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The confinement characteristics of some related quasi-axisymmetric stellarator designs

are compared, to gain more physical understanding of what causes the differences in their

transport. From this, some general rules are found for features of QA magnetic geometries

which are deleterious or helpful for confinement.
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In this work, we compare the confinement characteristics of 3 related quasi-

axisymmetric (QA) stellarator designs, to better understand what causes the differ-

ences in their transport. From this, we distill some simple rules for features of the QA

magnetic geometry which are deleterious or beneficial for confinement.

The National Compact Stellarator Experiment (NCSX)1, now under construction,

is designed to have low neoclassical transport of thermal particles, much smaller than

expected levels from anomalous transport. Its confinement of energetic particles is,

however, more problematic. For example, Monte Carlo simulations of a reactor-sized

NCSX have found an � energy loss fraction of ����� � ��� after � � ��� toroidal

transit times �� (roughly a slowing-down time).2 Accordingly, to find an improved

QA configuration for the ARIES-CS reactor study, Ku began from the LI383 design

which is the basis for NCSX, and using the Stellopt optimizer3, found a new configura-

tion, N3ARE,2 closely related to LI383, but in which ����� was reduced to below 10%.

Additionally, its thermal confinement was also substantially improved, with its “���”

transport coefficient ��� � �
���
�� down from that of LI383 by a factor of roughly 5–8

over much of the minor radius, while other needed properties, such as MHD stability

and equilibrium quality, were comparable to those in LI383. (Here, ��� is the “effec-

tive ripple strength”4 of a given flux surface in a configuration.) Optimizers are very

important design tools, but why they reach the solutions they do is often physically

obscure. Our objective here is to enhance that physical understanding, which in turn

facilitates the search for desirable configurations.

In Figs. 1 are shown the largest nonaxisymmetric (� �� �) Fourier amplitudes �	


for (a)LI383 and (b)N3ARE versus 	 � 
�
�, where ��
 is the toroidal flux on a

given flux surface, and 
� is 
 at the edge. The 2 dominant �	
 in LI383 are ��� and

���, of comparable size and opposite sign. In N3ARE these are substantially reduced
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in magnitude, replaced by a dominant “mirror term” ��� and a sideband ���, of size

comparable to ��� and ��� in LI383.

The principal transport figure of merit (f.o.m.) used in obtaining LI383 is the QA

measure ��	
 � �
�

	�
����
�

	
��
�

��
��, where ����� denotes a weighted average over

flux surfaces 	. To improve the �-confinement, Stellopt was run from LI383, replac-

ing ��	
 with ����� (with a short run-time of a few hundred �� , for speed), and it was

observed that ��� and ���, suppressed by ��	
, had become appreciable. Accord-

ingly, Stellopt was run further, instead using � �
�	
, defined the same as ��	
, but

with these �
��� � ��� 	�� ��� 	� harmonics removed. N3ARE was then obtained by

further evolution using ��� as the transport f.o.m., and then again using �����.

In Fig. 2a is a contour plot ��	� �� �� over a flux surface for LI383 for 	 � ��
,

with ���� the poloidal (toroidal) azimuth in flux coordinates. The slanted straight line

shows the magnetic field direction ��. In Fig. 2b is plotted the profile ���� along a

field line for one poloidal transit. In Figs. 3 are the analogous plots for N3ARE. The

contours � � �
��� in Figs. 2a and 3a run approximately in the �-direction, as one

expects for a QA device. However, for each of its 3 field periods, in LI383 there is a

marked inflection of the contours, bending first strongly to the left as one moves along

a contour (indicated by the dashed ovals), and then more gently back to the right. The

left bend has the effect of creating ripple wells on the slopes of the toroidal variation

i.e., around � � ���� 	��� (e.g., point � in Fig. 2b), as well as enhancing the gradient

in � perpendicular to ��, thereby increasing the radial drift velocity �
 � �� � ��

there. A weaker bend to the left is also visible for N3ARE in Fig. 3a, creating smaller

ripple wells, or only a flattening of the toroidal slope in Fig. 3b.

One also sees a large ripple well in both configurations on the inboard side (� � �),

deeper than those on the toroidal slopes, and much deeper for N3ARE than for LI383.
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However, as one notes from the much improved confinement of N3ARE over LI383,

these large wells are fairly benign, while the much smaller well at � in Fig. 3a provides

a major additional loss channel in LI383, as will be seen.

In Figs. 4 are contour plots over a flux surface of �
 for the 2 configurations. From

these alone, one might expect the confinement of N3ARE to be enhanced over that

of LI383 only modestly. Both show peak ridges in 	 �
	 around � � ���� 	���, the

same �-values for which the toroidal contribution (� �� ��� �) peaks, enhanced by

an additional helical contribution. The root mean square value �

	� � � �
����� of �


for N3ARE is a little below (about 70%) that for LI383, which, assuming diffusion

coefficient � � �
�


	�, would predict a ratio ������������� � ���. (Here �����

denotes a flux surface average.) The �
 peaks �
	� for LI383 occur exactly where the

dashed oval in Fig. 2a is, manifesting the enhanced �-gradient arising from the strong

inflection in the contour direction noted above. For N3ARE, the contour inflections

are smaller, and more distributed, resulting in the modestly smaller, multiple peaks in

�
.

However, a better indicator of a particle’s rate of radial progress is not �
, but the

bounce–averaged value ��
 of �
. ��
��� �� is plotted in Fig. 5a for LI383 and in 5b for

N3ARE, computed by taking �� � � for the particle at the plotted point, finding its

other turning point along a field line, and then computing the bounce average between

the 2 points using conservation of energy � and magnetic moment �. One notes that

the peak values ��
	� of 	��
	 fall almost exactly on those of �
	� for LI383, and they are

of almost the same magnitude. In contrast, for N3ARE the peaks in ��
 occur closer

to � � �� �� than those of �
, where �
 � ��� � is smaller. Moreover, while �
 has 3

peaks per field period, ��
 exhibits only 1, with �-value near that of the rightmost of the

3 �
 peaks, making the region over which the peaks are appreciable much smaller than
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for LI383. Thus, from these additional 2 factors, while � �
��������� �
������� � ��
,

as noted, one has ���

�

����������

�

������ � ����, comparable to the expected ratio

������
�� �������

�� � ���� at 	 � ��
.

This further reduction can be understood by examining more closely the bounce-

averaging yielding these ��
 values. The �-contour inflection in Fig. 2a is strong

enough to produce a ripple well (labeled �) on the toroidal slope (around ���� 	���).

Thus, ripple-trapped particles here have a �
-value near �
	� over the full bounce, and

so have ��
 � ��
	� � �
	� there. In contrast, in N3ARE the inflection producing �
	� is

not large enough to produce a ripple well there – such wells only occur further down

the toroidal slope, i.e., toward � � �� ��, where the slope is smaller. Particles with a

turning point around �
	� are thus toroidally-trapped, not ripple-trapped, so their ��
 is

much smaller, both because they pass through a much larger range of �, where 	 �
	 is

smaller, and also because they average over regions of opposite signs of �
. And on the

other hand, particles with turning points inside the ripple wells average over smaller �


values there. These effects yield the further reduction of roughly 1/5 noted above.

Particles in the much deeper ripple-wells around � � � in both devices also

manifest very small values of ��
 in Fig. 5, for reasons similar to those described for

toroidally-trapped particles.

The ripple wells on the toroidal slopes of LI383 act as “holes” in the magnetic

bottle, providing a substantial new loss channel for particles to escape. A comparison

of the typical �-loss orbits from LI383 and N3ARE bear this out. Many of the loss

orbits in LI383 are particles initially toroidally-trapped, which become ripple-trapped

in the ��
	� ripple near the bottom of the machine (� � 	���), and then drift nearly

vertically out. Such loss orbits are very rare in N3ARE, for which toroidally-trapped

particles tend to remain so, therefore making their way to the edge only via the much
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slower drift of their banana-centers.

Thus, the general principles emerge that (1)ripple wells alone are not necessarily

dangerous for QA confinement, but ripple wells on the toroidal slope are, and (2)strong

“left-inflections” in the ���� �� contours of a configuration tend to produce such wells,

and so should be minimized.

As a further test of these rules, in Fig. 6 are displayed (a)���� �� and (b)���� for a

related third QA configuration, T8G. In contrast to N3ARE, T8G was produced with

the same modular coil set used to produce LI383, and then optimized using a weighted

combination of � �
�	
� �����, and ��� for a transport f.o.m., allowing only the currents

in the modular coils to vary. Such an optimization considerably constrains the range

of configuration shapes available, and thus one might expect T8G’s characteristics

to fall between those of LI383 and N3ARE. Such an expectation is borne out by a

number of device characteristics. The � �� � �	
-spectrum and the ���� �� plot

of T8G look like hybrids of those for LI383 and N3ARE. The ���� profile of T8G

bears some resemblance to that of LI383, but has developed the 2 large peaks around

� � � exhibited by N3ARE, and the ripple-well � in Fig. 2a for LI383 has been

reduced in size. ��� for T8G lies between those of LI383 and N3ARE, as are its �-

loss fractions. At the edge, ��� has values 1.7, 0.82, and 0.57 % for LI383, T8G, and

N3ARE, respectively, maintaining this ordering inward to 	 � ��	. And in the same

ordering, ����� for 	���� equals 15, 10, and 4.5 %, resp. The ���� profile of T8G is

considerably less smooth than that for LI383, with more ripple wells, so that one might

naively expect it to have worse transport than LI383. In fact, however, consistent with

rule (1) above, its confinement is significantly better – the wells at problematic � values

are smaller, and the extra ripple wells occur away from those problematic � values.

For purposes of numerically implementing these design rules, some of the vari-
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ous f.o.m.s which have been used for improving stellarator transport already capture

them. The “numerical” f.o.m.s, i.e., those based on numerical integration of an ensem-

ble of orbits, capture them, essentially by definition. This includes � ���� for energetic

confinement, and standard Monte-Carlo computations of thermal diffusion coefficient

�. The numerical f.o.m.s, however, suffer from the difficulty of having long evalua-

tion times, and/or statistical noisiness, which interfere with an optimizer’s operation.

As expected, � bears out the predictions of the f.o.m.s ��� or ��� � �
���
�� . The lat-

ter f.o.m.s are of the “semi-analytic” type, i.e., theory-based expressions which are

then typically evaluated computationally for any given configuration. Another semi-

analytic f.o.m. discussed here, similar to but simpler than��� or ��� , is the flux-surface

average ���

�

�, which also correlates well with the numerical f.o.m.s. Others of this

class, e.g., ��	
 or the “water measure” � ,5 do not capture these rules, the former

since it discriminates against all �	
 equally, as noted, and the latter since it would

weigh (e.g.) the large ripple wells around � � � as much more problematic than the

small wells around � � ���� 	���.

All of the semi-analytic f.o.m.s mentioned above are radially local, i.e., they are

evaluated on a given flux surface 
. Thus, they miss the “radial connectivity” nec-

essary for energetic ion loss. That is, a particle which drifts readily across one flux

surface can still be well-confined if it drifts to another surface where ��
 becomes small,

e.g., by the ripple well it is trapped in vanishing as one moves radially outward. Such

connectivity is present in the QAs examined here. However, configurations might be

found in which this is not the case, and for these, the radially local f.o.m.s would

provide overly pessimistic expectations. One semi-analytic f.o.m. which is radially

nonlocal seeks to make contours of the second adiabatic invariant � a function of 


alone.6. However, such a f.o.m. is not useful for QAs — in QAs, ripple trapped parti-
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cles must drift almost vertically, and therefore making � � ��
� is not possible.

Regarding NCSX in particular, as suggested by the discussion here, it should be

possible to create T8G in that machine as well as the standard LI383 configuration just

by varying the currents in its modular coil set, and thereby to partially plug the holes

in LI383. Moreover, an additional set of trim coils is being designed with which it

should be possible to create N3ARE, or some approximation, to further improve upon

neoclassical confinement.
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(b) N3ARE:

FIG. 1: Dominant nonaxisymmetric Fourier amplitudes �	
 for (a)LI383 and (b)N3ARE,

versus normalized toroidal flux �.
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FIG. 2: (a)Contour plot of ��� � ���� �� �� over a flux surface and (b)profile ���� along a

field line for one poloidal transit, for LI383.
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FIG. 3: Analogous plots to Figs. 2, but for N3ARE.
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(a)

(b)

FIG. 4: �� over a flux surface for (a)LI383 and (b)N3ARE, for � � ���.
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(a)

(b)

FIG. 5: ��� over a flux surface for (a)LI383 and (b)N3ARE, for � � ���.
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FIG. 6: Analogous plots to Figs. 2, 3, but for T8G.
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