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Abstract

Stability criterion is obtained for neoclassical tearing modes. A �nite ampli-

tude of magnetic island is required for their excitation. In both collisional and

collisionless regimes the threshold is determined by the ratio of the transversal

and the parallel transport near the island, when the attening of the pressure

pro�le eliminates the bootstrap current. A number of TFTR supershots are

compared with the theory. Both the stability condition and the critical island

width are consistent with experimental data.
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I. INTRODUCTION

As it is shown earlier theoretically [1,2], the resistive magnetohydrodynamic (MHD)

bootstrap current driven (or neoclassical) tearing modes are always unstable in the tokamak

plasmas. In this theory, the nonlinear evolution of a magnetic island is determined by the

e�ect of island formation on the bootstrap current. For the small island width, w < wsat,

(wsat is a characteristic island width proportional to the pressure gradient), the dependence

w � t1=2 (rather than w � t as a classical Rutherford regime [3]) was obtained. Depending

on the tearing mode stability parameter �0, the modes either saturate at w ' wsat (for

�0 < 0) or enters the Rutherford phase with w � t (for �0 > 0).

Experimentallly, the neoclassical tearing MHD modes were observed in the neutral-beam

(NB) heated supershot discharges [4] in the Tokamak Fusion Test Reactor (TFTR) Ref. [5,6].

These modes appear spontaneously, have low frequencies (f < 50kHz) and low poloidal and

toroidal wave numbers m=n = 3=2; 4=3; 5=4; 5=3; : : : [6]. The nonlinear evolution of these

tearing modes agrees well with predictions of the neoclassical theory [1,2]. In a course

of Deuterium-Deuterium (DD) and Deuterium-Tritium (DT) experiments in TFTR, the

tearing modes cause deterioration of plasma con�nement [6] as is seen on the neutron rate,

plasma stored energy, energy con�nement time, etc.

In this paper we consider conditions of excitation of neoclassical tearing modes which

were absent in the original theory. We take into account that the parallel transport in

vicinity of the island is �nite. Thus, for a small island width, the plasma pressure may be

not attened enough to a�ect the bootstrap current and to excite the neoclassical tearing

modes. This consideration leads to determining both the stability criterion and the threshold

of excitation (or a critical initial island width).

Earlier [7], the e�ect of �nite electron parallel thermal conductivity on the attening the

pressure pro�le was considered in the collisional regime. Our results are valid for arbitrary

regimes with the respect to plasma collisionality. We analyze the drift kinetic equation which

is more relevant to the high-temperature tokamak plasmas rather than Braginskii equations
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used in Ref. [7]. In order to test the results and to clarify the remaining problems, we make

an extensive comparison of the theory with the observed MHD activity in TFTR. We also

presented a comparison with the model of Ref. [7].

The paper is organized as follows. In Section II we present the de�nitions and the

tearing mode evolution equation. In Section III the bootstrap current contribution to the

mode evolution equation is calculated for the electron drift kinetic equation. Section IV is

devoted to the numerical comparison of the threshold island width in TFTR supershots. In

Section V we present the conclusions of this paper.

II. EVOLUTION OF THE TEARING MODE

We start with de�nition of the coordinate system. The equilibrium magnetic �eld is

described by the equilibrium poloidal ux , 	 and the toroidal angle �:

B = I (�)r� +r� �r	 (1)

where I (�) = RB' measures the toroidal equilibrium �eld (R is a major radius, B' is the

toroidal component of the magnetic �eld). Without perturbation

Bp =r� �r	 (2)

where Bp is the poloidal component of the magnetic �eld. The equilibrium helical ux in

the vicinity of the rational magnetic surface with qs = m=n = q(�s) the safety factor has

the expansion

	� = 	0 =
q0s
qs

(� � �s)
2

2

@	

@�

�����
s

; (3)

so thatr��r	� = B
�
p = Bp(�s)(���s)q0s=qs andr��r(	�	�) = Bps whereBps ' const

in the vicinity of magnetic surface, � is the minor radius indicator of the magnetic surface

and prime means � derivative. With the perturbation, the total magnetic �eld in a low{�

plasma can be written as
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B = Bs +Bps +B
�
p
;Bs = I (�)r�;B�

p =r� �r(	0 +	1) (4)

where 	1 = �~	1 cos� is the perturbed helical poloidal ux, � = m��n� is a helical angle,

� is a poloidal angle. The total helical ux is

	� = 	0 +	1 =
	0q0s
2qs

((�� �s)
2 � w2

8
cos�);

where w = 4
q
~	1qs=	0q0s is the full island width,

~	1 =
w2

16

	0q0s
qs

=
w2

16

q0s
qs
BpsJ j r� j=

w2

16

q0s
q2s
B'RJ j r� j2;

J is Jacobian of the transition to the coordinates �; �; �, which satis�es to J j r� j= R for

circular Shafranov shifted equilibrium. We de�ne also an useful variable 
 as


 =
	�

~	1

=
8

w2
(� � �s)

2 � cos�: (5)

Finally we de�ne the ux surface average operator hfi, where

hfi =
R

=const fdl= j r
 jR

=const dl= j r
 j

=

H
fd�=(
 + cos�)1=2H
d�=(
 + cos�)1=2

(6)

and the poloidal angle average operator (f)0

(f)0 =
1

2�

I
fd�: (7)

The poloidal magnetic ux obeys the equilibrium equation, the perturbed part of which

reads:

r � (R�2
r	1) = �4�

c
r� � �j (8)

where �j is the perturbed current.T From Eq.(8), the tearing mode stability parameter �0

�0 �!0
= [

@ ~	1

@�

�����
�s+�

� @ ~	1

@�

�����
�s��

]=~	1 (9)

can be related to the perturbation of the current density

q0s
qs

cB�w

16
p
2
�0 = �

Z 1

�1
d


I
d��jk cos�p

 + cos�

: (10)
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We extract the inductive contribution in accordance with Ohm's law

�jk =
r�

r� �j ' h~jki+
hEki
�

= h~jki �
hrk�i
�

� 1

�c

@

@t
h 	1

J j r� ji (11)

where ~jk is the noninductive bootstrap current part of the perturbed parallel island current,

� is the parallel Spitzer resistivity, Ek is the island parallel electric �eld, � is the perturbed

electrical potential. Making use of hrkf(
; �)i = 0 and substituting Eq.(11) in Eq.(10), we

�nd

�0 +�0
neo = �0 +

16
p
2qs

cwq0sBps

Z 1

�1
d
h~jki

I
d� cos�p

 + cos�

=
4�I1

�c2
dw

dt
; (12)

where

I1 =

p
2

2�

Z 1

�1
d
hcos �i

I
d� cos�p

 + cos�

= :8227

and noninductive bootstrap current ~jk to be determined later.

III. NEOCLASSICAL DRIVE OF TEARING MODES

A. Perturbed electron distribution in the presence of perpendicular transport

For simplicity, we consider only parallel and perpendicular transport terms in the electron

drift kinetic equation in the vicinity of the island

[
@

@t
+ vkrk + vdrr+ v�r]F = C(F ) (13)

where vdr is the curvature drift, v� = v�r�= j r� j, v� is due to perpendicular transport

and will be speci�ed later, C(F ) is the collision operator.

Following Rutherford [8], we solve Eq.(13) by expanding the solution in two small pa-

rameters � = �e=wb and � = �pe=(�s�) , �e is Coulomb collision frequency, wb = vk=qR

is the frequency of particle motion on the drift orbit, �pe is poloidal electron dyroradius.

Because of a slow resistive scale for tearing mode evolution, the �rst term is of the order of
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(1=wb)(@=@t) � � ��2 and does not e�ect the solution. Other terms in Eq.(13) in vicinity

of the resonance surface �s lead to the following equation:

[
vk

qR

@

@�
+

vk

qR
[nq0s(�s � �)

@

@�
� 1

	0
(
@	1

@�
+m

@	1

@�
)
@

@�
] + vdrr+ v�r]F = C(F ): (14)

We solve this equation on di�erent scales of � = j�� �sj=�s. We have the following relative

orderings for terms in Eq.(14)

1 : � :
w2

�2s
��1 : �� :

v�

�swb

��1 : �: (15)

The solution can be presented in the form

F = f0 + f1 + f2 + � � �+ g0 + g1 + g2 + � � � =
X
i

(fi + gi)

where gi corrections account for � expansion and i subscript gives � expansion. For f we

have:

[
@

@�
+ nq0s(�s � �)

@

@�
� 1

	0
(
@	1

@�
+m

@	1

@�
)
@

@�
+
qRv�

vk

@

@�
]f =

qR

vk
C(f) (16)

We present equilibrium distribution in the form f = fM(�s)+f 0M (�s)(���s)+h where fM is

a Maxwellian distribution and h� fM is a correction to provide the heat ux � = �n� @
@�
T

(� is a thermal conductivity coe�cient) which satis�es

v�f
0
M = C(h); (17)

where C(h) = (RC(h)=vk)0=(R=vk)0 is bounce averaged collisional operator, which we take

for the sake of simplicity in the form (see Ref. [9])

C(h) = ��
1

L(�)

@

@�
�D(�)

@

@�
h; (18)

�� = 2�e[Zeff +G(
q
E=Te)][Te=E]3=2; (19)

� = mev
2

?B0=2EB is the pitch angle, E is the kinetic energy; Zeff is the e�ective

plasma charge, G(z) = e�z
2

p
�z

+ 2p
�
(1 � 1

2z2
)
R z
0
e�t

2

dt, L(�) =
H
(
q
1� � B

B0

)�1d�; D(�) =

H B2

0

B2

q
1� � B

B0

d�.
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In order to solve the kinetic equation in a closed form, we assume that v� has the same

dependence on the pitch angle as vk, i.e. v
0

�

p
1� �. Then, the solution can be conveniently

written as

h =
v0�

��
f 0MI(�): (20)

In the passing particle approximation, using the boundary condition lim�!1 h = 0 and

boundness of h, we have a simple solution I(�) = �2p1� �. Then, it can be shown that

j v0� j=
p
��� gives the required heat ux

� =
Z
v�h(E �

3

2
T )d3v = �n�T 0: (21)

Typical experimental value for the perpendicular thermal transport � is 104cm2=sec, which

gives v�=�swb ' �3=2.

In order to �nd the bootstrap current contribution to the evolution equation, we start

with the case when w=�s < w0, where w0 = 4qs
q
v0�R=mq0sv, i.e. when the perpendicular

transport (fourth term in Eq.(16)) exceeds the parallel transport in the island (third term

in Eq.(16)). Then outside the island (at � = O(1)), the perturbed distribution function

appears in the form

~f = f 0M
w2 cos�

16(� � �s)
(22)

The higher order corrections to the distribution function depend on � as cos l�; l =

2; 3; : : :, and are resulted from the perturbation Eq.(22) through the collisional integral at

� >
p
�.

In vicinity of the island � <
p
� the last term on the LHS in Eq.(16) governs the

perturbed distribution function which satis�es

v�
@

@�
~f = C( ~f ):

The solution can be constructed as follows

~f(�) / (
��

v0�
(�� �s)� 2

p
1� �): (23)
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The last term does not contribute to the bootstrap current and disappears after velocity

integration. The solution to Eq.(23) is determined with an arbitrary factor which can be

found by comparing the parallel and perpendicular perturbed heat uxes and taking the

divergence of them. This procedure gives an estimate for � = w0=�s = o(
p
�) (see Ref. [7]).

We may conveniently present the solution at w < w0 as follows

~f = f 0M
w2

16

�� �s

(�� �s)2 + w2
0

cos�: (24)

In opposite case w > w0 neigther collisions or perpendicular transport can not overcome the

parallel heat ux and the lowest order solution is governed by the following equation:

(�nq0s(�� �s)
@

@�
+m sin�

w2

16

q0s
qs

@

@�
)(f + ~f ) = 0; (25)

which means that f + ~f = g(
). This solution gives rise to the non-Maxwelian contribution

to the perturbed distribution function through the equation

v�
@

@�
g(
) = �C(~h) (26)

Similar to Eq.(20) we present the solution in the form

~h = I(�)
v0�

��

4
p
2

w

p

 + cos�

@

@

g(
) (27)

Comparing two expressions Eq.(20) and Eq.(27) in terms of radial transport through the

surface � = const we obtain

�4
p
2

w

I p

 + cos�

d�

2�

@

@

g(
) = f 0M (28)

Extracting cos� component of g(
) one can obtain the lowest order perturbed distribution

funcion in the form

~f = �f 0M
wp
2

Z sin�2d�

(
H p


 + cos�d�)
���
�=const

cos� +G(�) (29)

where G(�) =
R
g(
)j�=const d�=2� and

H p

 + cos�d� = 4

p
2kE(1=k), k =

q
(
 + 1)=2.

In the limit j � � �s j� w=2 Eq.(29) gives the dependence similar to Eq.(22) and in the

opposite limit j �� �s j� w=2 for cos� harmonic of ~f Eq.(29) yields
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~f / �wf 0M(
�� �s

w
)3 cos�

and for

G(�) ' �f 0M(�� �s):

B. Bootstrap Current Contribution to �0

Note that second and third terms in Eq.(13) can be combined into the form

[vkrk + vdrr]F =
vk

wc

r'�rP' �rF (30)

where P' = e	=mc� vkR. Then the equation for neoclassical correction g reads:

vk

wc

r'�rP' �r(f + g) = C(f + g)

The zero order on � gives f + g = F (P') +H or

g0 = �@f

@�
vkR

mc

	0e
= �@f

@�
�pe

vk

v
(31)

where H is the correction to g0 to satisfy the next order equation and having a form:

H =
@f

@�
�pe�(�t � �)

Z �t

�
��1

 
B2

0

B2

s
1 � �

B

BO

!�1
0

d�; (32)

� is the Heaviside step function. This equation gives the expression for the perturbed

bootstrap current [10]

~jk = �1:46
p
�c

Bps

@ ~P

@�
; (33)

� = �=R. In the case of w < w0, calculating the perturbed pressure in terms of the perturbed

temperature using the perturbed distribution function from Eq.(24) gives the neoclassical

contribution to Eq.(12):

�0
neo = �4:63qs

q0s
�pe
p
�
1

Te

@Te

@�

w

w2
�

; (34)
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where

w� = 2:93 � 4qs
qp

��R=mq0svTe (35)

accounts for perpendicular transport e�ect, and numerical coe�cient includes the integration

of collisional frequency Eq.(19) with the equilibrium Maxwellian distribution function and

vTe =
q
2Te=me. In the case of w > w0, one can obtain the well known result [1,2] after

island averaging Eq.(33) and making use of Eq.(28)

�0
neo = �4:63qs

q0s
�pe
p
�
1

Tew

@Te

@�
(36)

An expression for the bootstrap current contribution in Eq.(12) which approximates both

limits can be written in the form

�0
neo = �4:63qs

q0s
�pe
p
�
1

Te

@Te

@�
(

w

w2 + w2
�

); (37)

where �pe is the ratio of the electron pressure to the pressure of the poloidal magnetic �eld .

Note, that this approach can be also used to calculate the ion contribution to the tearing

mode evolution equation. However the stability criteria is determined by electrons. To

illustrate this let us take TFTR supershots plasma parameters [14] at the resonance point

of the mode m=n = 3=2:

Te = 4KeV; Ti = 7KeV; ne = 0:3 � 1014cm�3; R0 = 2:5m;a = 0:9m: (38)

Then the ratio of characteristic width w� calculated for electrons and ions is

w�e

w�i

=

"
�e

�i

�
Ti

Te

�5=2 Zeff

1 + (Zeff � 1)Zimp

s
mp

mi

1

30

#1=4
;

where Zeff is e�ective plasma charge, Zimp is impurity ion charge, and mp is proton mass.

Assuming that Zeff = 2 and Zimp = 6 we obtain w�e ' 1 cm and w�e=w�i ' 1=3. It means

that electrons determine the triggering tearing modes.
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IV. STABILITY CONDITION AND THRESHOLD FOR NEOCLASSICAL

TEARING MODES

Because the parallel plasma transport is �nite, the perturbation of the bootstrap current

is small ~jk / w2 (in the collisionless case) for small enough islands w < w�. In contrast

to the original theory [1,2], where the neoclassical contribution �0
neo / w�1, now �0

neo is

bounded and is small for the small islands, �0
neo / w.

As a result of boundness of �0
neo, a stability condition arises for neoclassical tearing

modes

�0 +�0
neo(w) < 0 (39)

which should be satis�ed for all values of w. It can be violated only in some range of w,

wcr < w < wsat. This gives a threshold w = wcr for ecxitation the tearing modes from �nite

amplitude which should be provided by some extra source. The second root w = wsat serves

as a saturation level of magnetic island.

In this section we compare these predictions of the theory with the tearing mode MHD

activity in TFTR. We calculate �0 in an approximate way by considering cylindrical approx-

imation for the current distribution and also include explicitly the Glasser-Green-Johnson

e�ect [11]

�0 = �0
GGJ +�0

cyl; (40)

in the form [12,13]

�0
GGJ = �5:4 �p�

2P 0

�(q0)2P

1� q2

w
: (41)

The second term in Eq.(40) is obtained numerically by solving the tearing mode equation

Eq.(8) with the equilibrium current density pro�les taken from TRANSP simulation of

TFTR plasma [14].

In �gure 1 presented are the dependencies j�0j and �0
neo versus w for the tearing mode

3=2 at 3:3 s in the TFTR discharge #66869, where this mode was unstable. We used the
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transport coe�cients and plasma parameters from TRANSP [14]. From Fig.1 one can see

that if the pressure gradient is not too small there is the condition for the instability when

�0
neo > j�0j. If this condition is ful�lled there is a range for the island width, wcr < w < wsat,

where the mode is unstable. The wsat and wcr are determined from the equation �0
neo = j�0j.

The width wsat is the neoclassical saturation width [1,2,6]. The threshold width wcr is the

initial value of the island width which is necessary for the tearing mode to be unstable.

Figure 2 shows the time evolution of the threshold wcr for the mode 3=2 in two similar

TFTR shots ##66869, and 66859 those compared in Ref. [5]. Only in discharge #66869 the

tearing mode 3=2 was observed. The MHD activity starts at time 3:3s, which correspond to

the minimum of wcr(t) on Fig.2. In shot #66859, also an activity of 4=3 mode was observed.

Figures 3, 4 show the statistical results for 3=2 and 4=3 modes in TFTR. 46 TFTR

supershots (in the range ##66840 � 66896) were scanned with calculation the instability

criterion �0
neo > j�0j for modes 3=2; 4=3 and the critical island width. Fig. 3 shows the

minimum value wcr(t) versus q0 for 3=2 mode. Discharges with an observed activity are

marked by the solid circles and without 3=2 mode by the open circles. Figure 4 shows data

for mode 4=3.

It is found, that in the case of presence of the 3=2 mode for Fig.3 and 4=3 for Fig.4 the

start of MHD activity coinsides approximately with the minimum in wcr(t). One can see

some scattering in results especially for tearing mode 4=3. The reason is uncertainties in

plasma current density pro�le which leads to local change in second derivative and essential

change in �0
cyl.

We have not found discharges, where the instability criterion �0
neo < j�0j is not satis�ed

and the mode was seen. All unstable shots tend to have q0 < 1 and low threshold width

wcr. We argue that to make the modes unstable one need the initial island width which may

be provided for m=n mode by the toroidal coupling with mode (m = n)=n. Possibly such

(m = n)=n modes could give the initial push or initial w = wcr.
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V. CONCLUSIONS

In this paper, the contribution to the tearing mode nonlinear evolution from the pressure

gradient driven bootstrap current was calculated basing on the model where the attening

of the plasma pressure near the island includes the unperturbed perpendicular di�usion and

�nite parallel di�usion along the magnetic �eld lines. The tearing mode can be unstable if

two conditions are satis�ed. First, the instability criterion �0
neo > j�0j should be satis�ed.

This condition is consistent to TFTR experiments with the observed MHD tearing mode

activity. The second, an initial perturbation should be provided for initial island width

w > wcr in order to the instability be excited. Thus, the tearing mode activity is more likely

in discharges with smaller critical island width wcr.

The initial island width can be provided by the excitation of other modes, e.g., 2=2 or

3=3. These modes always satisfy the instability criterion �0
neo > j�0j if q0 < 1 and have very

low wcr � 0:1cm. The nonlinear dynamic of these modes should be studied more carefully

both theoretically and experimentally.

Note, that other stabilizing e�ect e.g., ion polarization drift, was considered in Ref. [15].

It results in critical width of order the ion banana width, wcr '
p
��pi. It is proportional

to the / p
Ti in contrast to our result wcr / T�1e , Eq.(35), which is supported by more

often experimental observations of unstable modes with rational surface close to the plasma

center, where the temperature is higher.
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FIGURES

FIG. 1. The dependence of the absolute values of the tearing mode stability parameter j�0j

and the neoclassical pressure gradient driven contributions �0
neo on the island width at 3:3sec for

the mode 3=2 and the discharge #66869, when this mode was excited.
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FIG. 2. Comparison of the calculated threshold width evolution wcr(t) for the tearing mode

3=2 in two similar TFTR discharges #66869, and #66859. In one of them #66869 3=2 tearing

mode- like MHD activity was observed.
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FIG. 3. Calculated points in the plane q0 vs. wcr for TFTR supershots with (solid circles)

and without (open circles) 3=2 mode MHD- like activity. Plotted value wcr is minimum in each

discharge.
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FIG. 4. The same as in Fig.3, but for the tearing mode 4=3.
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