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LETTERS

Hydrodynamic turbulence cannot transport angular
momentum effectively in astrophysical disks
Hantao Ji1, Michael Burin1{, Ethan Schartman1 & Jeremy Goodman1

The most efficient energy sources known in the Universe are accre-
tion disks. Those around black holes convert 5–40 per cent of rest-
mass energy to radiation. Like water circling a drain, inflowing
mass must lose angular momentum, presumably by vigorous tur-
bulence in disks, which are essentially inviscid1. The origin of the
turbulence is unclear. Hot disks of electrically conducting plasma
can become turbulent by way of the linear magnetorotational
instability2. Cool disks, such as the planet-forming disks of proto-
stars, may be too poorly ionized for the magnetorotational instab-
ility to occur, and therefore essentially unmagnetized and linearly
stable. Nonlinear hydrodynamic instability often occurs in line-
arly stable flows (for example, pipe flows) at sufficiently large
Reynolds numbers. Although planet-forming disks have extreme
Reynolds numbers, keplerian rotation enhances their linear
hydrodynamic stability, so the question of whether they can be
turbulent and thereby transport angular momentum effectively is
controversial3–15. Here we report a laboratory experiment, dem-
onstrating that non-magnetic quasi-keplerian flows at Reynolds
numbers up to millions are essentially steady. Scaled to accretion
disks, rates of angular momentum transport lie far below astro-
physical requirements. By ruling out purely hydrodynamic tur-
bulence, our results indirectly support the magnetorotational
instability as the likely cause of turbulence, even in cool disks.

Our experiments involved a novel Taylor–Couette apparatus16.
The rotating liquid (water or a water/glycerol mixture) is confined
between two concentric cylinders of radii r1, r2 (r2 . r1) and height h.
The angular velocity of the fluid is controlled by that of the cylinders,
V1 and V2. An infinitely long, steady, Taylor–Couette flow rotates as:
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Reynolds number here can be defined as �rr r2{r1ð Þ V1{V2ð Þ=n,
where n is viscosity and �rr: r1zr2ð Þ=2. The rotation profile (equation
(1)) ensures a radially constant viscous torque 22prnhr3hV/hr for
constant mass density r and constant n. Astrophysical disks are
mostly keplerian, meaning V / r23/2, so that jVj decreases radially
outward (hjVj/hr , 0) while the specific angular momentum, jr2Vj,
increases radially (hjr2Vj/hr . 0). We apply the term ‘quasi-keplerian’
to any flow satisfying these conditions, which are crucial for both
hydrodynamic and magnetohydrodynamic linear stability2.

Real flows have finite length. Disks have nearly stress-free vertical
boundaries, but viscous stress at the vertical endcaps of laboratory
flows drives secondary circulation. This may cause the rotation pro-
file to deviate significantly from equation (1), and may even provoke
turbulence7,15,17–20. Our apparatus incorporates two rings at each
end that are driven independently of the cylinders (Fig. 1). Thus
we have four controllable angular velocities. When we choose these
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Figure 1 | Experimental set-up. A rotating fluid (water or a water/glycerol
mixture) of height h 5 27.86 cm is confined between two concentric
cylinders of radii r1 5 7.06 cm and r2 5 20.30 cm, which rotate at rates of V1

and V2, respectively. Two novel features distinguish this apparatus from
conventional Taylor–Couette experiments. First, secondary circulation is
controlled by dividing each endcap into two independently driven rings.
Opposing rings at top and bottom are driven at the same selectable angular
velocity V3 (inner rings) and V4 (outer rings). Traditionally, a large aspect
ratio C ; h/(r2 2 r1) is used to reduce the secondary circulation. However, at
C<25 by Richard7 and even at C<100 by Taylor18, end effects were reported
to be significant when the endcaps co-rotated with one of the cylinders. Even
when the endcaps were divided into two rings, but with each affixed to one
cylinder7,17, residual secondary circulation may have facilitated the observed
turbulent transition15,19. When V3 and V4 are appropriately chosen,
secondary circulation is minimized and ideal Couette profiles are well
approximated21. A second novel feature is access to rotation profiles on both
sides of marginal linear stability at Reynolds numbers as large as 106 (see also
Fig. 2). When the specific angular momentum, | r2V | , decreases with
increasing r, the Rayleigh stability criterion30 is violated, and thus the flow is
linearly unstable when the Reynolds number exceeds a critical value16. When
h | r2V | /hr . 0 but h | V | /hr , 0 (as in disks, where V / r23/2), the flow is
quasi-keplerian and known to be linearly stable to axisymmetric
disturbances. All major components of the apparatus were precisely
machined and balanced, and except for the inner cylinder and rotating
shafts, are made of clear acrylic to facilitate visual and laser diagnostics.
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appropriately, secondary circulation is minimized, and ideal Couette
profiles are closely approximated throughout the flow, except within
,1 cm of the endcaps21.

Most past work has taken the outer cylinder at rest (V2 5 0), so
that both jVj and jr2Vj decrease radially outward. Such flows are
axisymmetrically linearly unstable16 at modest Reynolds number,
Re. Very few experiments have studied the linearly stable regime
where hjr2Vj/hr . 0, as occurs in disks. Among these few are two
classic experiments of the 1930s: in one of these, the inner cylinder
was at rest (V1 5 0)18, while in the other17, 0 # V1/V2 # 1. Enhanced
torques between the cylinders and other evidence of turbulence were
reported at sufficiently large Re. These results have been cited in
support of the hypothesis of nonlinear hydrodynamic turbulent
transport in disks3,6, notwithstanding that the direction of turbulent
angular momentum transport, which always follows –hV/hr on ener-
getic grounds, differs in sign between these experiments and astro-
physical disks. The so-called b prescription6 derived from the above
experiments has been used to model or interpret astronomical obser-
vations22. To our knowledge, the only published experiments with
quasi-keplerian flow at relevant Reynolds numbers are those of
Richard7,14 and Beckley23. In Richard’s work, transition to turbulence
via nonlinear instabilities was studied qualitatively by a flow-visu-
alization method. No direct measurements of angular momentum
transport were performed. Beckley did measure torques roughly

consistent with the b prescription, but attributed them to secondary
circulation, which was strong because the endcaps of his apparatus
co-rotated with the outer cylinder and h/(r2 2 r1) was only ,2.

Experimental flows studied by ourselves and others are summar-
ized in Fig. 2. Our Reynolds numbers are up to 20 times larger than
those previously achieved by Richard7. A laser Doppler velocimetry
(LDV) system was used to sample the azimuthal velocity vh at various
radial and axial locations. Both mean values, �vvh:rV, and fluctua-
tions, v0h:vh{�vvh, were obtained. At our Reynolds numbers, linearly-
unstable flows are always turbulent, with fluctuation levels

v0h
2

� �1=2
.

�vvh~5{10%. They are largely insensitive to the endcap

speeds. In contrast, quasi-keplerian and other linearly-stable flows
are sensitive to the endcap boundary conditions. When the endcap
speeds are adjusted to best approximate ideal Couette flow, the fluc-
tuations are 1{2% and indistinguishable from those of our solid-
body flows, which are expected to be steady or laminar owing to the
lack of shear to drive turbulence.

One hallmark of nonlinear instability is hysteresis: the transition
from laminar flow to turbulence occurs at higher Reynolds numbers
than the reverse7. Quiescent flows were gradually brought into line-
arly-unstable regimes by raising V1 or lowering V2, then returned to
linearly-stable regimes. Significant fluctuations were found only in
the linearly-unstable regime; no hysteresis was detected.

In the absence of magnetic fields, turbulent angular momentum
transport requires correlated velocity fluctuations. The radial angular
momentum flux is rrv0hv0r , where vr9 is the fluctuation in radial
velocity, and the turbulent viscosity nturb is defined by equating
this to 2rnturbr2hV/hr where nturb 5 bjr3hV/hrj, so that
b~v0hv0r

�
r2LV

�
Lr

� �
2 is dimensionless. Conveniently, in a turbulent

but statistically steady state with a profile given by equation (1), both
b and nturb are radially constant. A value of b 5 (1–2) 3 1025 has
been deduced6 from experiments17,18 with 0 # V1/V2 , 1.

We have measured the Reynolds stress directly using a synchro-
nized dual-LDV system. Both v9h and v9r appear to follow gaussian
statistics (E.S. et al., manuscript in preparation), and random errors
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Figure 2 | Experimentally studied Taylor-Couette flows. Axes are Reynolds
numbers based on the inner and outer cylinders: Re1,2 ; V1,2r1,2(r2 2 r1)/n.
Asterisks mark Rayleigh-unstable flows; squares, quasi-keplerian ones, that
is h | V | /hr , 0 but h | r2V | /hr . 0; diamonds, solid-body flows (hV/hr 5 0);
crosses for the inner cylinder at rest; triangles for flows explored in previous
experiments17–19,31,32; and the rectangular box for the parameter regime
explored by Richard7. Dashed lines denote constant values of q ; 2hlnV/
hlnr at r 5 17 cm, where most of our measurements of Reynolds stress were
performed (Fig. 3). Rayleigh-unstable flows exhibit 5–10% fluctuations that
are insensitive to the end-ring speeds. Quasi-keplerian and other Rayleigh-
stable flows are more sensitive. For example, when the end-rings are fixed to
the cylinders, fluctuations up to 4–8% occur. When the end-ring speeds are
adjusted so that the ideal-Couette profile is restored, fluctuations are 1{2%
and indistinguishable from those of our solid-body flows, except within a few
cm of the boundary. Reducing Re by a factor of ,1/18, using an admixture of
glycerol, actually increases the fluctuation level for the same (nearly ideal-
Couette) profile. We interpret this to mean that the residual unsteady
secondary circulation penetrates deeper into the bulk flow at lower Re. We
infer from this that the experiments by Richard7 may have been affected by
the endcaps, although his ratio of height to gap width exceeded ours. His
endcaps were split but fixed to the cylinders.
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Figure 3 | Experimentally measured Reynolds stress versus height in a
quasi-keplerian profile. Here b:v0hv0r
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2q2ð Þ sign (qV), where q ; 2hlnV/
hlnr: q 5 13/2 in keplerian disks, 1.2 # q # 1.9 in our quasi-keplerian flows.
Square symbols connected by a solid line were taken at q 5 1.86 (see Fig. 2).
Starred points connected by a dotted line are a solid-body case (q 5 0), which
should be non-turbulent and therefore serves as a control for systematic
errors. The measured values fall far below the range of b proposed by
Richard and Zahn6, shown with horizontal dotted lines. The measurements
were performed using a synchronized, dual laser-Doppler-velocimetry
(LDV) system, which allows simultaneous detection of both components of
velocity vh and vr. The laser beams enter the fluid vertically through the
acrylic endcaps from below (see Fig. 1), and Z is the height above the lower
endcap. Rotation speeds [V1, V3, V4, V2] are shown, where V3 and V4 are
the angular velocities of the inner and outer end-rings. Apparently gaussian
deviations amounting to ,(1–2%) of vh were observed from sample to
sample, representing measurement errors and perhaps true fluctuations.
Each data point is the mean of b computed from 3,000–10,000 samples.
Error bars represent the standard deviations.
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were reduced by averaging 103–104 samples. Systematic errors were
gauged by comparison with solid body flows (V1 5 V2 5 V3 5 V4).
Figure 3 shows that b differs indistinguishably between quasi-kepler-
ian and solid-body rotation, falling far below the proposed range6. A
large outward Reynolds stress is detected in linearly-unstable flows,
b . 1023, as expected (M.B. et al., manuscript in preparation). Even
for linearly-stable flows, when the speeds (V3, V4) of the endcaps
were not adjusted properly to produce the ideal Couette profile of
equation (1), b was found to be almost 1024 (Fig. 4). This again
indicates that the axial boundaries can profoundly influence line-
arly-stable flows, as previously suggested15,19.

A final point should be made about the critical Reynolds number
for transition, Recrit, versus gap width. Based on the experiments
reported in refs 17 and 18, the scaling Recrit < 6|105 r2{r1ð Þ=�rr½ �2
has been proposed3,4,6,8. It is unclear whether this scaling applies to
quasi-keplerian flow as it was derived from data for V2/V1 . 1. In any
case, up to Re 5 2 3 106, which is about three times the proposed

Recrit because r2{r1ð Þ=�rr < 1 in our device, we have seen no signs of
rising fluctuation levels or Reynolds stress (Fig. 4).

Therefore, we have shown that purely hydrodynamic quasi-kepler-
ian flows, under proper boundary conditions and at large enough
Reynolds numbers, cannot transport angular momentum at astro-
physically relevant rates.

Of course, it could be argued that our maximum Re, which only
barely exceeds some theoretical estimates13 of Recrit, is still not large
enough for transition. Or it could be that transition has occurred, but
that the transport is too small for us to detect. To extrapolate from
Re # 2 3 106 to a typical astrophysical value >1012, we rely on the
empirical observation that for Re . Recrit, the Reynolds number
based on the turbulent rather than the molecular viscosity is approxi-
mately independent of Re itself. It follows that nturb < LU/Recrit for
Re . Recrit, where L and U are the characteristic size and velocity of
the flow. It is common knowledge among civil engineers that this is
true of flow in pipes, for example24. If it is true of rotating shear flow,
as theoretical arguments suggest it should be15, then b at Re> 1012

should be comparable to what we find at Re= 2 3 106, namely,
b , 6.2 3 1026 (at 2 s.d., or 98% confidence; see Fig. 4 legend)—
whether or not we have crossed the threshold of transition.

Lastly, it is useful to relate the above upper bound for b to the more
commonly used Shakura–Sunyaev a parameter1: nturb 5 aVh2. We
replace this by nturb 5 aV(r2 2 r1)2 since r2 2 r1 is smaller than h in
our experiment, and we presume that the dominant turbulent eddies
scale with the smallest dimension of the flow (h= r in most disks).
Then a~bq�rr2

�
r2{r1ð Þ2<bq (see Fig. 3 legend for a definition of q),

and thus our results imply a similar upper bound for a as for b in
purely hydrodynamic disks, whereas protostellar-disk lifetimes and
accretion rates indicate25 a>1023. Although it has been suggested
that complications such as vertical or radial stratification may yet
lead to essentially linear non-axisymmetric hydrodynamic instabil-
ities26,27, our belief is that such non-axisymmetric linear instabilities
depend upon radial boundaries and hence are not generally import-
ant in thin disks28,29. If this is correct, then by default, the magnetor-
otational instability appears to be the only plausible source of
accretion disk turbulence.
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