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Phase Locked Tracking Filters for Interferometryv
George Cutsogeorge
Plasma Phvsics Laboratory, Princeton University
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" ABSTRACT
Three phase locked tracking filters that have been built
for use with microwave and laser interferometers are

described. Block diagrams, circuit diagrams and test

data are presented.
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INTRODUCTION

The intermediate frequency signals resulting from
plasma density measurements with microwave and laser
interferometers have a wide dynamic range and at times
suffer from complete drop outs. Phase shifts normally
span many complete cycles or fringes so the detector
must have some form of memory. One way to build
such a detector is with digital logic. It is important
to provide a clean signal with single transition edges
to the digital device to prevent erroneous fringe
counting. A good method for cleaning up a noisy analog
signal with widely varying amplitude is to use a
phase locked tracking filter. Three such filters built

for separate experiments are described in this report.



One Megahertz Phase~Locked Loop

A 1MHz PLL has been constructed for use in each
channel of a multichannel 2mm microwave interferometer
on the PDX tokamak. The interferometer e€employs homodyne
detection, and a basic block diagram of one channel is
shown inFig. 1.

An Extended Interaction Oscillator tube is used
to generate the 2mm signal. It is frequency modulated
with 1MHz saw tooth voltage applied to its cathode.
Part of the microwave signal is passed through the
plasma and mixed with a direct signal from the EIO.
The resulting 1MHz mixer output is amplified by a low
noise differential preamp. The preamp output signal
must be converted to a digital wave form in order to
drive the digital phase detector. A level sensitive
trigger circuit at this point would severely limit
the system dynamic range. This is due to the high
signal to noise level required by a trigger circuit
to provide a clean single transition waveform. The
phagse locked loop averages many cycles of the preamp
output to preserve the signal phase. The phase locked
oscillator output is a clean signal free of multiple
transitions having the required digital format.

The output signal is computer processed for diagnostic
purposes.

Figure two is a block diagram of the phase locked
loop. The input signal from the pre amp is passed

through a band pass filter to eliminate wide band



noise and other interference. A limiting amplifier
follows the filter and drives two phase detectors.
Phase detector U4 is associated with the phase locked
loop and drives the loop filter. The VCO operates
at 4 MHz and is divided to 1MHz with a Johnson
counfer to provide quadrature outputs. The PLL will
lock at 90 degrees so the drive to phase detector
U5 is in phase. U5 acts as a synchronous detector
and is followed by threshold detector U6. The threshold
is adjusted so that low signal levels will be
ignored. The PLL stays locked to an even lower signal
level so the following digital phase detector never
operates on erroneous data.

Phase locked loop bandwidth has been designed so
as not to degrade the incoming data even at very high
rates of change. With the loop parameters specified in
figure 2 a tracking error equal to the digital phase
detector resolution ( 1 fringe) occurs for a phase slope
of 3.3 x 105 radians pég second. This is a factor of
2 or 3 above the maximum rates expected. The Bode plot
is shown in Fig. 3.

Threshold characteristics are shown for the iMHz
loop in Fig. 4. This is a measured characteristic
and does not include the differential preamplifief. For
signals greater than -13dhm the loop pull in range is
0.84 to 1.12MHz. As the signal level is decreased the
pull in range decreases and for signals below -97dbm the

loop will not pull in at all. The response of the signal



detector is also shown for a setting of -42dbm.

The schematic is shown in Fig. 5. Pad layouts
are provided on the printed circuit for an input pi
attenuator. This attenuator is adjusted for the
proper signal level at the following signal detector.

The inpﬁt transformer, a Minicircuits Lab part
number T1l-1, provides ground isolation.

The 1MHz bandpass filter is a three pole Butterworth
unit manufactured by Lorch Electronics Corporation to
our order. Their part number is BP-1-15-P. Other
bandwidths are also available in the same case. Ul, a
Motorola MC1590G, acts as a limiting amplifier and
provides 39db gain. The two phase detectors, U4 and U5,
are Minicircuits Lab part number SRA-3 double balanced
mixers. The loop filter function is provided by U3,
an LM318 wideband operational amplifier. U2 is a buffer
that allows the output of U3 to be remotely examined.

The VCO, U7, is run at 4MHz and dual Flip Flop U8 divides
its output to 1MHz. U6 is a differential comparator
with adjustable threshold for detecting any input signal.

Figure 6 shows the printed circuit board arrangement.

The bandpass filter is designed as a plug in module so

that its bandwidth may be easily changed.

Thirty Megahertz Phase Locked Loop

A basic Heterodyne interferometer is shown in Fig.
7. The heterodyne process may be implemented at much
higher intermediate frequencies than the homodyne since

there is no need to modulate the microwave source. Also,
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it offers a potentially greater dynamic range. Two microwave
sources are offset by thirty MHz with a synchronizer (PILL)
Part of the output power of Klystron #1 is passed through
the plasma and heterodyned with Klystron #2. The resultihg
30MHz signal is processed bv the 30MEz PLIL.. The 30MHz -
reference and PLL outputs are heterodyned toc 1MHz to be
compatable with the existing digital phase detector,

Figure 8 is a block diagram of the 30MHz PLL. It is.
similar to the 1MHz PLL except that the signal detector
is not synchronous. A 31MHz crvstal oscillator is used to
heterodyne the VCO output and the reference to 1MHz.

Thirty megahertz was chosen because of the available
commercial synchronizer for the microwave tubes. The
loop output was heterodyned to 1MHz to be compatible with
the digital phase processing boards built previously;

The Bode plot for this loop is shown in Fig,9,
From this open loop data the closed loop frequency response
was calculated and is shown in Fig.10,.. Several measured
points were also plotted. The major source of error is
nonlinearity in the frequency vs voltage characteristic

of the VvCO.

Other loop measurements are shown in the following

table.
Pull in range 29.32MHz to 30.66MHz
Hold in range 28.40MHz to 30.68MHz
Pull in time 25ms for 100KHz offset.
Loop threshold Vin = 1.8mV rms.
Signal Detector threshold Vin = 10mV rms.
Full Limiting Vin = 70mV rms.
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Figures 11 and 11A show the schematic¢ diagram.
Two top coupled tuned circuits act as a bandpass filter
for the input 30MHz signal. An MC1590G limiting amplifier
follows the filter. A Mini-Circuit SRA-3 mixer is used
as the phase detector. An IM318 operational amplifier
is used as the loop filter. The MC1l648 VCQ® uses an LC
tuned circuit with a varactor diode for tuning. The
2N3904 prevents the error voltage from forward biasing
the varactor and stopping the oscillator.
The VCO output is buffered and distributed to three
circuits with an MC10114. One output drives the SRA-3,
one is a monitor and the third drives an MC12002 ( Fig.
11A) mixer through a tuned matching network. A Vectron
crystal oscillator operating at 31MHz drives the other
mixer port. The resulting 1MHz lower sSideband is separated
by a 1MHz bandpass filter.

The 30MHz reference signal is heterodyned in the
same manner to 1MHz. The two outputs are compared by

the digital phase detector.

One ‘Hundred Kilohertz Phase Locked Loop.

The 100KHz PLL was constructed for use with an HCN
Laser Heterodyne Interferometer. This loop is very
similar to the 1MHZ PLL and will not be described in detail.
The schematic is shown in Fig. 12. . The input stage
is a bandpass limiter rather than separate units. The

closed loop band width is 10KHZ.

sSummary

Several versions of phase locked tracking filters




have been implemented for use in millimeter and sub-
millimeter interferometers for plasma electron dendity
measurements. These filters have improved system perfor-
mance both by removing noise that might disturb subsequent
digital processing and by providing a detector for loss

of signal.

This work supported by the U.S. Department of Energy

Contract No. EY-76-C-02-3073.
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