valid for a

general magnetic �eld, and b̂ is the unit vector in the direction of the magnetic �eld, B = Bb̂. The

combination FB enters because B is the Jacobian of the transformation from (vk; v?) variables

to (vk; �). Because �nite Larmor radius e�ects are retained (k?� � 1), the particles feel the

gyroaveraged E�B drift, vE = (c=B)b̂ � rJ0�, where J0 is the linear operator that carries

out the gyroaveraging of the electrostatic potential. In Fourier space, this operator is the Bessel

function J0(k?v?=
), where k? is the perpendicular wavenumber of �, not of F .

Toroidicity enters in Eq. (2) through the rB and curvature drifts, the vk(b̂ � rb̂) � vE toroidal

angular momentum conserving term, through the non-zero divergence of vE in toroidal geometry,

toroidal FLR e�ects, and the �b̂ � rB mirroring force. All these terms arise because B is not

constant in general, in contrast to a sheared slab model. In Eq. (2), the rB and curvature drifts

have been combined in

vd =
v2k



b̂ � (b̂ � rb̂) + �



b̂ �rB: (3)

Using the equilibrium relations rp = (1=c)J�B and (4�=c)J = r�B, and the identity b̂ � rb̂ =

(r� b̂)� b̂, this can be written:

vd =
v2k + �B


B2
B �rB +

4�v2k


B2
b̂� rp; (4)

where the rp term is negligible for � = 8�p=B2 � 1. For larger �, or stongly rotating plasmas

where nmiv � rv is not ignorable in the equilibrium force balance equation, one simply needs to

keep the curvature and rB drifts separately. Thus instead of !d in Eq. (10), one would use two

operators: !rB and !�, as in Ref. 22.

For ion species, collisional e�ects will be modeled with a particle, momentum, and energy
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conserving BGK operator23 (ion-electron collisions are negligible):

C(Fj) = �
X
k

�jk(Fj � FMjk); (5)

where �jk is the collision rate of species j with species k. Collisions between species j and k cause

Fj to relax to a shifted Maxwellian, FMjk, with the appropriate density, velocity, and temperature

to conserve particles, momentum, and energy. Because F1 is small, FMjk can be linearized. For a

single ion species plasma, this leads to:

C(F ) = ��ii
(
F1 �

"
n1

n0
+
ukvk

v2t
+
T1

T0

 
v2

2v2t
� 3

2

!#
F0

)
; (6)

where v2 = v2k + v2? and T1 = (Tk1 + 2T?1)=3. The generalization for multiple ion species can be

found in Refs. 23 and 24.

Since the perturbations of interest satisfy k�D � 1 (�D � �i for typical tokamak parameters),

we will assume quasineutrality, ne =
P
Zjnj , where ne is the electron density, nj is the ion particle

density (not the guiding center density) of the j'th species, and Zje is the species charge. The ion

particle density is related to the guiding center density by:19{21

nj = �nj � nj0(1� �0)
Zje�

Tj
; (7)

where �0(bj) = exp(�bj)I0(bj), I0 is a modi�ed Bessel function, bj = k2?v
2
t?j=


2
j = k2?�

2
j , and

v2t?j = T?j=mj . The second term on the right hand side of Eq. (7) arises from the gyrophase

dependent part of the distribution function, and is usually called the polarization density. The

k? in the polarization density term is from �. The contribution to the particle density from the

gyrophase independent part of the distribution function, �nj , is

�nj =

Z
d3v J0F =

Z
d3v (F0 + J0F1): (8)

Here J0 operates on F1, i.e. k? comes from F1. For a pure ion-electron plasma, with hydrogenic

ions (Z = 1), the quasineutrality constraint simpli�es to:

ne = �ni � ni0(1� �0)
e�

Ti
; (9)
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For simpler notation, in the remainder of this paper we we will drop the species index j and set

Zj = 1. To incorporate multiple ion species, one simply evolves the moments for each species

independently. Di�erent species are coupled together through the quasineutrality constraint and

through interspecies collision terms.

We will now manipulate Eq. (2) into a form convenient for deriving uid equations. All of the

toroidal e�ects except the �b̂ � rB terms can be written compactly using the notation:

i!d � (v2t =
B
2)B�rB � r: (10)

Let us �rst look at the rB and curvature drift terms. For example, pulling (
B2)�1B � rB out

of the divergence:

r � [FBvd] = 1


B2
B� rB � r[FB(v2k + �B)] + FB(v2k + �B)r �

�
1


B2
B �rB

�

the second term becomes:

r �
�

1


B2
B�rB

�
=

1


B2
rB � r �B ' 0

which is small for low � since the toroidal component of rB is zero and the current, J, is mostly

toroidal. Thus, for low �:

r � (FBvd) = 1


B2
B� rB � r[FB(v2k + �B)] = (1=v2t )i!d[FB(v

2
k + �B)]: (11)

In toroidal geometry, FLR e�ects are complicated by the fact that the argument of J0 depends

on B. When deriving uid equations by taking moments of Eq. (2), it is easiest if F and J0 appear

together, i.e. on the same side of spatial gradient operators. We now manipulate the terms in

Eq. (2) involving J0� so gradients only act on the combination FJ0 or FJ1. De�ning � = k?v?=
,

and recalling that the spatial gradients are taken holding vk and � �xed, we can write:

rJ0� = J0r�+ �rJ0;

rJ0(k?v?=
) = rJ0(�) = @J0

@�
r� = J1(�)

�

2B
rB:
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The E �B term becomes:

r � [FBvE ] = r � [FBJ0 c

B2
B� r�+ FB�J1

�

2B

c

B2
B� rB]:

The divergence of the E�B drift can be written in the same form as the rB and curvature drift

terms:

r � [ c
B2

B�r�] = c

B2
r�� (r�B)� 2c

B3
(B�r�) � rB ' 2(e=T )i!d�;

since again, r� is mostly perpendicular, and J is mostly toroidal. Writing v� = (c=B)b̂�r�, we
have:

r � [FBvE ] = v� � r(FBJ0) + 2FBJ0(e=T )i!d�+ (e=T )i!d(FBJ1�
k?v?

2

):

The �rst term on the RHS includes the usual linear !� terms from F0 and the E �B nonlinearity

from F1, with FLR corrections as discussed in Ref. 9. The linear pieces of the second and third

(toroidal) terms (/ F0) are of the same order as the slab E�B nonlinearity in the gyrokinetic

ordering (we keep B�1rB � F�10 rF0). The nonlinear pieces in the toroidal terms (/ F1) are

higher order in the gyrokinetic ordering, and can be ignored.

Performing similar manipulations on the toroidal angular momentum conserving term, using

the identity (b̂ � rb̂) � vE = �(c=B3)(B�rB) � rJ0�, leads to:

@

@vk
[FBvk(b̂ � rb̂) � vE ] = � @

@vk
(Fvk)

c

B2
B� rB � rJ0�

= � @

@vk
(Fvk)

c

B2
B� rB � (J0r�+ J1

�

2B
rB):

The J0 term again has the !d form, and the J1 term vanishes leaving:

@

@vk
[FBvk(b̂ � rb̂) � vE] = � @

@vk
(FBJ0vk)(e=T )i!d�:

Since kk� � ", the only contribution from the Ek term is linear, so in this term we only need

F0. Using the notation rk = b̂ � r, and a Maxwellian F0:

F0 =
n0

(2�v2t )
3=2

e
�v2

k
=2v2t��B=v

2

t ; (12)
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we have rkjvk;�B(@F0=@vk) = (@F0=@vk)B(1� �B=v2t )rk lnB, so this term becomes:

� e

m
(b̂ � rJ0�)@F0

@vk
B = � e

m
rk(J0�B

@F0

@vk
) +

e

m
J0�B

@F0

@vk
(�B=v2t � 1)rk lnB:

Combining all these terms, Eq. (2) can be written:

@

@t
FB + Brk

FBvk

B
+ v� � r(FBJ0) + 2FBJ0(e=T )i!d� (13)

+ (e=T )i!d(FBJ1�k?v?=2
) +
i!d

v2t
[FB(v2k + �B)]� e

m
rk(J0�B

@F0

@vk
)

+
e

m
J0�B

@F0

@vk

�
�B

v2t
� 1

�
rk lnB � �B

@

@vk
(FB)rk lnB

� @

@vk
(FBJ0vk)(e=T )i!d� = 0:

This form is messy, but most suited for taking moments, because velocity dependent terms such as

F , J0, �, etc., are grouped together on the same side of spatial gradient operators.

III. General Toroidal Gyrouid Equations

We are interested in deriving evolution equations for velocity space moments of Eq. (13), de�ned

by:
n =

R
F d3v nuk =

R
Fvk d

3v

pk = m
R
F (vk � uk)

2 d3v p? = (m=2)
R
Fv2? d

3v

qk = m
R
F (vk � uk)

3 d3v q? = (m=2)
R
Fv2?(vk � uk) d

3v

rk;k = m
R
F (vk � uk)

4 d3v rk;? = (m=2)
R
Fv2?(vk � uk)

2 d3v

r?;? = (m=4)
R
Fv4? d

3v s?;? = (m=4)
R
F (vk � uk)v

4
?d

3v

sk;k = m
R
F (vk � uk)

5d3v sk;? = (m=2)
R
F (vk � uk)

3v2?d
3v

It will often be convenient to use temperature instead of pressure, where the parallel temperature

is de�ned by pk � nTk and perpendicular temperature by p? � nT?

We now proceed to derive moment equations by integrating Eq. (13) over velocity space. These

equations express exact conservation laws of the gyrokinetic equation in the collisionless limit:

conservation of particles, momentum, etc. However, because of the velocity dependence in the

parallel free streaming term, kkvk, the toroidal drift terms, !d(v
2
k + v2?=2), the mirroring terms

v2?r lnB, and the FLR terms, J0(k?v?=
), higher moments are introduced into each of these
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equations, leading to the usual problem of the coupled moments hierarchy. These equations are

not useful until closure approximations are made for the highest moments that are not evolved, as

discussed in following sections. Taking integrals of the form
R
dvk d� v

j
k�

k : : : of Eq. (13) leads to

the following exact moment equations, using the notation: nhAi = R
d3v FA = 2�

R
dvkd�FBA:

@n

@t
+ Brk(nuk=B) + v� � r(nhJ0i) + 2nhJ0i(e=T )i!d� (14)

+ (e=T )i!d(�nhJ1�i=2) + (1=T )i!d(pk + p? + nmu2k) = 0;

@

@t
nuk + Brk(pk=m+ nu2k)=B + v� � r(nhJ0vki) + 2nhJ0vki(e=T )i!d� (15)

+ (e=T )i!d(�nhJ1vk�i=2) + (1=T )i!d(qk + q? + 3pkuk + p?uk + nmu3k)

+
e

m
rknhJ0i�+

e

m
nhJ0(v2?=2v2t � 1)i�rk lnB +

p?

m
rk lnB

+ nhJ0vki(e=T )i!d� = 0;

@

@t
(pk + nmu2k) + Brk(qk + 3pkuk + nmu2k)=B + v� � r(nhJ0v2ki) (16)

+ 2nhJ0v2ki(e=T )i!d�+ (e=T )i!d(�nhJ1v2k�i=2)

+ (1=T )i!d(rk;k + rk;? + 4qkuk + q?uk + 6pku
2
k + p?u

2
k + nmu4k)

+ 2
e

m
rknhJ0vki�+ 2

e

m
nhJ0vk(v2?=2v2t � 1)i�rk lnB

+ 2(q? + p?uk)rk lnB + 2nhJ0v2k i(e=T )i!d� = 0;

@

@t

p?

B
+ Brk(q? + p?uk)=B

2 + v� � rnhJ0v2?i
2B

+ 2
nhJ0v2?i
2B

(e=T )i!d� (17)

+ (e=T )i!d(�nhJ1v2?�i=4B) + (1=T )i!d(rk;? + r?;? + q?uk + p?u
2
k)=B = 0;

@

@t
(qk + 3pkuk + nmu2k) +Brk(rk;k + 4qkuk + 6pku

2
k + nmu4k)=B (18)

+ v� � r(nhJ0v3ki) + 2nhJ0v3ki(e=T )i!d�+ (e=T )i!d(�nhJ1v3k�i=2)

+ (1=T )i!d(sk;k + sk;? + 5rk;kuk + 3rk;?uk + 10qku
2
k + 10pku

3
k + p?u

3
k + nmu5k)

+ 3
e

m
rknhJ0v2ki�+ 3

e

m
nhJ0v2k(v2?=2v2t � 1)i�rk lnB

+ 3(rk;? + qkuk + p?u
2
k)rk lnB + 3nhJ0v3ki(e=T )i!d� = 0;
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@

@t

q? + p?uk

B
+Brk(rk;? + q?uk + p?u

2
k)=B

2 + v� � rnhJ0vkv2?i
2B

(19)

+ 2
nhJ0mvkv

2
?i

2B
(e=T )i!d�+ (e=T )i!d(�nhJ1vkv2?�i=4B)

+ (1=T )i!d(sk;? + s?;? + 3rk;?uk + r?;?uk + p?u
3
k)=B +

e

m
rk

nhJ0v2?i�
2B

+
e

m
nhJ0(v2?=2B)(v2?=2v2t � 1)i�rk lnB

+
r?;?

B
rk lnB + nhJ0vkv2?=Bi(e=T )i!d� = 0:

Before proceeding to discuss closure approximations, it is useful to note that many of these terms

are higher order in the gyrokinetic ordering, and can be neglected. By separating the moments

into equilibrium and uctuating parts the parallel nonlinearities drop out, since they are higher

order in ". For example, we let n = n0 + n1, where n1=n0 � O("). We retain the dominant E�B

nonlinearities (the v� �r terms), which are leading order. In addition, we assume F0 is an unshifted

Maxwellian, so the equilibrium parts of odd moments are zero, and terms like u2k are higher order

in ".

IV. Finite Larmor Radius E�ects

In Ref. 9, accurate models of FLR e�ects were developed by carefully approximating velocity

space averages of J0 which appear in the dynamical equations and in the quasineutrality constraint,

Eq. (9). As in Ref. 9, we choose to evolve moments of the guiding center distribution function, not

real space moments, to provide a better description of linear FLR e�ects including the \Bakshi-

Linsker" e�ect,25,26 and additional FLR nonlinearities. For simplicity, we will not incorporate

the nonlinear FLR phase mixing model in Ref. 9, speci�cally because in our toroidal nonlinear

simulations we do not see large uctuation levels at high k?�i, where these terms become important.

In addition to approximating hJ0i, hJ0vki, hJ0v2k i, hJ0v2?i, hJ0v3k i, and hJ0vkv2?i, which appear in

the slab limit, we also need to approximate hJ0v4?i, hJ1�i, hJ1v2k�i, and hJ1v2?�i, which arise from

toroidal terms. Linearly, these terms involve only F0, and could be evaluated exactly. However, in
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the quasineutrality constraint we have to approximate �ni, which comes from F1, see Eq. (8). F1

is not Maxwellian in general, so the hJ0F1i term in �ni needs to be approximated. As discussed

in Ref. 9, the best agreement with linear kinetic theory is obtained by approximating both the

hJ0i terms and �ni. In the linear kinetic equation, the J0 in Eq. (8) combines with the J0 in

the E �B drifts in the gyrokinetic equation, Eq. (2), so the average of J20 over a Maxwellian

enters the dispersion relation in the slab limit, not the average of J0. These are quite di�erent,

since


J20
�
= �0(b) and hJ0i2 = exp(�b) behave quite di�erently for large b. This motivated the


J20
� � �

1=2
0 approximation introduced in Ref. 9, which is more robust and more accurate for linear

dispersion relations. With the inclusion of toroidal e�ects, the v? in J0(k?v?=
) couples with the

v2? in the toroidal drifts, so it is no longer simply �0(b) that enters the linear kinetic equation, see

Eq. (52) and Eq. (58). We have not found a completely satisfying replacement to hJ0i � �
1=2
0 for

the general toroidal case, but hJ0i � �
1=2
0 continues to work reasonably well. Therefore, we will use

the results of Ref. 9 to approximate:

hJ0i = �
1=2
0 ; (20)

hJ0vki = vt�
1=2
0 ; (21)

hJ0v2ki = v2t �
1=2
0 ; (22)

hJ0v2?i = 2v2t
@

@b
(b�

1=2
0 ) = v2t (2�

1=2
0 + r̂2

?) (23)

hJ0v3ki = v3t �
1=2
0 ; (24)

hJ0vkv2?i = 2v3t
@

@b
(b�

1=2
0 ) = v3t (2�

1=2
0 + r̂2

?): (25)

The modi�ed Laplacian operators r̂2
? and

^̂r
2

? are de�ned by:

1

2
r̂2
?	 = b

@�
1=2
0

@b
�; (26)

^̂r
2

?	 = b
@2

@b2
(b�

1=2
0 )�; (27)

where 	 = �
1=2
0 � is the approximation to the gyroaveraged potential.
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There are four new terms due to toroidicity that need approximating: hJ0v4?i, hJ1�i, hJ1v2k�i,
and hJ1v2?�i. Several techniques could be used to approximate these terms; one is to follow the

approach and rationale in Ref. 9. For example, the hJ1�i term can be rewritten using the following

trick:

hJ1�i � � @

@�

����
�=1

hJ0(��)i : (28)

Thus the approximation for hJ0i is the fundamental one, and all other FLR terms can be derived

from it. Using hJ0i � �
1=2
0 leads to:

hJ1�i � � @

@�

����
�=1

�
1=2
0 (�2b) = �2b@�

1=2
0

@b
= �r̂2

?; (29)

and D
J1v

2
k�
E
� �2v2t b

@�
1=2
0

@b
= �v2t r̂2

?: (30)

For the


J1v

2
?�
�
term, we will assume that F is approximately Maxwellian, so that v2?F �

2v2t @(T?F )=@T?, and:

D
J1v

2
?�
E
� � @

@�

����
�=1

2v2t
@

@T?
(T? hJ0(��)i) = �4v2t

@

@b

 
b2
@�

1=2
0

@b

!
= �4v2t ^̂r

2

?: (31)

The �nal toroidal FLR term is:

hJ0v4?i � 4v4t

"
b
@2

@b2
(b�

1=2
0 ) + 2b

@

@b
(b�

1=2
0 )

#
= 4v4t

�
2�

1=2
0 + r̂2

? +
^̂r
2

?

�
: (32)

These approximations remain �rst order accurate in b to those obtained using the Taylor series

expansion J0 � 1� k2?v
2
?=4


2.

Now we look at linear FLR e�ects in the E�B terms. For example, in the density equation,

following Ref. 9:

v� � rnhJ0i ' v� � r(n0�1=20 ) + nonlinear terms (33)

Since b = k2?v
2
t?=


2 depends on both B and T? (through v2t? = T?0=m), gradients acting on

functions of b (FLR modi�ed terms), introduce pieces proportional to rB and rT?0:

rb = b

T?0
rT?0 � 2b

B
rB;

13



rn0�1=20 = �
1=2
0 rn0 + n0

@�
1=2
0

@b
rb:

We now introduce the diamagnetic frequency i!� � �(cT=eBn0)rn0 � b̂ � r, �k = Ln=LTk, and

�? = Ln=LT? , where LTk and LT? are the equilibrium scale lengths of parallel and perpendicular

temperature, which can be di�erent in general. When they are assumed to be the same, we drop

the subscripts, and write �. With these de�nitions, Eq. (33) becomes:

v� � rnhJ0i = �n0i!��1=20

e�

T0
� n0�?b

@�
1=2
0

@b
i!�

e�

T0
+ 2n0b

@�
1=2
0

@b
i!d

e�

T0
;

since v� � (1=B)rB = �i!d(e�=T ). For a general function of b,

v� � rn0f(b) = �n0f(b)i!�e�
T0
� n0�?b

@f

@b
i!�

e�

T0
+ 2n0b

@f

@b
i!d

e�

T0
:

This form will be used to evaluate terms like v� � rhnJ0v2?i.

In the linear part of the (e=2T )i!d(�nhJ1�i) terms, we need to evaluate

!d(�nhJ1�i) = n0 hJ1�i!d�+�n0
@ hJ1�i
@b

!db+� hJ1�i!dn0;

The last two terms are higher order in ", so the hJ1�i terms only contribute:

(e=2T )i!d(�nhJ1�i) = in0

�
J1
�

2

�
!d

e�

T0
:

Because the �nal equations will get rather complicated, for the moment, we will treat the linear

and nonlinear terms separately. We normalize time, parallel lengths, and perpendicular lengths as

(t; kk; k?) = (
tvt

Ln
; kkLn; k?�); (34)

and uctuating quantities as

�

Ln
(�; n; u; p; q; r; s) = (

e�

T0
;
n1

n0
;
u1

vt
;

p1

n0mv2t
;

q1

n0mv3t
;

r1

n0mv4t
;

s1

n0mv5t
); (35)

where normalized quantities are on the left hand side and dimensional quantities are on the right.

With these normalizations, the characteristic drift wave time and space scales are O(1), and the

14



perturbed quantities will be O(1) at the gyro-Bohm saturation level. In this paper, all equilibrium

quantities are ion parameters, i.e. T0 = Ti0, vt = vti. For the equilibrium F0 we use a Maxwellian,

so the normalized equilibrium values of the moments are pk0 = 1, p?0 = 1, rk;k0 = 3, rk;?0 = 1,

and r?;?0 = 2. With the linear FLR approximations discussed above, temporarily ignoring the

nonlinear terms, the moment equations, Eqs. (14-19), become:

@n

@t
+ Brk

uk

B
�
�
1 +

�?

2
r̂2
?

�
i!�	 +

�
2 +

1

2
r̂2
?

�
i!d	+ i!d(pk + p?) = 0; (36)

@uk

@t
+Brk

pk

B
+rk	+

�
p? +

1

2
r̂2
?	

�
rk lnB + i!d(qk + q? + 4uk) = 0; (37)

@pk

@t
+Brk

qk + 3uk

B
+ 2(q? + uk)rk lnB �

�
1 + �k +

�?

2
r̂2
?

�
i!�	 (38)

+

�
4 +

1

2
r̂2
?

�
i!d	 + i!d(rk;k + rk;?) = 0;

@p?

@t
+B2rk

q? + uk

B2
�
�
1 +

1

2
r̂2
? + �?

�
1 +

1

2
r̂2
? +

^̂r
2

?

��
i!�	 (39)

+

�
3 +

3

2
r̂2
? +

^̂r
2

?

�
i!d	+ i!d(rk;? + r?;?) = 0;

@qk

@t
+rk(rk;k � 3pk) + (�rk;k + 3pk + 3rk;? � 3p?)rk lnB (40)

+i!d(sk;k + sk;? � 3qk � 3q? + 6uk) = 0;

@q?

@t
+rk

�
rk;? � pk +

1

2
r̂2
?	

�
+ (�2rk;? + r?;? + pk � p?)rk lnB (41)

+

�
^̂r
2

?	 �
1

2
r̂2
?	

�
rk lnB + i!d(sk;? + s?;? � qk � q? + uk) = 0:

If we had evaluated the velocity space averages using a Maxwellian F , giving hJ0i = exp(�b), the
n, uk, pk and p? equations above would be equivalent to the electrostatic limit of those derived

in Ref. 22. The q equations would also be equivalent if Ref. 22 had proceeded to higher moment

equations. This equivalence can be veri�ed by replacing �
1=2
0 ! exp(�b=2) and evaluating the

derivatives with respect to b in Eqs. (26) and (27). As discussed in the following sections, these

equations require closure approximations for rk;k, rk;?, r?;?, sk;k, sk;?, and s?;?, which Ref. 22 did

not address.
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For the nonlinear terms, we follow Ref. 9. Thus, to each of Eqs. (36-41) we add the usual E�B

nonlinearities plus additional FLR nonlinearities, as follows:

@n

@t
+ v	 � rn+ [

1

2
r̂2
?v	] � rT? + � � � (42)

@uk

@t
+ v	 � ruk + [

1

2
r̂2
?v	] � rq? + � � � (43)

@pk

@t
+ v	 � rpk + [

1

2
r̂2
?v	] � rT? + � � � (44)

@p?

@t
+ v	 � rp? + [

1

2
r̂2
?v	] � rp? + [

^̂r
2

?v	] � rT? + � � � (45)

@qk

@t
+ v	 � rqk + � � � (46)

@q?

@t
+ v	 � rq? + [

1

2
r̂2
?v	] � ruk + [

^̂r
2

?v	] � rq? + � � � (47)

In these terms, v	 is the approximation to the E�B drift in the gyroaveraged potential, v	 =

(c=B)b̂�	, where 	 = �
1=2
0 �. There is a typological error in Eq. (59) of Ref. 9, where the nonlinear

term involving q? should be dropped.

Now let us return to the quasineutrality constraint, Eq. (9). Here we have to approximate the

real space density. Because of the J0 which acts on F1, �ni will involve the guiding center density

and all higher perpendicular moments, but we only evolve up to T?. Thus we need another closure

approximation which relates �ni to n and T?. The approximation for �ni in Ref. 9 was tailored to

�t the local kinetic dispersion relation in the slab limit. In the toroidal case, because of the v?

dependence of the toroidal drifts in the resonant denominator of the toroidal response function,

Eq. (52), following such a procedure is more complicated, so we simply use

�ni =
1

1 + b=2
n � 2b

(2 + b)2
T?: (48)

This is �rst order accurate in b for both the n and T? terms, and behaves appropriately (�ni ! 0) in

the b!1 limit. The FLR approximations used here and above provide a reasonably accurate �t

to the kinetic FLR behavior in the local kinetic dispersion relation, and continue to perform well

nonlocally, as demonstrated in Section IX. Note that the FLR models described in this section can
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also be used with a simpler Pad�e approximation, by substituting �
1=2
0 ! (1 + b=2)�1 in Eqs. (26)

and (27), as discussed in Ref. 9.

V. Local Linear Toroidal Response Function

Our closure approximations for rk;k, rk;?, r?;?, sk;k, sk;?, and s?;?, will be chosen to provide

accurate models of the kinetic e�ects of parallel and toroidal drift phase mixing. Ultimately, we

choose the closure coe�cients to provide an accurate �t to the local linear toroidal response function,

which is derived in this section.

We begin by transforming the linearized gyrokinetic equation to (E; �) variables, so F =

F (R; E; �), where E = v2k=2 + �B. Then breaking F into adiabatic and nonadiabatic pieces,

F = g � F0J0 e�=T0, the equation for the nonadiabatic piece is found to be:

g = F0
! � !T

�

! � kkvk � !dv
J0
e�

T0
; (49)

where !dv = !d(v
2
k+�B)=v2t and !

T
�
= !�[1+�(v2k=2v

2
t +�B=v2t �3=2)]. In the local approximation,

we treat !d, !�, and kk as constants, using !d = �k��vt=R and !� = �k��vt=Ln, so !d=!� =

Ln=R � �n. The total distribution function in guiding center coordinates, f = f(R; E; �) is:

f(R) = F + ~f = F (R)� e�(x)

T0
F0 + F0J0

e�(R)

T0
: (50)

where F is gyrophase independent, and ~f is the gyrophase dependent part. The �rst piece of ~f

is in real space, x. To obtain the real space ion density (not the density of gyrocenters), only the

parts in guiding center space need to be gyroaveraged (acted on by J0):

n(x) =

Z
d3vf(x) =

Z
d3v

�
J0F (R)� e�(x)

T0
F0 + F0J

2
0

e�(R)

T0

�
(51)

= �n0 e�
T0

+

Z
d3vJ0g;

since the J0F and F0J
2
0 e�=T0 pieces combine to give J0g. Inserting the solution for g, Eq. (49),

the ion density response function is:

Ri =
n

�n0e�=T0 = 1� 1

n0

Z
d3vF0

! � !T
�

! � kkvk � !dv
J20 (k?v?=
); (52)
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which is the usual linear form. Trapped particle e�ects appear in the variation of vk along a

particle's orbit. We will neglect trapped particle e�ects in this section, and treat vk as a constant.

For Im(!=!d) > 0, the resonant denominator can be written:

1

! � kkvk � !dv
= � i

!d

Z
1

0
d� ei�(!�kkvk�!dv)=!d ; (53)

and now the vk and v? integrals can be evaluated. Normalizing ! and kkvt to the toroidal drift

frequency by introducing x = !=!d and zk = kkvt=!d, and using a Maxwellian F0, Eq. (12), the

response function becomes:

Ri = 1 +
ip
2�

Z
1

0
d�

Z
1

0
dv?v?

Z
1

�1

dvk

(
x� 1

�n

"
1 + �(

v2k + v2?

2v2t
� 3

2
)

#)

�ei� [x�zkvk=vt�v2k=v2t�v2?=2v2t ]e�(v2k+v2?)=2v2t J20 (k?v?=
)

The v? integrals are:

Z
1

0

dv?v?e
�(1+i�)v2?=2v

2

t J20 (
p
bv?=vt) = v2t

e�b=(1+i�)

1 + i�
I0

�
b

1 + i�

�
; (54)

and Z
1

0
dv?v

3
?e
�(1+i�)v2?=2v

2

t J20 (
p
bv?=vt) = (55)

2v2t
e�b=(1+i�)

(1 + i�)2
I0

�
b

1 + i�

��
1� b

1 + i�
+

b

1 + i�

I1(b=1+ i�)

I0(b=1+ i�)

�
;

where I0 and I1 are modi�ed Bessel functions. The v? dependence in the resonant denominator was

neglected in the numerical evaluation of the v? integrals of J0 in Ref. 8 (although it was retained

everywhere else), and thus I0 and I1 had real arguments, instead of the complex arguments in

the expressions above. This produces di�erences in the local dispersion relations at large b. The

response function in Ref. 27 correctly retains the v? dependence of the resonant denominator

while integrating over v?. The local kinetic response function described here, and the local kinetic

eigenvalues calculated using this response function in Section IX, were carefully checked against

the results of Ref. 27.
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The vk integrals are:

Z
1

0

dvke
�(1+2i�)v2

k
=2v2

t
�i�zkvk=vt =

p
2�vt

e
��2z2

k
=2(1+2i�)

p
1 + 2i�

; (56)

and Z
1

0
dvkv

2
ke
�(1+2i�)v2

k
=2v2

t
�i�zkvk=vt =

p
2�v3t

e
��2z2

k
=2(1+2i�)

(1 + 2i�)5=2
(1 + 2i� � �2z2k ): (57)

Putting it all together:

Ri = 1 + i

Z
1

0

d� ei�xe
��2z2

k
=2(1+2i�)

e�b=(1+i�)I0

�
b

1 + i�

�(
x� (1� 3

2
�i)=�n

(1 + i�)
p
1 + 2i�

(58)

� �i

�n

2
41� b

1+i�
+ b

1+i�
I1(

b
1+i�

)=I0

�
b

1+i�

�
(1 + i�)2

p
1 + 2i�

3
5� �i

�n

"
1 + 2i� � �2z2k

2(1 + i�)(1 + 2i�)5=2

#9=
; ;

Thus, the local toroidal response function is a rather complicated function, Ri = Ri(x, zk, b, �n,

�). We wish to �nd closure approximations so the response derived from the uid equations will

closely match this response function. In the form of a one dimensional integral as in Eq. (58),

the response function is easy to evaluate numerically, which we will be forced to do to �nd the

optimal closure coe�cients and to solve the local dispersion relation. The response function can

be factored into three pieces, the �rst independent of !�, the second proportional to 1=�n, and the

third proportional to �=�n. Since we will be interested in matching this kinetic response for all �

and �n, we need to �t each of these pieces independently:

Ri = R0 +R1=�n + R2�=�n; (59)

where R0, R1, and R2 are independent of � and �n:

R0 = 1+ i

Z
1

0

d� ei�xe
��2z2

k
=2(1+2i�)

e�b=(1+i�)I0

�
b

1 + i�

�(
x

(1 + i�)
p
1 + 2i�

)
; (60)

R1 = �i
Z
1

0
d� ei�xe

��2z2
k
=2(1+2i�)

e�b=(1+i�)I0

�
b

1 + i�

�(
1

(1 + i�)
p
1 + 2i�

)
(61)

R2 = i

Z
1

0

d� ei�xe
��2z2

k
=2(1+2i�)

e�b=(1+i�)I0

�
b

1 + i�

�(
3=2

(1 + i�)
p
1 + 2i�

(62)
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�1�
b

1+i� +
b

1+i� I1(
b

1+i� )=I0(
b

1+i� )

(1 + i�)2
p
1 + 2i�

� 1 + 2i� � �2z2k

2(1 + i�)(1 + 2i�)5=2

)
;

The response function of the uid equations will also naturally factor into these three parts. In the

purely toroidal limit (kk = 0), neglecting FLR (b = 0), these expressions simplify considerably, and

can be written in terms of the usual plasma dispersion function:28

R0 = 1� x

2
Z2

�r
x

2

�
(63)

R1 =
1

2
Z2

�r
x

2

�
(64)

R2 =

�
x

2
� 1

2

�
Z2

�r
x

2

�
+

r
x

2
Z

�r
x

2

�
(65)

The resonant denominator in Eq. (52), !� kkvk�!d(v
2
k + v2?=2)=v

2
t = 0, by completing the square,

can be written:

!

!d
+
k2kv

2
t

4!2
d

=

�
kkvt

2!d
+
vk

vt

�2

+
v2?
2v2t

: (66)

The left hand side of Eq. (66) is negative, but the right hand side is positive for all v. Thus along

the real ! axis, no particles are in resonance for ! < �k2kv2t =4!d, and Ri is purely real, as shown in

Figs. 1 and 2. As kk ! 1, this cuto� frequency moves to �1, and Ri approaches the slab limit

response function.

We will also use the kinetic response function of other moments (not just density), which can

be written in the following compact form in the b = 0 limit:

Mj;k =

Z
d3vfv

j
k(v

2
?=2)

k = �n0v2k+jt

e�

T0
~Mj;k (67)

~Mj;k = ~M
(0)

j;k + ~M
(1)

j;k =�n +
~M
(2)

j;k �=�n (68)

~Mj;k =
2j=2p
�

1 + (�1)j
2

�(k + 1)�(
j + 1

2
) + i2�j=2

Z
d� ei�x� (69)

��
x� 1

�n
+
3

2

�

�n
� �

�n

k + 1

1 + i�

�
~Kj � �

�n
~Kj+2

�
�(k + 1)e

��2z2
k
=2(1+2i�)

(1 + i�)k+1(1 + 2i�)j+1=2

~Kj =
2j=2(1 + 2i�)j+1=2p

2�v
j+1
t

e
�2z2

k
=2(1+2i�)

Z
1

�1

dvkv
j
ke
�(1+2i�)v2

k
=2v2t�i�zkvk=vt (70)

20



For the lowest few j's, we have:

~K0 = 1;

~K1 = �i�zk;
~K2 = 2(1 + 2i�)� �2z2k ;

~K3 = �zk[�6i(1 + 2i�) + i�2z2k )];

~K4 = 12(1+ 2i�)2 � 12�2z2k (1 + 2i�) + �4z4k :

The odd ~Kj 's are proportional to odd powers of zk (or kk), while the even ~Kj 's are proportional to

even powers of zk. This will guide our choice of closure approximations in the next section.

VI. General Closure

There are three places in the moment equations Eqs. (38)-(41) where closure approximations

are needed, in addition to the FLR closures in Section IV): in the parallel free streaming terms

rkrk;k and rkrk;?; in the toroidal drift terms !d(rk;k + rk;?), !d(rk;? + r?;?), !d(sk;k + sk;?), and

!d(sk;? + s?;?); and in the mirroring terms rk;krk lnB, rk;?rk lnB, and r?;?rk lnB. For each, we

make closure approximations designed to model the physical processes these terms represent.

The velocity dependence in the kkvk parallel term introduces parallel phase mixing, leading to

linear Landau damping. Consider a simple 1D kinetic equation with no E �eld:

@f

@t
+ vk

@f

@z
= 0: (71)

The solution is simply f(z; vk; t) = f(z� vkt; vk; t = 0). If we start with a Maxwellian perturbation

in f ,

f0 = eikkzfM = eikkz
n0q
2�v2t

e
�v2

k
=2v2

t ; (72)

free streaming will cause moments of f to phase mix away. For example, the density is:

n =

Z
d3v f =

n0q
2�v2t

Z
dvk e

ikk(z�vkt)e
�v2

k
=2v2t = n0e

ikkze
�k2

k
v2t t

2=2
: (73)
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To model this process, we need to introduce damping proportional to jkkjvt into our uid equations.

Thus, for the parallel closures, we choose:5,9

rk;k = 3(2pk � n) + �kTk � i
p
2Dk

jkkj
kk

qk; (74)

rk;? = pk + p? � n� i
p
2D?

jkkj
kk

q?; (75)

where �k = (32� 9�)=(3�� 8), Dk = 2
p
�=(3�� 8), and D? =

p
�=2. With this closure, the uid

equations reproduce the linear kinetic behavior quite well in the slab limit, as shown in Refs. 5 and

9.

Similarly, the velocity dependence of the rB and curvature drifts introduces phase mixing.

In this case the damping rate is di�erent, since the toroidal drifts depend on v2k and v2?=2. Now

consider only the phase mixing due to the toroidal drifts:

@f

@t
+ vd

@f

@y
= 0; (76)

vd = vd0
v2k + v2?=2

v2t
; vd0 =

�vt

R
:

The solution is f(y; vk; v?; t) = f(y � vdt; vk; v?; t = 0). Starting with a Maxwellian perturbation

in f ,

f0 = eikyyfM = eikyy
n0

(2�v2t )
3=2

e
�(v2

k
+v2?)=2v

2

t ; (77)

free streaming will again cause moments of f to phase mix away. For example, the density is:

n =

Z
d3v f =

n0

(2�v2t )
3=2

2�

Z
dvkdv?v?e

ikyy�vd0[v
2

k
=v2t�v

2

?=2v
2

t )t]e
�(v2

k
+v2?)=2v

2

t

=
n0e

ikyyp
1 + 2ikyvd0t(1 + ikyvd0t)

: (78)

To capture this toroidal phase mixing, damping proportional to jkyjvd0 = j!dj must be introduced
into the uid equations, but with complex closure coe�cients to get the phase shift in Eq. (78).

The toroidal closure terms enter in the combinations rk;k + rk;?, rk;? + r?;?, sk;k + sk;?, and

sk;? + s?;?. Expanding the general moment response functions Eq. (69) for small kk, all the odd
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j moments have leading order corrections of O(kk), while the even j moments have leading order

corrections of O(k2k). Thus in our closure approximations for the toroidal terms, we close the even

moments rk;k+rk;? and rk;?+r?;? in terms of the lower even moments (n, pk, and p?), and the odd

moments sk;k+ sk;? and sk;?+ s?;? in terms of the lower odd moments (uk, qk, and q?), to preserve

this small kk behavior. At large kk (the slab limit) the response function is primarily determined

by the parallel closures, and the toroidal closure approximations are subdominant. In addition, we

break the r and s closures into dissipative and Maxwellian pieces (the terms that would arise if F

was exactly Maxwellian). The Maxwellian parts are rk;k = 3p2k=n, rk;? = pkp?=n, r?;? = 2p2?=n, and

sk;k = sk;? = s?;? = 0. Linearizing and normalizing, these become rk;k = 6pk�3n, rk;? = pk+p?�n,
and r?;? = 4p?� 2n. Guided by the discussion above, we choose dissipative pieces proportional to

j!dj=!d. Thus in the toroidal terms, combining the Maxwellian and dissipative pieces, we choose:

rk;k + rk;? = 7pk + p? � 4n� 2i
j!dj
!d

(�1Tk + �2T?) (79)

rk;? + r?;? = pk + 5p? � 3n� 2i
j!dj
!d

(�3Tk + �4T?) (80)

sk;k + sk;? = �i j!dj
!d

(�5uk + �6qk + �7q?) (81)

sk;? + s?;? = �i j!dj
!d

(�8uk + �9qk + �10q?) (82)

Each closure coe�cient has both a dissipative and non-dissipative piece, � = �r + i�ij!dj=!d. This
choice is motivated by Ref. 8. Making the dissipative parts of the r closures only depend on Tk and

T? ensures that the uid response will match the kinetic response at !=!d = 0 in the kk = 0 limit.

The toroidal closure coe�cients �1 � �10 in Eqs. (79-80) are chosen so the response function

of the uid equations closely approximates kinetic response function, Eq. (58). In the local limit

with b = 0 and rkB = 0, and inserting the closure approximations above, the uid equations

Eqs. (36-41) can be written in matrix form, using g � !d=! = 1=x and k = kk=!, and assuming
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!d > 0 to simplify notation:

M =

2
66666664

1 �k �g �g
0 1� 4g �k 0

g(4� 2i�1 � 2i�2) �3k 1� g(7� 2i�1) �g(1� 2i�2)

g(3� 2i�3 � 2i�4) �k �g(1� 2i�3) 1� g(5� 2i�4)

(3 + �)k �g(6� i�5) �(3 + �)k 0

k �g(1� i�8) 0 �k

� � �

� � �

0 0

�g �g
�k 0

0 �k
1 + i

p
2Dkk + g(3+ i�6) g(3 + i�7)

g(1 + i�9) 1 + i
p
2D?k + g(1 + i�10)

3
77777775

M

2
66666664

n

uk
pk
p?
qk
q?

3
77777775
=

2
66666664

2

k=g

4

3

0

0

3
77777775
g�+

2
66666664

�1
0

�1
�1
0

0

3
77777775
g

�n
�+

2
66666664

0

0

�1
�1
0

0

3
77777775
g�

�n
� (83)

Thus, the response functions of the uid equations also naturally factor into the form Eq. (59).

Because this set of equations is rather complicated, to determine the toroidal uid response func-

tions we solve for n and p? by numerically row reducing the matrix M . In Ref. 8, the uid and

kinetic response functions were compared only in the !� = 0 and � = 0 limit. In the slab limit,

determining the closure coe�cients in the !� = 0 and � = 0 limit (R0) also gave an equally good

�t for the !� and � pieces (R1 and R2), but in the toroidal case this is not automatic. In addition,

in Ref. 8 the toroidal closure coe�cients were matched at kk = 0, and good agreement for kk 6= 0

is not guaranteed (although as kk !1 the slab limit is recovered and the agreement will again be

good). In fact, if the toroidal terms are closed in the purely toroidal limit (kk = 0), the toroidal

closure terms in the odd moment equations drop out. This led to singular behavior of the response

function for the closure in Ref. 8 at some non-zero kk, since the !d(qk + q?) term in the parallel

velocity equation was dropped. This was corrected in the addendum to that paper.

Therefore, special care must be taken �nd toroidal closure coe�cients which simultaneously
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provide a good �t to the kinetic response function for all three parts of the response function,

for all kk. Because both uid and kinetic response functions are complicated with �nite kk, we

choose the closure coe�cients numerically, by minimizing the di�erence between the kinetic and

uid response functions over a range of kk's simultaneously, but in the b = 0 limit. We use an

e�cient multidimensional minimization technique, Powell's method,29 to adjust the coe�cients

�1 � �10 until the error between the kinetic and uid response functions along the real x axis is

minimized. If R has no poles in the upper-half x plane, matching along the real axis guarantees

that the uid R will also match the kinetic R in the upper-half x plane. Since we are primarily

interested in accurately modeling the growth rates of unstable modes, the errors in the lower half

plane are probably not important, as long as we do have damped modes in the system. The best �t

between the kinetic and uid R's was found using 12 kk's evenly spaced from zk = 0 to 4.2, over the

range of x where the kinetic response function is changing most rapidly, �8 < x < 16 at zk = 0 and

�14 < x < 22 at zk = 4:2, with 100 grid points in x. To the error in the density response function,

we also add 1/100 the error between the kinetic and uid p? responses, since n is most important

for the local dispersion relation, but p? enters the linear dispersion relation from FLR e�ects.

While an excellent �t to n is obtained, it is di�cult to simultaneously match the p? response

for intermediate kk's. We �nd �1 = (2:019;�1:620), �2 = (0:433; 1:018), �3 = (�0:256; 1:487),
�4 = (�0:070;�1:382), �5 = (�8:927; 12:649), �6 = (8:094; 12:638), �7 = (13:720; 5:139), �8 =

(3:368;�8:110), �9 = (1:974;�1:984), and �10 = (8:269; 2:060). These are an improvement over the

closure coe�cients in Ref. 11. The �t between the kinetic and uid response functions is excellent,

as shown in Figs. 1 and 2. The uid equations give a rational approximation to the kinetic response

function, and cannot capture the branch cut at !=!d = �k2kv2t =4!2
d exactly (see Eq. (66)), but this

set of closure approximations provides a reasonable �t to this sharp transition.

Finally, we have to close the mirroring terms, introduced by the �b̂ � rB terms in the gyrokinetic

equation. These terms incorporate trapped particle e�ects, reproducing the CGL30 pressure balance

equation. They are also important to model the damping of poloidal ows by magnetic pumping.
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Since these terms introduce no new dissipative processes, we take Maxwellian closures:

rk;k = 6pk � 3n; (84)

rk;? = pk + p? � n; (85)

r?;? = 4p? � 2n: (86)

While this is not the ultimate set of closure approximations, the resulting uid equations provide

a very accurate model of the physics underlying ion dynamics in toroidal plasmas. This set of

closures provides excellent agreement with linear kinetic calculations, as shown in Sec. IX, as

long as one is not too close to marginal stability. A set of closures which is more accurate near

marginal stability is under development and will be reported in the future. More complicated closure

approximations could certainly be found, or the set of equations used here could be extended

to higher moments, but the relative simplicity of the closures used here a�ord a tractable and

su�ciently accurate model for most applications.

VII. Final Equations

We arrive at the six moment toroidal gyrouid equations by inserting the closures discussed

in the previous section into the moment equations, Eqs. (36)-(41), with the nonlinear terms given

by Eqs. (42)-(47). Speci�cally, we use the parallel phase mixing closures in Eqs. (74)-(75), the

toroidal phase mixing closures in Eqs. (79)-(82), and Maxwellian closures for the mirroring terms,

Eqs. (84)-(86). In addition, we add the collision terms obtained by integrating Eq. (6) over velocity

space. We will also refer to this set of equations as the \4+2" model, since it evolves 4 parallel

moments and 2 perpendicular moments.

dn

dt
+ [

1

2
r̂2
?v	] � rT? + Brk

uk

B
�
�
1 +

�?

2
r̂2
?

�
i!�	 (87)

+

�
2 +

1

2
r̂2
?

�
i!d	+ i!d(pk + p?) = 0;

duk

dt
+ [

1

2
r̂2
?v	] � rq? + Brk

pk

B
+rk	+

�
p? +

1

2
r̂2
?	

�
rk lnB (88)

26



+ i!d(qk + q? + 4uk) = 0;

dpk

dt
+ [

1

2
r̂2
?v	] � rT? + Brk

qk + 3uk

B
+ 2(q? + uk)rk lnB (89)

�
�
1 + �k +

�?

2
r̂2
?

�
i!�	 +

�
4 +

1

2
r̂2
?

�
i!d	+ i!d(7pk + p? � 4n)

+ 2j!dj(�1Tk + �2T?) = �2
3
�ii(pk � p?);

dp?

dt
+ [

1

2
r̂2
?v	] � rp? + [

^̂r
2

?v	] � rT? +B2rk

q? + uk

B2
(90)

�
�
1 +

1

2
r̂2
? + �?

�
1 +

1

2
r̂2
? +

^̂r
2

?

��
i!�	 +

�
3 +

3

2
r̂2
? +

^̂r
2

?

�
i!d	

+ i!d(5p? + pk � 3n) + 2j!dj(�3Tk + �4T?) =
1

3
�ii(pk � p?);

dqk

dt
+ (3 + �k)rkTk +

p
2Dkjkkjqk + i!d(�3qk � 3q? + 6uk) (91)

+ j!dj(�5uk + �6qk + �7q?) = ��iiqk;
dq?

dt
+ [

1

2
r̂2
?v	] � ruk + [

^̂r
2

?v	] � rq? +rk

�
T? +

1

2
r̂2
?	

�
(92)

+
p
2D?jkkjq? +

�
p? � pk +

^̂r
2

?	�
1

2
r̂2
?	

�
rk lnB

+ i!d(�qk � q? + uk) + j!dj(�8uk + �9qk + �10q?) = ��iiq?:

The main E�B nonlinearities have been absorbed in the total time derivative d=dt = @=@t+v	 �r.
In the slab limit (!d = rk lnB = 0) these equations reduce to Eqs. (56)-(61) of Ref. 9. The

quasineutrality constraint is:

ne =
n

1 + b=2
� bT?

2(1 + b=2)2
+ (�0 � 1)�: (93)

When the electrons are assumed to be adiabatic,

ne = �(�� h�i); (94)

where � = Ti0=Te0 and h�i is a ux surface average.

This constitutes a fairly complicated set of uid equations compared to those usually used in

plasma physics. A somewhat simpler four moment model is described below, and it is worth jus-

tifying the complication of the six moment model. In principle, the six moment model is more
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appealing because as more moments are retained, more details of the distribution function are

accurately described. On more pragmatic grounds, the six moment model provides a signi�cantly

improved �t to the kinetic response function, and is necessary for quantitative accuracy in linear

growth rates and mode structures. The six moment model is also required to capture the destabi-

lization from trapped ion e�ects, which become important in the long wavelength regime. Finally,

six moments may be required to obtain accurate damping rates of poloidal ows from magnetic

pumping. Magnetic pumping arises from parallel ow damping, and since no closure approxima-

tions appear in Eq. (88), the uk equation is an exact moment of the gyrokinetic equation to O(b).
This is not the case for the simpler four moment model discussed below. Magnetic pumping rates

from this six moment model are calculated in Ref. 7.

A variation of these equations was used in Ref. 11 where jkkjqk in Eq. (91) was replaced by

Bjkkj(qk=B) and where jkkjq? in Eq. (92) was replaced by B2jkkj(q?=B2), i.e. jkkj acted on q?=B
2,

not just q?. However, it was found that this leads to a weakly growing mode even in the !d = !� =

� = 0 limit which should be stable (a bumpy cylinder limit). Switching to the present form of the

parallel closures removed this spurious instability.

VIII. Four Moment Model

We present here a simpler and slightly less accurate gyrouid model which only evolves four

moments: n, uk, pk, and p?. We will also refer to this set of equations as the \3+1" model, since

it evolves three parallel moments and one perpendicular moment. In this case, since we are not

evolving qk and q?, instead of closing the toroidal s terms with Eqs. (81) and (82), we need to close

the !d(qk + q?) term in the parallel velocity equation:

qk + q? = �2i j!dj
!d

�5uk: (95)

We still use the toroidal r closures in Eqs. (79) and (80), but with new closure coe�cients. In

addition, we use the parallel closures of Ref. 5 and 9, extended to include collisions as well as
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collisionless phase mixing:

qk = � 3 + �kp
2Dkjkkj+ �ii

ikkTk (96)

q? = � 1p
2D?jkkj+ �ii

ikk

�
T? +

1

2
r̂2
?	

�
(97)

These are essentially the high kk and/or high �ii limits of Eqs. (91) and (92), keeping only the slab

terms.

We again use the method described in Section VI to minimize the error between the uid and

kinetic local response functions to determine the toroidal closure coe�cients �1 � �5. The best

�t is �1 = (1:232; 0:437), �2 = (�0:912; 0:362), �3 = (�1:164; 0:294), �4 = (0:478;�1:926), and
�5 = (0:515;�0:958).

Inserting these q closures into Eqs. (36)-(39), using the nonlinear FLR terms in Eqs. (42)-(45)

without the q? part of Eq. (43), and dropping the qk and q? mirroring terms (qk = q? = 0 for a

Maxwellian), the dynamical equations are:

dn

dt
+ [

1

2
r̂2
?v	] � rT? +Brk

uk

B
�
�
1 +

�?

2
r̂2
?

�
i!�	 (98)

+

�
2 +

1

2
r̂2
?

�
i!d	 + i!d(pk + p?) = 0;

duk

dt
+ Brk

pk

B
+rk	 +

�
p? +

1

2
r̂2
?	

�
rk lnB + 4i!duk (99)

+ 2j!dj�5uk = 0;

dpk

dt
+ [

1

2
r̂2
?v	] � rT? +

(3 + �k)k
2
kTkp

2Dkjkkj+ �ii
+ 3rkuk � ukrk lnB (100)
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3
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?v	] � rp? + [

^̂r
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?v	] � rT? +
k2kp

2D?jkkj+ �ii
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1

2
r̂2
?	)

+ B2rk
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1

2
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1 +

1

2
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?
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	 (101)

+

�
3 +

3

2
r̂2
? +

^̂r
2

?

�
i!d	+ i!d(5p? + pk � 3n) + 2j!dj(�3Tk + �4T?)
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=
1

3
�ii(pk � p?):

The quasineutrality constraint, Eq. (93), is unchanged for this model.

IX. Linear Benchmarks

In this section the accuracy of the toroidal gyrouid equations is demonstrated by comparing

with linear kinetic theory, using adiabatic electrons. We �rst test the toroidal gyrouid equations

against kinetic theory in the local limit, where kk and !d are treated as constants. The eigenfre-

quencies are determined by �nding roots of the local dispersion relation with adiabatic electrons,

Ri = �� , where the kinetic Ri is calculated by numerically evaluating the integrals Eq. (59) and the

uid Ri is calculated by numerically row reducing the matrix equation in Eq. (83), with additional

FLR terms on the right hand side if b is non-zero. In the local limit, we ignore the rk lnB terms

in the gyrouid equations and ignore the modulation of vk along a particle's orbit in the kinetic

response.

Fig. 3 shows the kinetic and gyrouid growth rates in the purely toroidal limit (kk = 0), with

b = 0, for the parameters of Fig. 5a of Ref. 8, where � = 1, �i = 1, 1:5, 2, and 3, varying �n.

The four moment model in Section VIII reproduces the stable low �n regime better than the four

moment model presented in Ref. 8 (which used di�erent closure coe�cients). The six moment

equations provide much better agreement with kinetic theory, but are slightly o� for low �i, near

marginal stability.

Fig. 4 shows a comparison in the local limit for kk 6= 0, the mixed toroidal/slab limit. We use the

parameters of Fig. 3 of Ref. 31, where �i = 1:5; 2; 3, �n = 0:2, and we choose kkLn = Ln=qR = 0:1,

using the normal connection length for the mode width Lk � qR, and q = 2. The linear growth

rates from the six moment toroidal gyrouid model and kinetic theory are shown vs. k��i. The six

moment toroidal gyrouid equations provide an accurate description of the full kinetic behavior.

Both the growth rate and real frequency of the toroidal ITG mode vary roughly as ; !r / k��i at
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long wavelengths. As k��i decreases, j!j =
p
2 + !2

r decreases, and the stabilizing e�ect of parallel

Landau damping becomes more important. When j!j � kkvti, the mode is stabilized, producing

the long wavelength cuto� at k��i � kkLn � Ln=qR. This local estimate suggests that the inverse

q dependence of this long wavelength cuto� can introduce con�nement degradation with increasing

q, since the longest wavelengths cause the most transport.

Nowwe move on to nonlocal comparisons with kinetic theory using the ballooning representation

in circular ux surface geometry, as in Ref. 31 and 32. In these nonlocal calculations, we �nd the

eigenmode structure along the �eld line coordinate, �, also called the \extended ballooning angle."

The � dependence of terms in the equations couples di�erent kk's; this coupling is ignored in the

local approximation. For example, both !d and k? vary along the �eld line: the � dependence of

!d describes the e�ects of the good and bad curvature regions, and the � dependence of k? comes

from the fact that as one moves along the �eld line, the mode twists, and k? increases. For the

comparison with Ref. 31, we neglect trapped particle e�ects by turning o� the rk lnB terms. In

circular ux surface geometry, B = B0R0=R = B0=(1+� cos�), so setting � = 0 removes the rk lnB

mirroring terms. As in Ref. 31, we also neglect collisions and assume adiabatic electrons. All of the

results compared in this section will only look at modes with �0 = 0, i.e. those centered in the bad

curvature region, since they are typically the most unstable and most linear calculations only focus

on these modes. The growth rate spectrum for �0 6= 0 has important implications for the anisotropic

uctuation spectra seen in our nonlinear simulations and in experimental uctuation measurements

in tokamaks, as discussed in Ref. 7. Fig. 5 shows the eigenfunction from the fully kinetic integral

calculation of Ref. 31 and from the 4+2 toroidal gyrouid equations for the parameters in Fig. 2(c)

of Ref. 31, �i = 3, �n = 0:2, q = 2, ŝ = 1, k��i = 0:53, and � = 1. The \ballooning" mode structure

along the �eld line shown in Fig. 5 is determined by the � dependence of both !d and k?. The

mode is primarily localized near � = 0 in the bad curvature region. Landau damping is strongly

stabilizing for high kk, so the the most unstable modes have broad mode structures along the �eld

line. Minimizing kk while simultaneously localizing the modes in the bad curvature region leads to
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mode structures with kk � 1=qR, with large amplitude at the outer midplane and smaller amplitude

at the inner midplane. Further along the �eld line (i.e. away from � = 0), magnetic shear causes

k? to increase, which leads to FLR stabilization at large � � �0. This magnetic shear stabilization

through FLR e�ects keeps the mode amplitude small in bad curvature regions further along the

�eld line, e.g. at � = 2�. When ŝ or k��i are small, this magnetic shear e�ect is weaker, and the

eigenfunctions become more extended in �.

Fig. 6 compares the kinetic and uid growth rates and real frequencies for the parameters of

Fig. 3 in Ref. 31: �i = 1:5, 2, and 3, �n = 0:2, q = 2, ŝ = 1, and � = 1. The agreement between the

4+2 gyrouid equations and kinetic theory is quite satisfactory, especially for k��i < 0:5 where our

models of FLR e�ects are very accurate. This level of agreement is a substantial improvement over

previous uid theories, and is more accurate than the four moment gyrouid model of Ref. 8. As

k��i decreases, the mode width increases and kk becomes smaller. This shifts the long wavelength

cuto� to lower k��i than in the local limit, where kk is held �xed. In other respects the fully

nonlocal results seem to follow the local trends fairly closely.

Fig. 7 shows a comparison with Fig. 4 of Ref. 31, using the parameters: �i = 2:5, �n = 0:2, 0:3,

0:45, q = 1:5, and ŝ = 0:1�q=�n. The toroidal gyrouid and kinetic results are not in terribly good

agreement near marginal stability (�n = 0:45), but for the agreement is satisfactory for �n = 0:2

and 0:3.

To test of our models of trapped ion e�ects, we compare with the linear gyrokinetic particle

simulations of Ref. 32, and the gyrokinetic \Vlasov" simulations of Ref. 33 which both include

trapped ion e�ects. Fig. 8 shows a comparison of nonlocal linear eigenfrequencies from all three

approaches, in the at density limit, �i ! 1. The other parameters are: LT=R = 0:1, q = 2,

ŝ = 1, � = 1, and � = 0:3, in the collisionless limit, as in Fig. 6 of Ref. 32. All three calculations

assumed adiabatic electrons. The gyrouid and Vlasov results are shown both with (� = 0:3) and

without (� = 0) trapped ion e�ects, to show the destabilizing e�ect of the trapped ions for very

long wavelengths. Since the rk lnB mirroring terms are proportional to �, setting � = 0 turns
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o� these terms. Without the mirroring terms, all modes are stable below k��i � 0:04. With the

mirroring terms, the toroidal ITG mode gradually evolves into a trapped ion mode. Trapped ion

e�ects become important when the mode time scales are comparable to or less than the ion bounce

frequency, j!j <� !bi =
p
�vti=qR. For these parameters !biLT=vti =

p
�LT=qR = 0:03, so trapped

ion e�ects become signi�cant for k��i
<� 0:1. The six moment toroidal gyrouid equations model

this e�ect with reasonable accuracy. In particular, the gyrouid model shows that trapped ions

can remove the long wavelength cuto� which exists when trapped ions are ignored, in agreement

with fully kinetic theory.

In Fig. 9 we show the same results as in Fig. 8, but now normalized to vti=LT , which is

independent of k�, and is thus proportional to the growth rate in physical units. This demonstrates

more clearly than in Fig. 8 that the growth rates of the trapped ion modes are much less than those

of the fastest growing modes near k��i � 1=2, and suggests that our models of trapped ion e�ects

are probably adequate.

For the measured parameters used in Ref. 32, �i � 0:13cm and r0 = 50cm; so k��i = 0:01 =

nq=r0 implies n � 2, where n is the toroidal mode number. Thus, the ballooning approximation is

de�nitely breaking down at these very long wavelengths, and radial variations in the equilibrium

will a�ect the mode structures and growth rates.

X. Summary and Discussion

In summary, we have derived toroidal ion gyrouid equations with improved models of the

important kinetic e�ects associated with toroidicity. Special care was taken to derive closure ap-

proximations which, though similar to those of Ref. 8, are well behaved in the mixed limit where

both toroidal drifts and parallel free streaming are important, i.e. where both kk and !d are non-

zero. This work also extends the four moment toroidal gyrouid model of Ref. 8 to six moments,

including the �b̂ � rB mirroring terms. By evolving six moments, no approximations are made

to the parallel velocity equation, important for accurate poloidal ow damping rates. Including
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the �b̂ � rB terms also incorporates trapped ion e�ects to some extent; the growth rate in the

very low k��i trapped ion mode regime is within a factor of two of fully kinetic calculations. The

gyrouid trapped ion results are in closer agreement with kinetic theory if we compare the di�usion

(/ k2
?
D) required to stabilize the long wavelength trapped ion modes.34 New toroidal FLR terms

are treated which arise from the variation of B (in the argument of J0) with major radius, and

generalize the FLR model of Ref. 9 to toroidal geometry. An improved four moment model is also

presented, which is simpler and numerically less demanding than the six moment model. Impu-

rity and Maxwellian-model energetic particle dynamics are equally well described by these toroidal

gyrouid equations.

Although electrostatic turbulence e�ectively describes many experimental regimes, the electro-

static assumption is a limitation of the toroidal ion gyrouid equations presented here. Recent work

has begun including electromagnetic e�ects.35,36 The main di�culty here is that magnetic uctua-

tions are driven by parallel current uctuations, and since trapped particles do not carry current,

passing electrons can no longer be considered adiabatic, and need to be evolved. Resolving the fast

electron parallel motion seriously slows down the numerical calculations. Some trick analogous to

bounce averaging, which is quite successful in simplifying the trapped electron dynamics,7 would

be useful for the passing electrons.

We conclude by discussing the validity of gyrouid equations for plasma turbulence. These

gyrouid equations are an approximation to the full nonlinear gyrokinetic equation, and break

down in some regimes. For example, in the slab limit, the weak turbulence wave-kinetic equation

derived from the gyrouid equations successfully reproduces the gyrokinetic wave-kinetic equation

in the limit ! � kkvti, but fails to recover the ion-Compton scattering rate very near marginal

stability, in the limit  � ! � kkvti.
37,15 The nonlinear validity of the gyrouid equations in strong

turbulence regimes has not yet been unambiguously veri�ed on fundamental grounds. However,

gyrouid simulations have been compared against full gyrokinetic particle simulations, �nding

similar behavior full 3D sheared slab simulations and in three mode coupling test problems.15,38
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Toroidal simulations have also been benchmarked with toroidal gyrokinetic particle simulations,

though not as extensively as the sheared slab simulations, and �nd reasonable agreement.38 Very

recently, the toroidal gyrokinetic particle simulations of Ref. 39 appear to predict lower transport

by about a factor of 2. While in principle gyrokinetic simulations are more accurate, since they

solve the gyrokinetic equation directly, there are a number of issues which need investigation:

particle noise, particle �ltering, resolution, and geometry (we implement �eld-line coordinates in

a somewhat di�erent way than Ref. 39, which tends to emphasize resolution in di�erent parts of

k-space). We have done some simulations with exactly the same particle �ltering and box size as

in Ref. 39, without magnetic shear (ŝ = 0) where our coordinate system and Ref. 39's coordinate

system become identical. We then �nd that the gyrouid simulation reproduces the gyrokinetic �i

to within 20%. Turning o� the particle �ltering then causes �i to rise by a factor of 1.3, and our

general experience is that increasing the box length in the parallel direction beyond 2� typically

increases �i by a factor of 1.4. These resolution issues, and not intrinsic di�erences between the

gyrouid and gyrokinetic equations, thus appear to account for most of the di�erences seen so far,

though more extensive comparisons would be worthy of eventual further study.

Another way to address the nonlinear accuracy of the linear closures is to consider a simple an-

alytic model of the nonlinear terms, by using the renormalized kinetic equation. Here the nonlinear

vE � rf1 term in the linear kinetic equation is replaced by �!NL f1:

(�i! + ikkvk + i!d +�!NL)f1 = (ikkvke�=T � vE � r)f0:

This can now be integrated over velocity space to �nd a renormalized dispersion relation. If �!NL

is independent of velocity, this will be identical to the linear dispersion relation with ! replaced

by ! + i�!NL. This is sometimes used to determine a saturation level for the turbulence by

requiring that �!NL balance the linear growth rate. Closing the uid hierarchy with linear closure

approximations naively appears to neglect �!NL in the resonant denominator and appears to

introduce an error of O(�!NL=kkvti), which is typically O(1). However, the gyrouid equations do
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much better than this. If we similarly renormalize the E�B nonlinearity in each gyrouid equation

and solve for the renormalized gyrouid dispersion relation, we will obtain the three or four pole

linear dispersion relation with ! again replaced by ! + i�!NL: Thus the renormalized gyrouid

dispersion relation is just as good an approximation to the renormalized gyrokinetic dispersion

relation as it was in the linear case. Of course there are many nonlinear processes which are not

captured by this simple renormalized dispersion relation approximation, so this is not a proof that

the gyrouid closures always work nonlinearly.

More generally, each gyrouid equation, as a moment of the gyrokinetic equation, is an exact

nonlinear conservation law: closure approximations are introduced into higher moment equations

in a way which preserves the conservative form the equations. Our equations retain the dominant

(E�B) nonlinearities and provide accurate physics based models of the linear drive and dissipation

mechanisms. As more moments are retained, more details of the underlying distribution function

are accurately described. In fact, Smith has demonstrated convergence in the number of moments

for the nonlinear plasma echo problem,11 though it required many moments in that case. In the

strong turbulence limit, it seems unlikely that many moments need to be kept, since the broad

spectrum of modes should average out sharp velocity space variations in the distribution function.

Future work should continue to test the validity of the gyrouid approximation, both through

comparisons with kinetic simulations and through purely theoretical simpli�ed problems.
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