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Two-stream instability for a longitudinally-compressing

charged particle beam*

Edward A. Startsev and Ronald C. Davidson

Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543

The electrostatic two-stream instability for a cold, longitudinally-compressing charged par-
ticle beam propagating through a background plasma has been investigated both analytically
and numerically. Small-signal coupled equations describing the evolution of the perturba-
tions are derived, and the asymptotic solutions are obtained. The results are confirmed by
direct numerical solution of the linearized fluid equations. It is found that the longitudinal
beam compression strongly modifies the space-time development of the instability. In par-
ticular, the dynamic compression leads to a significant reduction in the growth rate of the

two-stream instability compared to the case without an initial velocity tilt.

I. INTRODUCTION

To achieve the high focal spot intensities necessary for high energy density physics and heavy
ion fusion applications, the ion beam pulse must be compressed longitudinally by factors of ten
to one hundred before it is focused onto the target. The longitudinal compression is achieved by
imposing an initial velocity profile tilt on the drifting beam in vacuum [1-3]. To achieve maximum
longitudinal compression, the space charge of the beam is neutralized by propagation through a
dense neutralizing background plasma [2-5]. If the space charge is fully neutralized by the plasma,
the final compression is limited only by the initial longitudinal temperature of the beam ions
and possible collective processes (such as the two-stream instability [6-9]) which may prevent full
neutralization. The beam’s longitudinal thermal spread which could stabilize the instability also
inhibits full longitudinal compression. Therefore, in this paper, we make use of macroscopic fluid
model [10] to investigate both analytically and numerically the electrostatic two-stream instability
for a cold, longitudinally-compressing charged particle beam propagating through a background
plasma. It is found that the longitudinal beam compression alone strongly modifies the space-time
development of the two-stream instability. In particular, it is found that the dynamic compression
leads to a significant reduction in the growth rate of the two-stream instability compared to the

case without an initial velocity tilt.

* Research supported by the U. S. Department of Energy.



The analysis presented here is similar to the analysis for a uniform infinite beam pulse [6].
In that case it is well known that the propagation of cold beam through a cold, background
plasma is absolutely unstable. The effects that limit the the instability growth are the thermal
spread of the beam particles and possible density gradients [11]. In the case considered here, the
instability growth is limited by the velocity tilt. Indeed, for small beam density, the instability
requires that the resonance condition w = kVj be satisfied for a continuous growth. Here w,, is
the electron plasma frequency associated with the plasma electrons, k is the axial wavenumber
of the perturbation , and V; is the beam velocity. As shown in Section VI, the perturbation
frequency changes with time due to the time-dependent beam velocity and beam density profile,
and it eventually detunes out of resonance and the instability ceases. The present analysis takes
into account the effects of the velocity tilt and allows the level of saturation to be determined.
A similar analysis has been used to study the filamentation for a radially converging heavy ion
beam [12]. The effects of radial convergence on the two-stream instability has also been studied
[13, 14]. Numerical simulations using the particle-in-cell code LSP have recently appeared in the
literature that address the practical requirements for neutralized propagation of heavy-ion beams
for cases with and without longitudinal compression [3, 5]. Some preliminary numerical simulations
of the possible effects of longitudinal compression on the two-stream instability for longitudinally-
compressing heavy-ion beams have also been reported [3].

This paper is organized as follows. In Section II, we consider the unperturbed propagation of
the electron beam in the background plasma. In Section III, small-signal equations are derived that
describe the evolution of the density perturbations around the flow described by the unperturbed
equations. In Section IV, we obtain the asymptotic solution of the resulting equations. In Section V,
the development of the instability and its saturation are examined from the point of view of the
wave dynamics, where the plasma waves are represented as quasi-particles characterized by their
position z(t), wavenumber k() and energy (or frequency) w(t). In Section VI, numerical solutions
of the linearized equations are obtained and compared with the analytical results. Finally, the

results are summarized in Sec. VII.

II. UNPERTURBED PROPAGATION

It is assumed that a semi-infinite electron beam with a sharp leading edge enters the chamber
containing background plasma at time ¢t = 0 and @ = 0 with velocity V) and density nj). The

beam is uniformly compressing in the longitudinal direction as it propagates inside the chamber



and reaches the maximum compression at time ¢ = Ty at the point z = X; = TbeO away from
the beam entry point x = 0 into the chamber. The unperturbed beam propagation is illustrated
in Fig. 1, where the beam phase space is plotted at different times during the compression. The
transition from solid to dashed lines in Fig. 1 identifies the end of the real beam pulse with finite
initial length L,?. The frequently used parameter, the longitudinal ”velocity tilt” AVbO/VbO, is

related to the compression distance Xy and the initial beam pulse length L,? by
AV IV, = Ly/ Xy (1)

It is also assumed that the electron beam propagation in the background plasma is both charge

neutralized and current neutralized, where the quasi-neutrality conditions are given by

Ne + Ty = N, (2)

eV, + Vi = 0. (3)

Here, n; and V] denote the dynamically changing unperturbed density and flow velocity of the
beam electrons (j=b) and background plasma electrons (j=e), and ny = const. (independent of =
and t) is the uniform density of the background plasma ions (assumed singly-ionized). The quasi-
neutrality condition is slightly violated due to the finite electron mass in the force balance equation

for the plasma electrons

(4)

eE’:—me<aVe v %>.

ot Ve

The zero-order solution for the beam density and velocity are given by

0
_ oo Ty
nb(t) = Ty — . (5)
. VT —
Vi(t, ) = Tt (6)

Here, it is also assumed that § = n)/ng < 1. Substituting Egs. (2), (3) and (6) into Eq. (4), we

obtain for the unneutralized electric field

o — om ny (Xf—x)
B =2 T /Ty + nJno) PT5(Ty — ) @)

Using Poisson’s equation dF/dx = 4dmedn = 4mwe(diip — dfie ), we obtain for the unneutralized charge

density

== o (8)



where w2, = 4mnge?/m, is the plasma frequency-squared of the background plasma electrons. In

pe

what follows we make use of two small parameters
e=1/(wpeTy) <1 and & =nj/ny < 1. 9)

It will be shown that the resonant two-stream instability develops and saturates everywhere in the
chamber except close to the compression point z = Xy during the time interval when 1—¢/Ty ~ 1>
nd /ng. It follows from Eq. (8) that di(x,t)/ny(t) ~ 2¢? during this time interval and therefore for
perturbations with amplitude |67 (z,t)|/75(t) > €2, the beam can be considered as fully neutralized

by the background plasma.

III. SMALL-SIGNAL EQUATIONS

In this section, we derive the coupled equations that describe the perturbation in charge density
of the beam electrons and background electrons. Quantities are expressed as ny = ny + Ny, vp =
Vi + Ty, Ne = Mg + T, Ve = e + f/e where unperturbed quantities 7y, Vj, e and V, are determined
from Egs. (2), (3), (5) and (6). Substituting Egs. (5) and (6) into the linearized continuity equation

for the beam particles, we obtain

Ty —t)— — T —x)— =Ty —. 1
(Tr =)y —w+ (TVy —2)7 L (10)
From the linearized momentum equation for the beam particles, we obtain
8’[7[, ~ 0 a/ab € ~
Ty —t)— — T —x)— =——(Tf —t)E. 11
(Ty — 058 = o0+ (VY —2) 5t = (T — ) ()

Here, E is linearized near E = 0. Combining Eqs (10) and (11), and introducing the normalized

variables,
twpe =, awpe/VY =7, fip/no =y, 0/V =0y and eE/mewpeVy = E’, (12)
we obtain
[(1—€t)0r + (1 — €x)0z — 2¢€][(1 — €t)0; + (1 — €X)0z — €|ny,
=’ (1 — ef)&,;E:] = —a?(1 — et)(fy + e), (13)
where o = w1y, and use has been made of Poisson’s equation 8557 = —Np — Ne.

Repeating the same procedure for the background plasma electrons, we obtain
[(1—e€t)(1—et—0)0r —0(1 — €T)Iz + 2¢(1 — et + 0)]
X[(1—€t)(1—et — )0 — 6(1 — €)Iz + de|ne

= —(1—et —6)3(1 — eb)(Rp + 7e) + 2626(1 — et — 6). (14)



It will be shown later that the solutions to Egs. (13) and (14) have the form n; = a;j exp[—i(t — )],
J = b, e, where the slowly varying amplitudes a; satisfy |0ra;| > d|a;|. In this case we can neglect
all terms that contain ¢ in Eq. (14). We also assume that the perturbation amplitude is larger
than the unneutralized charge density (7. > €2§) represented by the last term in Eq. (14) [see also
Eq. (8)], and therefore the last term in Eq. (14) can be neglected. Hence, Egs. (13) and (14) can

be simplified to give
(1= ) + (1 — )5 — 2€][(1 — D) + (1 — e8)s — i, = —a2eX(1 - eB)(fc + i), (15)
2 + e = —Tp, (16)
Next, we change variables from Z, t to
X=ex and T=1t—Z (17)
in Egs. (15) and (16). With this change of variables, Egs. (15) and (16) become
[(1—-X)0x — 70, —2][(1 — X)Ox — 70, — 1] np
= 21— X — er) (e + i), (18)
(02 + 1), = iy (19)

Substituting n; = a;j exp[—i7], j = e, b, into Egs. (18) and (19), for 7 >> 1 we obtain the amplitude

equation for a.
(1 — X)dx + 7(i — 0;))%]0-(0r — 2i)ac = —a*(1 — X — e7)(0; — i)%ae.. (20)

A similar equation can be obtained by substituting kV, = (w,/V, —i0,)Vy(,t) and w = wpe+1i0;

into the two-stream dispersion relation for a beam-plasma system

2 2
w, wpb

pe _
IR At (21)

The resulting equation is

0 0 wpe > (da, . da,
g+ Vol i e ) = V)| (T =2 ) Gt =

ot ot ot
9 da. . 2
= —wyp(7,t) S~ Wre ae(z,t). (22)

Substituting Egs. (5) and (6) into Eq. (22), we obtain Eq. (20). In the limit where |0x| < 7 and
|0-| < 1, Eq. (20) can be integrated to give

(23)

1-X 1
ae = ¢(X)exp <z’a2 +267T og(w)) .



It will be shown later that dx ~ «, and therefore both conditions |0x| < 7 and |0;] < 1 are
equivalent to 7 > «. To determine ¢(X) in Eq. (23), we need to find a solution in the region
7 ~ a and then take the limit 7 > . In the region 7 ~ a, we can neglect er ~ §'/2 < (1 — X) in
Eq. (18), which gives

[(1—X)ox — 70, — 2] [(1 = X)Ox — 70; — 1] 7y = —a*(1 — X)(Re + 7p). (24)

(0% 4 1)ne = —ily. (25)

IV. ASYMPTOTIC SOLUTION

We now introduce the variable Y = log[1/(1 — X)|, and carry out the integral transform of

Egs. (24) and (25) according to e = [ dsiie(s,Y )exp(—ist). This gives
[0y + 505 — 1][0y + 595](1 — sH)e = a® exp(—Y)sie. (26)

Here, use has been made of the fact that the integral transform of the operator —70, — 0Jss =
1 + s0s. To solve Eq. (26), we introduce new variable p = Y — log(s) = log[1/s(1 — X)]. In the

new variables, Eq. (26) can be rewritten as

25 _ 20XP(=p) .
Ity = mnb, (27)
where use has been made of 7, = —(02 + 1)ne, and therefore 7y, = —(1 — s?)7,. In obtaining

Egs. (26) and (27), it is assumed that the contour C is chosen so that the integrals exist and all
integrand functions and their derivatives are zero on both ends of the contour C.
The WKB solution of Eq. (27) valid for a > 1 is given by

Vs 2
i2aexp(—p/2)/ d ] )

—_— 28
exp(—p/2) (1 - 24)1/2 ( )

TALb = Bi (p) exp

where b (p) are two arbitrary functions. Using Eq. (28), we can express the solution for ny, as
~ z
np Z /Ci dsfy[s(1 — X)]exp [—17'5 + 2asV1 — / m] , (29)

where the functions fi and integration contours Ci are determined from the boundary conditions

at X = 0. Taking the limit X — 0 in Eq. (29), we obtain

ny(7,0) = Zi:/Ci dsfi(s)exp (—irs), (30)

Oxnp(1,0) = ; /Ci ds [—sfi(s) + a\/%fi(s) exp (—iTs). (31)



The boundary condition consistent with v,(7, X = 0) = 0 that follow from Eq. (10) are

ﬁb(ﬂ 0) f(T)H(T)v (32)

Ixnp(1,0) = (1 + 79;)n(7,0), (33)

where H(7) is the Heaviside step-function defined by

1 for 72>1,
H(r) = (34)
0 for 7<0O.

Consistent with Eqgs. (33) are the initial conditions and boundary conditions for the perturbed
electron density, 7.(7 = 0) = O-7(7 = 0) = 0 and (82 + 1)n(7, X = 0) = —1. The solution for n,
that satisfies the boundary conditions in Eq.(33) is given by

Fip = / et ds 2 fls(1 — X)] exp (—irs) S exp [j:2a5\/1—— / L R

)
—ootin AT T (1 - s221)1/2

where f(s = [;7 drexp(isT) f(7), and A is such that integration contour in Eq. (35) is above all
singularities of the function f(s).

Since « > 1 is assumed, the integral in Eq. (35) can be evaluated using the method of steepest
descend. First, we shift the integration contour into the lower half-plane. The resulting contour
(' is shown in Fig. 2. The contour C’ goes around the cuts and poles of the integrand in Eq. (35).
The main contribution to the integral is from the points where the function

Hy(s) = —is +20sV1 — / 2 (36)

(1 — s224)1/2

reaches an extremum. Here, we also take the limit § = a/7 < 1, which allows determination of
the extremum points analytically. The function Hy(s) has root branch points at sg = +1 and

= 4+1/y/1 — X, and is analytic everywhere in the complex s-plane with cuts made as shown in
Fig. 2. The imaginary part of the functions Hi experience discontinuous jumps across the cuts.
Equating the derivative to zero, H' (so) = 0, we find that the extremum points are located near
the branch points. One can show that only the extremum points near s, = £1 give exponentially
growing contributions to the integral in Eq. (36). Expanding the functions H(s) near s ~ +1 and

keeping leading-order terms in the small parameter (3, we obtain

Hy(s~+1) ~ —is+ $/2(1 — X)Flarccos(vV1 — X)|1/2] — B/2(1 — X)V/1 — s,
H_ (s~ —1) ~ —is + $/2(1 — X)Flarccos(v/1 — X)|1/2] — B/2(1 — X)V/1 + s, (37)

where F(z|a) = [df/+/1 — asin®0 is a elliptic integral of the first kind.



From H', (s}) = 0 we find that s% = 1+ 8%(1 — X)/2, which is located below the right cut, and
s = —1—3%(1 - X)/2, which is located above the left cut, as shown in Fig. 2. The corresponding

extremum values of function H.(s%) valid up to the second order in 3 are given by
2 1—
Hi(s%) = Fi (1—6 ( ) + 6v/2(1 — X)) Flarccos(vV1 — X)|1/2]. (38)

With the same accuracy, it can be shown that, 1/,/—H/(s)) = —pv1 — X exp(—in/4) and
1/4/—H"(s%) = v/1— X exp(in/4). The extra minus sign multiplies the contribution from s%
because the integration contour direction is reversed at this point. For the simple boundary con-
dition in Eq. (33), f(7) = 1, it follows that f(s) = i/s and we can express the asymptotic growing

solution as

ny(T, X) ~ m sin[r — a?(1 — X) /27 + /4]
X exp {a 2(1 — X)) Flarccos(v1 — X)\l/?]} . (39)

The easiest way to determine n.(7, X) is to solve the equation
(672' + 1)ﬁ6(77 X) - _T:Lb(7-7 X) (4())

with initial conditions n¢(0, X) = 0 and 9,;7.(0, X) = 0, and with ny(7, X) given by Eq. (39). In

ia?(1 — X)
2T

X exp {a 2(1 — X)F[arccos(V'1 —X)|1/2]} , (41)

the limit o > 1, the solution to Eq. (40) is given by

Ne(1, X) ~ ﬁ]{e {exp(iT) <1 —Erf

where Er f[z] is the error function defined by Erf[z] = 2/\/7 [ dzexp(—?). The solutions in
Egs. (39) and (41) are valid far enough away from the beam head that 7 > a1 — X. At the
end of the compression, t =Ty and 7 = o?(1 — X). At this time, the density perturbation can be

expressed as

np(t =Ty, X) _qb%sin[a%l—){)—%ﬂﬂl—%], (42)
il = 17, X) = 0. A sinla?(1 - X))+ /4 - 6], (43)

where the gain function G(z) is defined by
G(X) = ay/2(1 — X)Flarccos(V1 — X)|1/2]. (44)

In Egs. (42) and (43) g, = 1/v/27 = 0.40, ¢p = 1/2, and q. exp|—i(d. +7/4)] = (1— Erf[\/i/2])/2.
Numerically, we find ¢, ~ 0.29 and ¢, ~ 0.12.



V. PHYSICAL DISCUSSION

As evident from Eqs. (42)—(43), the saturated amplitude of the density perturbations is deter-
mined mostly by the gain function in Eq. (44). It is interesting to examine the development of the
instability and its saturation from the point of view of wave dynamics where the plasma waves are
represented as quasi-particles characterized by their position x(t), wave-number k(¢) and energy
(or frequency) w(t). The quasi-particle dynamics are described by the equations

dr 0w  0D/0k

dt — 0k~ 0D/ow’ (45)

dk Ow  0D/ox

dt — 9z  0D/ow’ (46)
D

dw Ow  0D/Ot (47)

dt ot OD/ow’
where, for a beam propagating through background plasma, the dispersion function D is defined
by

w? w2 (t)
D=1-"%_ £b 48
w2 (w—kVy(x,t))?’ (48)

and the quasi-particle dynamics is on the surface D = 0. Substituting Eq. (48) into Eqs. (45)—(47),
we obtain the closed system of equations for x(t) and p(t) = k(t)Vy(z,t)/w(t)

dr Vip(z, 1)
dat 1+ (1—p)3/et)’ (49)
dp [ P’ } 1 OV(z,t) _[ p(1—p)/2 ] 1 94t (50)
at P11 —p)3/e) | Vi(w,t) ot 1+ (1—p)3/a(t)| o(t) ot
where §(t) = wib(t)/wge, and
w 1 1/2
= ) oy

It follows from Eq. (51) that for § < 1 the maximum growth rate occurs for p ~ 1, which
corresponds to perfect resonance. Equation (50) describes the detuning from resonance for partic-
ular quasi-particle under consideration. For a uniform non-compressing beam with V; = const.,

Egs. (49) and (50) are easily solved to give

P = Po; (52)
Vpt
rT——————— = Ig, 53
- )
with general solution p(z,t) given by
Vit
7 = f(p). (54)
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We are interested in obtaining self-similar solutions which correspond to asymptotic solutions

independent of the initial conditions. Such a solution is given by

(- = [P (55)
T
For §'/3[2/(Viyt — x)]?/3 < 1, we obtain from Eq. (51)
w (Z\/g -1) 5L/3 T 2/3
=1
Wpe + 2 2 | Vpt—=x ’ (56)

where only the unstable solution with positive imaginary part of the frequency is retained. From
Eq. (56), we obtain the gain function

t
G(z,t) = / Imw(z, t)dt = iﬁ%&%x?/%m —x)l/3, (57)
z/Ve b

The gain function in Eq. (57) coincides with the gain function obtained by direct solution of the
linearized fluid equations [6]. If follows from Eq. (57) that the gain function never saturates.
This is because the quasi-particle’s detuning p — 1 does not change with time [see Eq. (52)], and
quasi-particles which were in resonance will stay in resonance indefinitely.

For the case where the beam velocity Vj(z,t) changes dynamically according to Eq. (6), it
follows that Egs. (49) and (50) become

dp . p(1+p)/2
dT 1+ (1—p)3/s’
ay 1

dT 1+ (1—p)3/5’ (59)

where Y = log[1/(1 —x/X})] and T = log[1/(1 — t/T})]. Introducing g defined by p = 1+ ¢d'/3 in

(58)

Eq. (50), we obtain equations for ¢ valid to leading order in the small parameter 9, i. e.,

dg 5
51/3 a2 e — _ 3
( Frl 6q> q°, (60)
d€ 3
- _ 1
o q°, (61)
w §1/3 V2
= U= 1 —_— 2
o w + 7 , (62)

where £ = T — Y. As shown below, the instability in this case saturates when ¢ ~ §%/6 <« 1, which
justifies retaining only leading-order terms in Egs. (60) and (61). The solution to Egs. (60) and
(61) is given by

exp(—2T) 51/;§T) +1 =1 (63)
T _
e 1/2 - exp[(T'—T)/2]
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where I and £ are invariants of the motion. Making use of Egs. (62), (63) and (64), we obtain the

asymptotic solution for @(§,7T") = w/wpe, which is independent on initial conditions, i. e.,

e =-25(1)"* | L B (65)
exp(-1/2) ' — DI/
The gain function G(z,t) is given by
t
G(z,t) = //V Imw(z,t)dt = wpeTyexp(=Y)Im d£ exp(—&)w(€,Y). (66)
z/Vy

It can be shown from Eq. (65) that Imd ~ (6)3/2/€% for £/6'/2 > 1 so that we can neglect the
exponential contribution in Eq. (66) to the integral, and also extend the upper integration limit to
infinity for £ > §'/2. In addition, we can also replace T — Y on the right-hand side of Eq. (65).
Integrating Eq. (66) by parts and taking into account that Im[w(€)]¢ ~ 1/£2 — 0 for &€ — oo, and
Im[&(€)]€ ~ €2/3 — 0 for € — 0, we obtain

&(00,Y)

G = wpeTfexp(—Y)Im/ déw(&,Y) = —wpeTfexp(—Y)Im/ dwg(w,Y)
&(0,Y)

. — w(oo Y)
= —2av1—XIm \/W w(O V) (67)

where a = (55/ preT t = wply. Equation (65) has several solutions. The solution with positive
imaginary part to the frequency, which corresponds to instability, corresponds to @?(c0,Y) =

and ©%(0,Y) = co. Therefore, using Eq. (67), we obtain

G(X)=2avV1-X = ay/2(1 — X)F[arccos(v1 — X)|1/2], (68)

[
where X = x/X;. The gain function in Egs. (68) is identical to Eq. (44). The region where it is
valid, € > 6Y/2 or 7 = wy(t — 2/V,) > ay/1 —z/X}, also coincides with region where Eq. (44)
is valid. The fact that we have obtained identical expressions for the gain function demonstrates
the consistency of the approximations used in the derivations. The method of quasi-particles also

clarifies the dynamics of the instability in physically intuitive way.

VI. NUMERICAL SOLUTION

As anticipated in Eq. (23), the amplitude ¢(X) = |a.| = exp(G) is primarily a function of X

and satisfies Ox ~ «. The gain function can be expressed as

G(X) = ay/2(1 — X)Flarccos(vV1 — X)|1/2]. (69)
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To check the approximations, we have solved the linearized system of equations in Eqgs. (13) and
(14) numerically using the FEMLAB package [15]. For the numerical analysis the parameters
are taken to be € = 1/(wpT¥) = 1072 and 6§ = nj)/ng = 1073. These parameters correspond to
a? =3/ = (wyTy)? = 1000. To compare with the theoretical results in Secs. IV and V, f(7) =1
is chosen for the boundary conditions in Egs. (33). The numerical results are shown in Figs. 3-7.
Figure 3 shows the logarithm of the electron density perturbation, log|n.|, at time ¢ = 0.85T'
plotted as a function of the distance X = x/X;. The lower (red) curve in Fig. 3 is the numerical
solution of the linearized fluid equations with no approximations. The upper (blue) curve in Fig. 3
is the numerical solution of the same equations with the approximation (1 —X —er) — (1 —X) on
the right-hand side of Eq. (19). As evident from Fig. 3, this approximation does not change the
space-time dependence of the solution, but only changes the overall amplitude slightly. Figure 4
illustrates the time dependence of the electron density perturbation log |ne(X,7)|. The logarithm
of the electron density perturbation log || is plotted as a function of distance z/Xy at different
times (1) ¢/Ty = 0.25,(2) 0.35,(3) 0.45,(4) 0.55,(5) 0.65,(6) 0.75, and (7) 0.85. It is evident
from the Fig. 4 that the amplitude, |n.(X,7)|, is indeed only a function of X away from the beam
head where 7 > ay/1 — X. Figure 5 shows the logarithm of the electron density perturbation,
log 72|, plotted as a function of distance X = z/X; at t = 0.85T7f obtained numerically and
compared with the analytical solution in Eq. (68). As evident from Fig. 5, the agreement is very
good. The gain function in Eq. (69) scales linearly with parameter a = wpTy. This scaling is
confirmed in Fig. 6 where the logarithm of the electron density perturbation, log |n.|, is plotted as
a function of distance X = /Xy at t = 0.807, together with the analytical solution for the case
where the beam density is reduced by a factor of four (a? = 250) compared to the case shown in
Fig. 5. Figure 7 shows a comparison of the gain function in Eq. (68) with the gain function for a
beam with zero velocity tilt [Eq. (70)], i.e.,

3\/3 X2/3(1 _ X)1/3

Gnotilt(X’t = Tf) = 4 51/6

(70)

As evident from Fig. 7, for 61/6 < 1 the velocity tilt significantly reduces the growth rate compared

to the case of a beam with zero initial velocity tilt.

VII. CONCLUSIONS

The electrostatic two-stream instability for a cold, longitudinally-compressing electron beam

propagating through a background plasma has been investigated both analytically and numeri-
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cally. Small-signal coupled equations describing the evolution of the density perturbations were
derived, and the asymptotic solutions were obtained. The results were confirmed by direct numeri-
cal solution of the linearized fluid equations. It was shown that the longitudinal beam compression
strongly modifies the space-time development of the instability. In particular, the dynamic com-
pression leads to a significant reduction in the growth rate of the two-stream instability compared
to the case without an initial velocity tilt by a factor Gina./GRIW ~ (wyp/wpe)t/? < 1. The
number of e-foldings is proportional to the number of beam-plasma periods 1/w,;, during the com-
pression time 7T¢. The two-stream instability is complectly mitigated by the effects of dynamical
beam compression when w1y < 1.

In the present, we considered the case of a semi-infinite beam [see Fig. 1]. For a beam with finite
initial length LY, the trailing beam end will trace the trajectory @enq(t) = ViOt[1 + LY/ X ) — LY.
In this case, the present analysis is applicable everywhere between the leading and trailing edges
of the beam, max{0, Teng(t)} < < Tpeaa(t) = Vbot, where the beam can drive the background
plasma unstable. Behind the beam, for 0 < x < x¢pq(t) the plasma will be left with remnant
collective oscillations with constant amplitude, which are excited by the propagating beam.

The full neutralization assumption is also violated at the beam head, where the time-changing
magnetic field induces a longitudinal electric field which acts on the plasma electrons to cause a
flow of return current opposite to the injected current. The distance from the beam head where
the current and charge neutrality conditions are violated depends on the smoothness of the beam
head density profile [16]. Generally, if the density profile of the beam increases from zero to it’s
maximum value over a distance larger than Vjo/wpe, the the beam charge is fully neutralized.
In addition, the beam current will be neutralized if the beam diameter is much larger than the
collisionless skin-depth ¢/wpe.

In this paper, we considered only low-density electron beam propagation in a background
plasma. In this case, the unstable interaction is between the beam electrons and the plasma
electrons. In the general case of a beam with arbitrary charge species and mass, the instability
may also involve the background plasma ions, because of the non-zero relative velocity between the
background ions and the neutralizing plasma electrons. This will occur if the beam ions are suffi-
ciently heavy that the beam plasma frequency is smaller than the background ion plasma frequency,
wpp K wp;- In this case, the two-stream instability between the background plasma electrons and
the background plasma ions is expected to lead to a heating of the background electrons to ther-
mal velocities comparable with the average flow velocity of the neutralizing background electrons

~ (np/ne)Vp. During this initial stage, the beam ions are relatively unaffected. At later times, a
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two-stream instability between the beam ions and the (heated) background electrons may develop.
This later stage of instability, which directly effects the beam particles, can also be described by
analysis presented in this paper.
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FIGURE CAPTIONS

Fig.1 : Plot of the beam phase space at different times during the compression. Line 1 corre-
sponds to t = 0.

Fig.2 : Integration contour and location of extremum points for the functions H 1 (s) in Eq. (36).

Fig.3 (Color online): Logarithm of the electron density perturbation log |n.| at time ¢ = 0.85T
plotted as a function of distance X = x/X . The lower (red) curve in is the numerical solution of
the linearized fluid equations with no approximations and the upper (blue) curve is the numerical
solution of the same equations with the approximation (1 — X —e7r) — (1 — X)) on the right-hand
side of Eq. (19).

Fig.4 : Logarithm of the electron density perturbation log |n.| plotted as a function of distance
x/Xy at different times ¢t/Ty = 0.25 (1),0.35 (2),0.45 (3),0.55 (4),0.65 (5),0.75 (6), and
0.85 (7).

Fig.5 (Color online): Logarithm of the electron density perturbation log |n¢| plotted as a function
of distance x/X ¢ at t = 0.857 s obtained numerically (solid curve) and compared with the analytical
result in Eq. (69) (dashed curve).

Fig.6 (Color online): Logarithm of the electron density perturbation log |n¢| plotted as a function
of distance x/X ¢ at t = 0.807 s obtained numerically (solid curve) and compared with the analytical
result in Eq. (69) (dashed curve) for a? = 250.

Fig.7 : Comparison of the instability gain as a function of x/X; for a beam with (solid curve)

and without (dashed curve) velocity tilt for 6 = n9/ng = 1073 and o? = (wyT})* = 1000.
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