PPPL-5008

The ARIES Advanced And Conservative Tokamak (ACT) Power Plant Study

Authors: Charles E. Kessel, et. al.

Abstract: Tokamak power plants are studied with advanced and conservative design philosophies in order to identify the impacts on the resulting designs and to provide guidance to critical research needs. Incorporating updated physics understanding, and using more sophisticated engineering and physics analysis, the tokamak configurations have developed a more credible basis compared to older studies. The advanced configuration assumes a self-cooled lead lithium (SCLL) blanket concept with SiC composite structural material with 58% thermal conversion efficiency. This plasma has a major radius of 6.25 m, a toroidal field of 6.0 T, a q95 of 4.5, a βN total of 5.75, H98 of 1.65, n/nGr of 1.0, and peak divertor heat flux of 13.7 MW/m2. The conservative configuration assumes a dual coolant lead lithium (DCLL) blanket concept with ferritic steel structural material and helium coolant, achieving a thermal conversion efficiency of 45%. The plasma major radius is 9.75 m, a toroidal field of 8.75 T, a q95 of 8.0, a βN total of 2.5, H98 of 1.25, n/nGr of 1.3, and peak divertor heat flux of 10 MW/m2. The divertor heat flux treatment with a narrow power scrape-off width has driven the plasmas to larger major radius. Edge and divertor plasma simulations are targeting a basis for high radiated power fraction in the divertor, which is necessary for solutions to keep the peak heat flux in the range of 10-15 MW/m2. Combinations of the advanced and conservative approaches show intermediate sizes. A new systems code using a database approach has been used and shows that the operating point is really an operating zone with some range of plasma and engineering parameters and very similar costs of electricity. Papers in this issue provide more detailed discussion of the work summarized here.
__________________________________________________

Accepted for publication in: Fusion Science and Technology; AIRES-ACT special issue, January 2015

__________________________________________________

Download PPPL-5008 (pdf KB pp)
__________________________________________________