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Abstract

A novel Motional Stark Effect diagnostic has been utilized to reconstruct the parallel current

density profile in a spherical torus plasma for the first time. The measured current profile compares

favorably with neoclassical theory when no large-scale MHD instabilities are present in the plasma.

However, in discharges with sustained high fraction of non-inductive current drive, a current profile

anomaly is observed during saturated interchange instability activity. Neutral beam injection

current drive redistribution can account for the apparent anomaly and contributes to sustaining

the central safety factor above unity for over five current redistribution times.

PACS numbers: 52.55.Fa, 52.55.Wq
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The Spherical Torus (ST) configuration [1] has made considerable progress in achieving

good confinement in the H-mode confinement regime [2] and high toroidal beta [3–6] required

for efficient fusion energy applications. Recent progress has also been achieved in integrat-

ing high confinement, high plasma shaping factor, and stable operation above the no-wall

stability limit to achieve high non-inductive current fraction [7–9]. High non-inductive cur-

rent fraction is deemed essential for the ST concept due to the necessarily compact central

column and transformer used for inductive current drive. Advanced tokamaks have recently

achieved high toroidal beta with high non-inductive current fraction [10] utilizing a combi-

nation of bootstrap current [11], neutral beam injection current drive (NBICD), and electron

cyclotron current drive. However, given the difficulty in achieving fully non-inductive op-

eration at high beta, alternative discharge scenarios have also been developed in which a

majority of the current is driven by the neoclassical bootstrap effect, but ohmic current

drive is still a significant fraction of the total current [12–14]. A necessary element of these

scenarios is avoidance of large sawtooth instabilities which might otherwise trigger poten-

tially disruptive 2/1 neoclassical tearing modes (NTMs). In tokamak devices that minimize

the impact of the sawtooth, the central safety factor q0 is maintained at or just above unity

either through auxiliary current drive or via MHD instabilities which apparently redistribute

current. A key scientific element of understanding current drive physics in the absence of

MHD activity has been the validation of neoclassical resistivity, bootstrap current, and other

sources of non-inductive current coupled with measurements of the internal inductive electric

field [15].

In this article we report on the first systematic validation of neoclassical and beam-

driven currents in low aspect tokamak plasmas. These studies are made possible by a novel

Motional Stark Effect (MSE) diagnostic technique [16] developed specifically for the low

magnetic field strength (BT ≤ 0.6T ) of present-day ST devices. Similar to standard aspect

ratio tokamaks, NSTX has also now demonstrated discharge scenarios in which a majority

of the current is driven non-inductively and the central q is maintained at or above unity

for durations limited only by coil heating limits. In NSTX, this condition is made possible

initially by operation at high normalized beta ≡ βN and bootstrap fraction, and is later

facilitated by the presence of saturated MHD activity in the plasma core. As described

below, the broad current profile measured during this MHD activity apparently results from

redistribution of injected energetic particles.
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The first step in any analysis of current profile evolution is accurate reconstruction of

the time-evolving equilibria. The NSTX MSE system for the data analyzed here consists

of 8 midplane channels covering the inner 90% of the plasma normalized minor radius ρ ≡

ψ̂
1/2

pol . The reconstructed current profiles are most accurate in the plasma core since 7 of

the 8 channels are typically inside ρ = 0.6. A 51 point midplane horizontally viewing

C-VI impurity charge exchange recombination spectroscopy system is used to determine

the electric field profile from impurity radial force balance to correct the MSE pitch angle

data [17]. In addition, the electron temperature is assumed to be a magnetic flux function

and is used as an additional constraint which modifies the plasma boundary location by

up to several centimeters. This improved boundary identification improves the mapping

of all kinetic profiles to flux functions and improves the accuracy of the calculated current

drive sources [18]. Plasma toroidal rotation has previously been shown to cause the density

profile to deviate from a flux function in NSTX plasmas [19], and flux-surface-averaged

kinetic profiles are used in the evaluation of neoclassical terms [20]. Toroidal rotation slightly

decreases the reconstructed qmin (∆qmin = -0.1-0.15 for peak sonic Mach number M = 0.8

and -0.05 for typical M = 0.5) and is not included in the remainder of the analysis.

Figure 1 shows the time evolution of plasma parameters for one of the longest duration

discharges achieved thus far in NSTX. Figure 1a shows βN approaching 6 near t=0.9s and

exceeding 5 for t=0.5-1.05s. During this time interval, rotational stabilization of the resistive

wall mode [8] allows stable operation above the n=1 no-wall stability limit βN ≈ 3.8-4.2

computed using the DCON code [21], and several n=1 MHD bursts and rapid but temporary

decreases in βN are observed when βN exceeds the computed n=1 ideal-wall limit βN ≈ 5.3-

5.7 late in the high βN phase. For reference, the peak toroidal beta βT reaches 17%, the

estimated current redistribution time during the high-βN phase is 0.25-0.3s [22], and the

energy confinement time τE=35ms. The neutral beam heating power is held fixed at 6MW

from t=0.16s through the remainder of the discharge, and Figure 1b shows that reduced βN

correlates with enhanced low-frequency n=1 MHD activity. Figure 1c shows that during the

high βN phase the minimum safety factor value decreases very slowly and becomes nearly

constant with q0 = qmin=1.2-1.3. This discharge is in a nearly stationary state with the

exception of the plasma density which slowly increases to the Greenwald value [23] as shown

in Figure 1a. Simultaneous proximity to the density limit and the ideal-wall stability limit

likely plays a role in triggering the MHD activity that ultimately ends the quiescent phase
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of the discharge. During the quiescent phase, Figure 1d shows that the total predicted

current agrees with the measured total to within 5%. Figure 1d also shows that up to 60%

of the current is driven non-inductively by the neoclassical bootstrap effect, neutral beam

injection current drive, and toroidal components of the Pfirsch-Schluter and diamagnetic

currents. Similar 700kA discharges have achieved 65-70% non-inductive current fraction but

do not have complete MSE data sets.

The neoclassical conductivity σnc and bootstrap current are calculated from theory valid

for general geometry and low aspect ratio [24], and the beam current drive is calculated using

the TRANSP code [25]. The ohmic current density is calculated from 〈 ~JOH · ~B〉 ≡ σnc〈 ~E · ~B〉

where the inductive electric field ~E = −∂ ~A/∂t and ~A is the total (poloidal and toroidal)

vector potential obtained from the equilibrium reconstructions [15]. As seen in Figure 2a

the profile of the calculated total flux-surface-averaged parallel current density is also in

good agreement with the reconstructed profile during the MHD-quiescent phase at high βN .

In contrast, after t=1.05s, a 5-10kHz continuous n=1 mode becomes unstable and causes

a significant decrease in plasma confinement and reduces βN from 5.5 to 4 as evident in

Figures 1a and b. During this same period the density slowly decreases and the electron

pressure profile peaking increases. These changes cause the calculated bootstrap and beam-

driven currents to increase in the plasma core, and as shown in Figure 2b, the calculated

central current density exceeds the reconstructed value by 45%. Since resistive diffusion

will tend to continually increase the ohmic current density in the plasma core and drive the

minimum q towards unity, understanding how the experimentally broadened current profile

is maintained after t=1.05s is a key result of this letter.

During the discharge phase when no low-frequency n=1 mode activity is present, the total

neutron rate calculated by TRANSP is approximately 10% higher than the measured value

but is within the experimental uncertainty of the measurement. The detailed time-evolution

of the neutron rate is otherwise in good agreement during this period, and this trend can be

used to determine the impact of the MHD activity after t=1.05s. In Figure 2c the predicted

value is renormalized to match the measured value during the time interval t=0.8-0.9s. From

this renormalization it is evident that the onset of late n=1 MHD activity correlates with

an additional 20-30% decrease in neutron rate relative to prediction assuming no anomalous

fast-ion diffusion is present. From this decrease it is inferred that the late n=1 mode is

modifying the fast-ion population and possibly the NBICD.
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To gain a better understanding of the structure of the n=1 mode, Ultra-Soft X-Ray

(USXR) line-integrated emission data [26] has been inverted [19] to calculate both the equi-

librium and perturbed emission profiles. Figure 3a shows the line-integrated emission data

in the plasma core during late n=1 mode activity, and Figure 3b shows the best fit to the

total emission obtained with a m/n=1/1 kink eigenfunction. Figure 3c shows the time evo-

lution of the best-fit kink flux-surface-normal displacement profile at the outboard midplane.

As seen in the figure, the maximum displacement is approximately 1.6cm at ρ = 0.4. In

the modeling, the displacement is constrained to be zero at the plasma edge because the

energy-filtered emission is too weak near the plasma boundary to accurately determine the

displacement. Despite this limitation, the eigenfunction is evidently initially quite broad

with finite amplitude extending to ρ ≈ 0.8, while at later times the eigenfunction narrows

to have almost zero displacement outside ρ = 0.5 during mode saturation. After t=1.14s,

the eigenfunction shape from USXR inversion is measured to change little, and the poloidal

magnetic field fluctuation amplitude measured at the outboard vacuum vessel wall remains

approximately constant at 3-5 Gauss RMS.

The core USXR emission cannot be well-fit using a 2/1 island eigenfunction, and it is

noteworthy that the 1/1 component is present in a plasma with no q = 1 surface. The

reconstructed q profile is flat to weakly reversed with q0 − qmin ≈ 0.1 and ρqmin
= 0.3− 0.45

with the q = 2 surface located near ρ = 0.65. As shown in Figure 3c, such profiles are

calculated to be resistive interchange unstable (DR > 0) at t=1.16s for ρ=0.2-0.5. Additional

analysis finds resistive interchange instability requires βN > 3.6 and qmin < 1.3, and internal

n=1 ideal modes become unstable for qmin < 1.1 and βN > 3.9. Thus, the observed mode

may be a saturated non-resonant version of the resistive interchange mode [27] or a quasi-

interchange mode [28].

The mode magnetic field perturbation amplitude can be estimated from the USXR

data [19], and the flux-surface normal component of the perturbed field can be as large

as 3% of the modulus of the equilibrium field in the plasma core. Tearing modes [29, 30]

and Alfvén instabilities [31] have previously been identified as capable of causing energetic

particle diffusion and loss via orbit stochastization, and the interchange-type instability de-

scribed here apparently provides another mechanism for enhanced fast ion diffusion in the

plasma core. Fast ion diffusion can be modeled in TRANSP using a time and spatially

dependent diffusivity for the slowing-down ions from NBI. For the time period from t=1.05-
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1.15s, Figure 3c shows the eigenfunction radial extent is changing rapidly, and a constant

anomalous fast-ion diffusivity χfast = 15m2s−1 extending from ρ = 0.0 − 0.7 can reproduce

the measured neutron rate during this time interval. Higher diffusivity values extending

over a narrower minor radial extent can also produce similar decrements in predicted neu-

tron rate. After t=1.15s, the eigenfunction extent remains approximately fixed, and the

best simultaneous match to the subsequent neutron rate evolution and reconstructed cur-

rent density profile is obtained with χfast = 50m2s−1 inside ρ = 0.3. As seen in Figure 4a,

this non-zero fast-ion diffusivity assumption reproduces the measured neutron rate evolu-

tion for t >1.05s. Perhaps more consistent with the mode extent from the USXR data,

χfast = 20m2s−1 inside ρ = 0.45 also reproduces the measured neutron rate. Further, as

shown in Figure 4b, this simulated redistribution of fast ions reduces the calculated total

current density in the core from 45% higher than the reconstructed value to the same value

to within the uncertainty of the calculation. Further, the NBICD density is increased by

20-40% for ρ = 0.5-0.6 resulting in a flat to hollow NBICD profile. The total NBICD and

fast-ion stored energy are reduced by only 15% for the two diffusion models shown, so most

of the NBICD is apparently redistributed rather than lost.

In summary, the results above demonstrate that core-MHD-induced fast-ion redistribu-

tion can convert a centrally peaked NBICD profile into a flat or even hollow profile. This

conversion apparently raises the safety factor in the plasma core producing a flat to weakly

reversed-shear q profile which supports core n=1 MHD activity which saturates and helps

sustain a broadened NBICD profile and elevated safety factor. It is noteworthy that for the

q profile characteristics described above, interchange modes are potentially self-regulating

since they become more unstable as qmin is lowered thereby increasing fast-ion diffusion

and raising qmin. Similar mode dynamics and MHD-induced NBICD diffusion may also be

relevant to tokamak scenarios proposed for ITER in which 3/2 NTMs have previously been

reported to aid sustainment of q0 above unity for extended durations [32].
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