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An Exact Magnetic Moment Invariant of Charged Particle Gyromotion

Hong Qin and Ronald C. Davidson
Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543

For the motion of a charged particle in a uniform, time-dependent axial magnetic field B(t)ez, it
is shown that there is an exact magnetic moment invariant of the particle dynamics M , to which
the adiabatic magnetic moment invariant µ = mv2

⊥/2B is asymptotic when the time-scale of the
magnetic field variation is much slower than the gyro-period. The connection between the exact
invariant M and the adiabatic invariant µ enables us to characterize in detail the robustness of the
adiabatic magnetic moment invariant µ.

PACS numbers: 52.20.Dq,52.30.Gz,45.50.-j

The magnetic moment of a charged particle gyrating
in a magnetic field B is defined as µ ≡ mv2

⊥
/2B, where

m is the particle mass and v⊥ is the perpendicular par-
ticle speed. As an adiabatic invariant of the particle mo-
tion in a magnetic field with slow variations in space and
time [1], it is an important concept in plasma physics.
Even though it is a classical result in plasma physics
[1, 2], there is renewed interest in further development
[3, 4]. In this paper, we demonstrate that there is an
exact magnetic moment invariant M of a charged parti-
cle’s gyromotion in a uniform, time-dependent magnetic
field B(t)ez . We also prove that when the time-scale
of the magnetic field variation is much slower than the
gyro-period, |(∂B/∂t)(1/B)| � ωc ≡ |qB/mc| , the mag-
netic moment µ, as an adiabatic invariant, is asymptotic
to the exact invariant M . Furthermore, the connection
between the exact invariant M and the adiabatic invari-
ant µ enable us to characterize in detail the robustness
of the invariance of the magnetic moment µ, which is
an important theoretical underpinning for the magnetic
confinement of fusion plasmas.

For present purpose, we consider the nonrelativisitc
motion of a charged particle with mass m and charge q in
the uniform, time-dependent magnetic field B = B(t)ez

inside a long, tightly-wound solenoid aligned in the ez

direction. In this geometry, the vector potential A that
generates B = ∇×A is

A =Aθ(r, t)eθ =
1

2
B(t)reθ , (1)

where r is the radial distance from the axis of the
solenoid, and eθ is a unit vector in the θ-direction in the
cylindrical polar coordinates (r, θ, z). The corresponding
electric field determined from ∇×E = −c−1∂B/∂t is

E = −
1

c

∂A

∂t
= −

1

2c
Ḃ(t)reθ , (2)

where super-dot (̇) denotes d/dt. In this field configura-
tion, the z-motion of the particle is decoupled from the
transverse motion and is described trivially by z̈ = 0,
corresponding to constant axial velocity with ż = vz =
const. On the other hand, the Lagrangian of the trans-

verse particle motion is

L =
(q

c
A+mv⊥

)

· v⊥ −
1

2
mv

2
⊥ (3)

=
q

c
Aθrθ̇ +

1

2
m

(

ṙ2 + r2θ̇2
)

.

The transverse canonical momenta associated with
Eq. (3) are

Pθ ≡
∂L

∂θ̇
=

qAθ

c
r + mr2θ̇ , (4)

Pr ≡
∂L

∂ṙ
= mṙ . (5)

Because ∂L/∂θ = 0, Pθ is an invariant of the motion.
This is of course an elementary result corresponding to
the conservation of canonical angular momentum. How-
ever, there is another invariant that is associated with
the radial dynamics, which is much less transparent. The
equation for the dynamics of r(t) is readily shown to be

r̈ + Ω2(t)r =
P 2

θ

m2r3
, (6)

where Ω ≡ qB(t)/2mc is one-half of the instantaneous
gyro-frequency (also called the Larmor frequency). To
construct the expected invariant, we make use of the fol-
lowing result [5].

Theorem 1. For an arbitrary function κ (t) and y1, y2

satisfying

ÿ1 + κy1 =
c1

y3
1

, (7)

ÿ2 + κy2 =
c2

y3
2

, (8)

where c1 and c2 are real constants, the quantity

I = c1

(

y2

y1

)2

+ c2

(

y1

y2

)2

+ (y2ẏ1 − ẏ2y1)
2 (9)

is an invariant with I = const. (independent of t).

Proof. Calculating İ = dI/dt from Eqs. (7)-(8) readily
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gives

İ =2 (y1ẏ2 − ẏ1y2)

[

c1y2

y3
1

+
c2y1

y3
2

+ (y1ÿ2 − ÿ1y2)

]

=2 (y1ẏ2 − ẏ1y2) [y2 (ÿ1 + κy1)

−y1 (ÿ2 + κy2) + (y1ÿ2 − ÿ1y2)] = 0 .

Even though it is straightforward to prove the theorem
directly, the form of the invariant is difficult to guess from
elementary considerations. The invariant I in the form
of Eq. (9) was first obtained by analyzing the symmetry
properties of Eqs. (7) and (8) [5]. Symplectic structure
and symmetry properties of the general non-autonomous
Hamiltonian systems were studied by Struckmeimer and
Riedel [6, 7]. A constructive proof of Theorem 1 using
elementary methods can be given through the following
transformation [8]. Letting y1(t) = y2(t)z(t), we rewrite
Eq. (7) as

ÿ2z + 2ẏ2ż + y2z̈ + κy2z =
c1

y3
2z

3
. (10)

If we choose y2(t) to satisfy Eq. (8), then Eq. (10) be-
comes

c2z

y3
2

−
c1

y3
2z

3
+ 2ẏ2ż + y2z̈ = 0 ,

which can be integrated once when multiplied by y3
2 ż to

give

c2z
2 + c1

1

z2
+ y4

2 ż
2 = const . (11)

Equation (11) is identical to Eq. (9). What is demon-
strated by the above constructive proof is that there is a
close connection (or a symmetry) between the solutions
of Eqs. (7) and (8).

There are two ways to interpret the invariant I. First,
it can be viewed as an invariant for a two-particle sys-
tem despite the fact that the dynamics of the two par-
ticles is decoupled. Struckmeier and Riedel derived an
exact invariant for 3D Hamiltonian systems of N parti-
cles confined within a general velocity-dependent poten-
tial [9, 10]. Another interpretation is that it is an in-
variant of the single-particle dynamics y1(t), constructed
using a pre-calculated auxiliary function y2(t). At first
glance, one may suspect the fact that I in the form of
Eq. (9) is a valid invariant for the dynamics of y1(t) de-
scribed by Eq. (7) because I depends on the solution of
y2(t). However, it is readily demonstrated that I is in-
deed a valid invariant for y1(t) by the fact that y2(t) is
completely independent of Eq. (7). It is only necessary to
pick a set of arbitrary initial conditions and c2 to solve
for y2(t) once, and this particular function can then be
used to construct invariants for all of the particle dynam-
ics described by Eq. (7) with different initial conditions
and constant c1. The functionality of y2(t) occurring in

I is similar to a special function defined by an ordinary
differential equation, such as the Bessel function. It is of
course common for an invariant to depend on one or sev-
eral special functions and their derivatives. Furthermore,
the invariant I can be viewed as a generalized Courant-
Snyder invariant [11–13], which is a basic result regard-
ing charged particle dynamics in a transverse focusing
lattice in particle accelerators.The Courant-Snyder in-
variant was rediscovered by Lewis [14], and is sometimes
referred as the Lewis invariant by different authors.

From Theorem 1, the transverse motion of the charged
particle has an exact invariant Iα given by

Iα =
P 2

θ

m2

(

w2
α

r2

)

+ α

(

r2

w2
α

)

+ (ṙwα − ẇαr)
2

, (12)

where α is an arbitrary real constant and wα(t) is any
function of time satisfying

ẅα + Ω2(t)wα =
α

w3
α

. (13)

The invariant Iα in Eq. (12) will be recognized as a linear
combination of the constants of the motion, A2

x and A2
y,

used in accelerator physics [12, 13], where Ax and Ay are
the constant amplitude scale factors for the transverse
particle orbits in a time-varying magnetic field B(t)ez ,
and πA2

x and πA2
y are the corresponding (conserved)

phase-space areas.

For present purpose, we assume qB(t) > 0. Of course,
any function of Pθ and Iα is also an invariant of the single-
particle motion. Of particular interest is the invariant M
defined by

M ≡
q

4c

(

I1 −
2Pθ

m

)

(14)

=
qw2

1

4c

{

(

ṙ − r
ẇ1

w1

)2

+ r2

[(

qB

2mc
+ θ̇

)

−
1

w2
1

]2
}

,

where I1 is equal to Iα in Eq. (12) with α = 1, and use
has been made of Eq. (4). In the subsequent analysis, we
refer to M as the exact magnetic moment invariant. [For
the case of qB(t) < 0, the definition of M is identical to
Eq. (14) with I1 replaced by −I1, and the Ω in Eqs. (17)-
(21) is replaced by −Ω.]

When the magnetic field variation is slow compared
with the gyro-period, i.e.,

B = B (εt) , (15)

where ε � 1, the magnetic moment µ = mv2
⊥

/2B(t) =

m
(

ṙ2 + r2θ̇2
)

/2B(t) is a well-known adiabatic invari-

ant. We now prove that µ is asymptotic to the exact
invariant M for small ε. Let Ω = Ω(εt) and T = εt. Then
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Eq. (13) for α = 1 becomes

ε2 d2w1

dT 2
+ Ω2(T )w1 =

1

w3
1

. (16)

Expressing w1 = u0+u1ε+u2ε
2+..., it is straightforward

to show from Eq. (16) that

u0 =
1

Ω1/2
, (17)

u1 = 0 , (18)

u2 = −
3

4Ω2

d2

dT 2

(

Ω1/2
)

, (19)

... ,

where Ω(T ) ≡ qB(T )/2mc > 0 is assumed. Therefore,

w1 =
1

Ω1/2
+ O

(

ε2
)

, (20)

ẇ1 = O (ε) . (21)

Substituting w1 and ẇ1 into Eq. (14), we readily obtain

M =
q

4cΩ

[

ṙ2 + r2θ̇2
]

+ O(ε) = µ + O(ε) , (22)

which shows the relationship between the adiabatic in-
variant µ and the exact invariant M for ε � 1. Equa-
tion (22) also enables us to establish two very important
properties of the adiabatic invariant µ. These two prop-
erties allow us to quantify the exact meaning of the ad-
jective “adiabatic”. The first property of µ pertains to
the change of µ at any time t relative to its value at t = 0.
From Eq. (22),

µ(t) = M + O(ε) , (23)

µ(0) = M + O(ε) . (24)

Because M is an exact invariant, it follows that

∆µ(t) ≡ µ(t) − µ(0) = O(ε) (25)

for all t. In other words, the change of µ is always small
for all t. This is a powerful statement for two reasons.
First, from the definition of µ and Eq. (6),

dµ

dt
= −

Ḃ

B

(

mv2
⊥

2
+

PθΩ

2
−

mr2Ω2

4

)

= O(ε) . (26)

In general, we would expect ∆µ ∼ O(ε1−n) for t ∼
O (ε−n) , if µ did not have the extra dynamical prop-
erties describe above. Second, in order to qualify to be
called an adiabatic invariant, it is only required that the
change of the quantity be O (ε) for 0 ≤ t ≤ O(1/ε) [15].
What we have proved is a stronger result that ∆µ = O(ε)
for all t.

The second important property of µ concerns the dif-

ference between the final state and the initial state when
Ω evolves from an initial constant value to a final con-
stant value. This property can be stated as follows. If

Ω > Ω0 > 0 , lim
T→+∞

Ω(T ) = Ω+, lim
T→−∞

Ω(T ) = Ω− ,

(27)

and lim
T→±∞

diΩ

dT i
exists for i ≥ 1 , (28)

then for any integer n,

µ (+∞) − µ (−∞) = o (εn) . (29)

This type of characterization of an adiabatic invariant
was first adopted by Kulsrud [16]. To prove Eq. (29)
under the conditions in Eqs. (27) and (28), we carry
out a perturbative analysis of Eq. (16) to order n for any
integer n. Let w1 =

∑

n unεn and S =
∑

n Snεn = 1/w3
1.

Obviously, S0 = 1/u3
0 and S1 = 0. For n ≥ 2,

unΩ2 = Sn − ün−2 , (30)

Sn = −
3S0

u0
un −

1

u3
0

n−1
∑

i,j,k=0

Sn−1−(i+j+k)uiujuk ,

where Sl = 0 for l < 0. From this iteration relation and
the fact that u1 and u2 are homogeneous polynomial in
terms of Ω̇ and Ω̈, we can deduce that un is a homoge-
neous polynomial in terms of diΩ/dT i (i = 1, ..., n). Fur-
thermore, because limT→±∞ diΩ/dT i exists for i ≥ 0, it
follows that

lim
T→±∞

diΩ

dT i
= 0, (i ≥ 1) . (31)

There exists a Tn such that when T > Tn and T < −Tn,

∣

∣

∣

∣

diΩ

dT i

∣

∣

∣

∣

< εn+1, (i = 1, ..., n) . (32)

Therefore, for T > Tn and T < −Tn, we obtain

w1 =
1

Ω1/2
+ o(εn) , (33)

w′

1 = o (εn) , (34)

and for t > Tn/ε and t < −Tn/ε,

M = µ(t) + o (εn) . (35)

In Eq. (34), w′
1 = dw1/dT . Consequently,

µ(t) − µ(−t) = o (εn) (36)

for t > Tn/ε, and we have proved the result stated in
Eq. (29).

As a final point, it should also be emphasized that
the existence of the exact invariants I1 and Pθ represents
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powerful constraint conditions that can be used to deter-
mine exact expressions for the transverse orbits r(t) for
general initial conditions at t = 0. To illustrate this point,
we denote the particular solution to Eq. (13) for α = 1
by w1(t). For a prescribed functional form for Ω(t), and
specified initial conditions w1|t=0 and dw1/dt|t=0, the
solution for w1(t) can be determined numerically from
Eq. (13). We now introduce the stretched time variable
τ(t) and the scaled radial coordinate R(τ) defined by

τ =

∫ t

0

dt

w2
1(t)

, R =
r

w1
. (37)

For α = 1, Eq. (9) can then be expressed as

(

d

dτ
R2

)2

+ 4

(

R2 −
1

2
I1

)2

=

(

I2
1 −

4P 2
θ

m2

)

. (38)

From Eqs. (37) and (38), R2(τ) − I1/2 exhibits simple
harmonic motion proportional to cos (2τ) and sin (2τ) ,
and the exact solution for r2(t) can be expressed as

r2(t) = w2
1(t)

[

1

2
I1 +

1

2

(

I2
1 −

4P 2
θ

m2

)1/2

(39)

× cos

(

2

∫ t

0

dt

w2
1(t)

+ φ0

)]

,

where φ0 is a constant phase factor.
In conclusion, for the case of a uniform, time-

dependent magnetic field B(t)ez , we have demonstrated
that there is an exact invariant Iα associated with the
transverse particle dynamics. An exact magnetic mo-
ment invariant M was constructed, to which the adi-
abatic invariant µ = mv2

⊥
/2B is asymptotic when the

time-scale of the gyromotion is fast in comparison with
the time-scale for variation in B(t). The relation be-
tween the exact invariant M and the adiabatic invariant
µ has enables us to quantify several important proper-
ties regarding the robustness of the adiabatic invariant
µ. Besides its importance to the theory of magnetic con-
finement, there are other interesting applications of the
theory developed here. One example is the concept of
sub-harmonic heating and cooling. It is well known that
charged particles in a magnetic field can be heated or
cooled by ramping up or ramping down the magnetic
field. However, this magnetic pumping effect offers a
limited heating or cooling capability, because the field
cannot be ramped up or down indefinitely. It is ideal if
particles can be heated or cooled in a periodically-varying
magnetic field. But, the approximate invariance of the
magnetic moment indicates that to leading order, a par-
ticle’s kinetic energy is conserved in one full cycle of the
magnetic field. The exact magnetic moment invariant
M can be used to calculate the next-order kinetic en-
ergy variation, which can be increasingly significant with
increasing pumping frequency. Such a magnetic heat-

ing or cooling technique may prove valuable in plasma
physics and accelerator physics applications. The case
considered here does not include spatial inhomogeneities
in the magnetic field. The general case with space-time
variations in B(x, t) will be the subject of a subsequent
investigation. Here, we make the following conjecture:
under the most general conditions for the magnetic mo-
ment µ = mv2

⊥
/2B(x, t) to be an adiabatic invariant, for

most particles there exist exact invariants of the trans-
verse particle dynamics, to which the magnetic moment
is asymptotic. Such invariants correspond to the invari-
ant tori of the Kolmogorov-Arnold-Moser (KAM) theo-
rem when the deviation from an intergrable system is
small enough. The KAM theorem guarantees the exis-
tence of these surfaces by proving the convergence of the
perturbation series for the tori. The methods adopted in
this paper are a direct construction of the invariant tori
using independent special functions determined from sev-
eral differential equations describing the symmetry prop-
erties of the perturbed system.

This research was supported by the U.S. Department
of Energy under contract AC02-76CH03073. We thank
Drs. R. Kulsrud, N. Fisch, G. Hammet, and E. Startsev
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