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Foundations of Nonlinear Gyrokinetic Theory
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Princeton University, Plasma Physics Laboratory, Princeton, NJ 08543, USA

Nonlinear gyrokinetic equations play a fundamental role in our understanding of the long-time
behavior of strongly magnetized plasmas. The foundations of modern nonlinear gyrokinetic the-
ory are based on three important pillars: (1) a gyrokinetic Vlasov equation written in terms of
a gyrocenter Hamiltonian with quadratic low-frequency ponderomotive-like terms; (2) a set of
gyrokinetic Maxwell equations written in terms of the gyrocenter Vlasov distribution that contain
low-frequency polarization and magnetization terms (derived from the quadratic nonlinearities in
the Hamiltonian); and (3) an exact energy conservation law for the gyrokinetic Vlasov-Maxwell
equations that includes all the relevant linear and nonlinear coupling terms. The foundations
of nonlinear gyrokinetic theory are reviewed with an emphasis on the rigorous applications of
Lagrangian and Hamiltonian methods used in the variational derivation of nonlinear gyrokinetic
Vlasov-Maxwell equations. The physical motivations and applications of the nonlinear gyrokinetic
equations, which describe the turbulent evolution of low-frequency electromagnetic fluctuations
in a nonuniform magnetized plasmas with arbitrary magnetic geometry, are also discussed.
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I. INTRODUCTION

Magnetically-confined plasmas, found either in fusion-
research devices or nature, exhibit a wide range of spatial
and temporal scales. Consider, for example, the behav-
ior of single charged particles in a plasma confined by
a strong magnetic field (Northrop, 1963), represented in
divergenceless form as

B = ∇α×∇β ≡ B(α, β, s) b̂(α, β, s)

where the Euler potentials (α, β) are time-dependent
magnetic-line labels, s denotes the parallel coordinate
along a field line, and b̂ ≡ ∂x/∂s denotes the unit vector
along the magnetic-field line. Here, the primary terms
associated with magnetic-field inhomogeneity are repre-
sented by the parallel gradient b̂ ·∇ lnB and the per-
pendicular gradient b̂ ×∇ lnB as well as the magnetic
curvature b̂ ·∇b̂.1 Charged particles confined in a strong
magnetic field with weak inhomogeneity execute three
types of quasi-periodic motion (Kruskal, 1962): (1) a
rapid gyro-motion about a single magnetic field line, with
a short gyroperiod τg(x) that depends on the particle’s
spatial position x = (α, β, s); (2) an intermediate bounce
(or transit) motion along a magnetic field line (driven by
the parallel gradient), with an intermediate characteris-
tic time scale τb(y; E , Jg) that depends on the particle’s
energy E and its gyro-action Jg ≡ (mc/e)µ (where µ
denotes the magnetic moment) as well as the field-line
labels y ≡ (α, β); and (3) a slow drift (bounce-averaged
precession) motion across magnetic field lines (driven by
the perpendicular gradient and the magnetic curvature
term), with a long characteristic time scale τd(E , Jg, Jb)
that depends on the bounce-action Jb as well as the
energy E and the gyro-action Jg. In general, the or-
bital time scales are well separated for charged parti-
cles magnetically-confined in a strong magnetic field with
weak inhomogeneity: τg � τb � τd. For example, the
orbital time scales of a 10-keV proton equatorially mir-
roring at geosynchronous orbit (Schulz and Lanzerotti,
1974) are τg ∼ 0.33 sec � τb ∼ 33 sec � τd ∼ 105 sec.
It has, thus, long been understood (Northrop and Teller,
1960) that the stability and longevity of Earth’s radiation
belts was due to the adiabatic invariance of the three ac-
tions (Jg, Jb, Jd), where the drift-action Jd ≡ (e/c) ΦB is
defined in terms of the magnetic flux ΦB enclosed by the
bounce-averaged precession motion of the magnetically-
trapped charged particles.

The typical energy-confinement time τE in high-
temperature magnetized plasmas (which is of great in-
terest in the development of fusion energy) generally

1 Additional terms associated with magnetic-field inhomogeneity

involve b̂ · ∇× b̂, which is related to the plasma current flowing

along magnetic-field lines, and R ≡ ∇1̂ · 2̂, where 1̂ ≡ ∇α/|∇α|
and 2̂ ≡ b̂ × 1̂; these secondary terms appear in the Hamiltonian
guiding-center theory (Littlejohn, 1983).

satisfies the condition τE � τb � τg and, thus, the
time scales associated with charge particle’s gyro-motion
and bounce/transit motion are much larger than the
transport time scale of interest. Moreover, the observed
anomalous transport associated with present magnetic
confinement devices is thought to be intimately related
to the fluctuation-induced transport processes due to sat-
urated (finite-amplitude) plasma turbulence, whose char-
acteristic time scale is much longer than the gyroperiod.

Experimental observations of magnetically-confined
plasmas indicate that such magnetized plasmas repre-
sent strongly turbulent systems; see, for example, Liewer
(1985) or Wootton (1990). The observed turbulence
in high-temperature magnetized plasmas is character-
ized by fluctuation spectra exhibiting the following fea-
tures: (1) a broad frequency spectrum (∆ω ∼ ω) at fixed
wavevector k; (2) the characteristic (mean) frequency
(ω ∼ ω∗) and perpendicular wavelength (λ⊥ ∼ ρs) of
the fluctuation spectrum are typical of drift-wave tur-
bulence theories (Horton, 1999); (3) fluctuations in den-
sity, temperature, electrostatic potential, and magnetic
field, with each fluctuating quantity having its own spa-
tial profile across the plasma discharge; and (4) a fixed-
frequency fluctuation spectrum that is highly anisotropic
in wavevector (k‖ � k⊥). Lastly, plasma turbulence is
believed to originate from collective instabilities driven
by the expansion free energy associated with radial gra-
dients in temperature or density (Horton, 1999; Tang,
1978).

Understanding the nonlinear dynamics of
magnetically-confined plasmas is a formidable task
for the following reasons. First, there exists a wide
variety of instabilities in inhomogeneous magnetically-
confined plasmas whose nonlinear behavior is, in general,
different from the corresponding linear behavior. Sec-
ondly, there is no clear separation in plasma turbulence
between the “inertial” range and the “dissipation”
range, in contrast to the inertial range in fluid turbu-
lence (Frisch, 1995), which exists over several decades
in wave-vector k and for which the Reynolds number
R (a dimensionless number characterizing the ratio
between nonlinear coupling and classical dissipation)
satisfies the condition R � 1. Furthermore, plasma
turbulence involves a plethora of additional dimension-
less parameters associated with the orbital dynamics of
magnetically-confined charged particles not present in
fluid turbulence. Thirdly, many aspects of the nonlinear
dynamics involved in the evolution toward such a
saturated state, which often also exhibits self-organized
large-scale motion, are not yet well understood. Lastly,
it is important to note that many plasmas of interest in
magnetic fusion and in astrophysics are “collisionless”
in particle dynamics and turbulence time scales, since
typical charged particles can execute many gyro-motions
and bounce/transit motions and collective waves can os-
cillate many times before particles suffer a 90o Coulomb
collision. Therefore, a collisionless kinetic description is
desirable for such plasmas.
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The development of gyrokinetic theory was initially
motivated by the need to describe complex plasma dy-
namics over time scales that are long compared to the
short gyro-motion time scale. Thus, gyrokinetic theory
was built upon a generalization of guiding-center theory;
see, for example, Northrop (1963) and Littlejohn (1983).
Taylor (1967) showed that, while the guiding-center
magnetic-moment invariant (denoted µ) can be destroyed
by low-frequency, short-perpendicular-wavelength elec-
trostatic fluctuations, a new magnetic-moment invari-
ant (denoted µ) can be constructed as an asymptotic
expansion in powers of the amplitude of the perturba-
tion field. This early result indicated that gyrokinetic
theory was to be built upon an additional transforma-
tion beyond the guiding-center phase-space coordinates,
thereby constructing new gyrocenter phase-space coor-
dinates, which describe gyroangle-averaged perturbed
guiding-center dynamics. This additional step, however,
was not considered as the highest priority at the time and
Rutherford and Frieman (1968) followed a more conven-
tional approach by developing the linear gyrokinetic the-
ory of low-frequency drift-wave (universal) instabilities in
general magnetic geometry.

Nonlinear gyrokinetic theory focuses its attention on
the low-frequency electromagnetic fluctuations that are
observed in inhomogeneous magnetized plasmas; see, for
example, Frieman and Chen (1982), Dubin et al. (1983),
Hahm et al. (1988), Hahm (1988), Brizard (1989a),
and Hahm (1996). Microturbulence and its associated
anomalous transport are subject of active research and
wide interest over many years. The following review pa-
pers have addressed this subject with different emphasis:
Tang (1978) on linear instabilities in magnetized plasmas,
Horton (1999) on further developments in linear and non-
linear theories and simulations, Krommes (2002) on an-
alytical aspects of statistical closure, and Diamond et al.
(2005) on the self-regulation of turbulence and transport
by zonal flows. Gyrokinetic simulations now play a major
role in the investigation of low-frequency plasma turbu-
lence and its associated transport in magnetized plasmas;
see Table I for a survey of applications of nonlinear gy-
rokinetic equations.

The foundations of modern nonlinear gyrokinetic the-
ory are based on three important mutually-dependent
pillars: (I) a gyrokinetic Vlasov equation written in terms
of a gyrocenter Hamiltonian that contains quadratic low-
frequency ponderomotive-like terms; (II) a set of gy-
rokinetic Maxwell equations that contain low-frequency
polarization and magnetization terms (derived from the
quadratic nonlinearities in the gyrocenter Hamiltonian);
and (III) an exact energy conservation law for the self-
consistent gyrokinetic Vlasov-Maxwell equations that in-
cludes all the relevant linear and nonlinear coupling
terms.

I. Nonlinear Gyrokinetic Vlasov Equation

Particle Hamiltonian Dynamics
⇓

Guiding-center Hamiltonian Dynamics
⇓

Gyrocenter Hamiltonian Dynamics
⇓

Gyrokinetic Vlasov Equation

Our derivation of the nonlinear gyrokinetic Vlasov
equation proceeds in two steps; each step involves the
asymptotic decoupling of the fast gyro-motion time scale
from a set of Hamilton equations by Lie-transform meth-
ods (I). The first step is concerned with the derivation
of the guiding-center Hamilton equations through the
elimination of the gyroangle associated with the gyro-
motion of charged particles about equilibrium magnetic
field lines. As a result of the guiding-center trans-
formation, the gyroangle becomes an ignorable coor-
dinate, and the guiding-center magnetic moment µ =
µ0 + · · · (where µ0 ≡ m|v⊥|2/2B denotes the lowest-
order term) is treated as a dynamical invariant within
guiding-center Hamiltonian dynamics. The introduction
of low-frequency electromagnetic fluctuations (within the
guiding-center Hamiltonian formalism) results in the de-
struction of the guiding-center magnetic moment due to
the reintroduction of the gyroangle dependence into the
perturbed guiding-center Hamiltonian system. In the
second step, we derive a new set of gyrocenter Hamil-
tonian equations through the elimination of the gyroan-
gle from the perturbed guiding-center equations. As a
result of the gyrocenter transformation, the new gyro-
center magnetic moment µ = µ + · · · is constructed as
the new adiabatic invariant and the gyrocenter gyroan-
gle ζ is an ignorable coordinate. Within the gyrocenter
Hamiltonian formalism, the gyrokinetic Vlasov equation,
thus, expresses the fact that the gyrocenter Vlasov distri-
bution F (X, v‖, t;µ) is constant along a gyrocenter orbit
in gyrocenter phase space (X, v‖;µ, ζ):

∂F

∂t
+

dX
dt

·∇F +
dv‖

dt

∂F

∂v‖
= 0, (1)

where dµ/dt ≡ 0 and ∂F/∂ζ ≡ 0. Here, X denotes
the gyrocenter position, v‖ ≡ b̂ · dX/dt denotes the gy-
rocenter parallel velocity, and the equations of motion
(dX/dt, dv‖/dt) are independent of the gyrocenter gy-
roangle ζ (explicit expressions are given below).

II. Gyrokinetic Maxwell Equations

Maxwell Equations
⇓

Gyrokinetic Maxwell Equations
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The self-consistent description of the low-frequency
electromagnetic fluctuations, which are produced by
charged-particle motion, is based on the derivation of
gyrokinetic Maxwell equations (II) expressed in terms
of moments of the gyrocenter Vlasov distribution. The
transformation from particle moments to gyrocenter mo-
ments again involves two steps (associated with the
guiding-center and gyrocenter phase-space transforma-
tions) and each step introduces a polarization density
and a magnetization current in the gyrokinetic Maxwell
equations:

∇ · (E + δE) = 4π (ρ + ρpol) , (2)

∇× (B + δB) =
4π
c

(
J + Jmag

)
, (3)

where ρ and J denote charge and current densities eval-
uated as moments of the gyrocenter Vlasov distribution
F , while the polarization density ρpol ≡ −∇ ·Pgy and
the magnetization current Jmag ≡ c∇×Mgy are de-
fined in terms the gyrocenter polarization vector Pgy

and the gyrocenter magnetization vector Mgy.2 For ex-
ample, the guiding-center magnetization current Mgc ≡
−‖µ‖gc b̂ (where ‖ · · ·‖gc denotes a moment with respect
to the guiding-center Vlasov distribution) explains the
difference between the particle current and the guiding-
center current. Gyrocenter polarization and magnetiza-
tion effects, on the other hand, involve expressions for
ρpol and Jmag in which the perturbed electromagnetic
fields (δE, δB) appear explicitly. The presence of self-
consistent gyrocenter polarization effects within the non-
linear electrostatic gyrokinetic formalism (Dubin et al.,
1983; Hahm, 1988), for example, yields important com-
putational advantages in gyrokinetic electrostatic simu-
lations (Lee, 1983).

III. Gyrokinetic Energy Conservation Law

Gyrokinetic Variational Formulation
⇓

Gyrokinetic Vlasov-Maxwell Equations
⇓

Gyrokinetic Energy Conservation Law (Noether)

The polarization and magnetization effects appearing
in the gyrokinetic Maxwell equations (2)-(3) can be com-
puted either directly by push-forward method, which in-
volves transforming particle moments into guiding-center
moments and then into gyrocenter moments, or by vari-
ational method from a nonlinear low-frequency gyroki-
netic action functional. While the direct approach has
the advantage of being the simplest derivation method

2 The polarization current Jpol ≡ ∂Pgy/∂t is not shown in Eq. (3)
because its gyrokinetic ordering is typically higher than the other
terms.

to use (Brizard, 1989a,b, 1990; Dubin et al., 1983; Hahm
et al., 1988), the variational approach (Brizard, 2000a,b)
has the advantage of allowing a direct derivation of an
exact energy conservation law (III) for the nonlinear gy-
rokinetic Vlasov-Maxwell equations through the Noether
method (Brizard, 2005a).

The purpose of the present paper is to review the mod-
ern foundations of nonlinear gyrokinetic theory by pre-
senting the Lagrangian and Hamiltonian methods used
in the derivation of self-consistent, energy-conserving
gyrokinetic Vlasov-Maxwell equations describing the
nonlinear turbulent evolution of low-frequency, short-
perpendicular-wavelength electromagnetic fluctuations
in nonuniform magnetized plasmas.

Further developments in gyrokinetic theory not pre-
sented here include the derivation of nonlinear rela-
tivistic gyrokinetic Vlasov-Maxwell equations (Brizard
and Chan, 1999), the investigation of the thermody-
namic properties of the gyrokinetic equations (Krommes,
1993a,b; Krommes et al., 1986; Sugama et al., 1996;
Watanabe and Sugama, 2006), the inclusion of a re-
duced (guiding-center) collision operator into the gy-
rokinetic formalism (Brizard, 2004; Dimits and Cohen,
1994), the derivation of high-frequency linear gyrokinet-
ics (Lashmore-Davies and Dendy, 1989; Lee et al., 1983;
Qin et al., 1999; Tsai et al., 1984), and various appli-
cations of linear gyrokinetics including stability calcula-
tions (Horton, 1999).

II. BASIC PROPERTIES OF NONLINEAR
GYROKINETIC EQUATIONS

A. Physical Motivations and Nonlinear Gyrokinetic
Orderings

In many plasmas found in both fusion devices and na-
ture, the temporal scales of collective electromagnetic
fluctuations of interest are much longer than a period of
a charged particle’s cyclotron motion (gyro-motion) due
to a strong background magnetic field, while the spatial
scales of such fluctuations are much smaller than the scale
length of the magnetic field inhomogeneity. In these cir-
cumstances, details of charged particle’s gyration, such
as gyrophase, are not of dynamical significance, and it
is possible to develop a reduced set of dynamical equa-
tions which still captures the essential features of the low-
frequency phenomena of interest.

By decoupling the information with the nearly-circular
gyro-motion (Kruskal, 1962), one can derive the gyroki-
netic equation (1) which describes the spatio-temporal
evolution of the gyrocenter distribution function defined
over a reduced (4+1)-dimensional gyrocenter phase space
(X, v‖;µ), a key feature of the modern nonlinear gyroki-
netic approach. In simulating strongly magnetized plas-
mas, one can, thus, save enormous amount of computing
time by having a time step greater than the gyroperiod,
and by reducing the number of dynamical variables by
one.
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An excellent example where the nonlinear gyrokinetic
formulations have applied well, and have made a deep
and long-lasting impact, is the theoretical study of mi-
croturbulence in tokamak devices. Experimental mea-
surements over the last three decades have indicated
that, in the absence of macroscopic magnetohydrody-
namic (MHD) instabilities,3 tokamak microturbulence is
believed to be responsible for the transport of plasma
particles, heat, and toroidal angular momentum com-
monly found to appear at higher levels than predictions
from classical and neoclassical collisional transport theo-
ries (Chang and Hinton, 1982; Connor et al., 1987; Hinton
and Hazeltine, 1976; Hinton and Wong, 1985; Rosenbluth
et al., 1972).

From experimental observations (see references listed
in Wootton (1990)), the typical fluctuation frequency
spectrum is found to be broadband (∆ω ∼ ωk) at fixed
wave vector k. Its characteristic mean frequency (in the
plasma frame rotating with E ×B velocity) is on the or-
der of the diamagnetic frequency ω∗ ≡ k · vD � Ω, where
the diamagnetic velocity vD [≡ (cT/eB) b̂ ×∇ lnP ] is
caused by a perpendicular gradient in plasma pressure
P and Ω ≡ eB/mic denotes the ion gyrofrequency.
Here, using some typical plasma parameters (tempera-
ture T = 10 keV and magnetic field B = 50 kG with
a typical gradient length scale L ∼ 100 cm), the ther-
mal ion gyroradius is ρi ∼ 0.2 cm and the frequency ratio
ω∗/Ω ≡ (kθρi) ρi/L ∼ 10−3, where kθ ∼ 1 cm−1 denotes
the poloidal component of the wave vector k (see Figure
1). Its correlation lengths in both radial and poloidal di-
rections, on the other hand, are on the order of several
ion gyroradii, which are much shorter than the macro-
scopic gradient-scale length L. Its wavelength (or correla-
tion length) along the equilibrium magnetic field is rarely
measured, in particular inside the last closed magnetic
surface. But some measurements at the scrape-off layer
indicate that it is much less than the connection length
(Endler et al., 1995; Zweben and Medley, 1989). Lastly,
the relative density fluctuation level δn/n0 ranges typi-
cally from well under 1 % at the core (near the magnetic
axis) to the order of 10 % at the edge (see Figure 2). Fluc-
tuations in electric field and magnetic field in the interior
of tokamaks are also rarely measured, but estimates in-
dicate that e δφ/Te ∼ δn/n0, and |δB|/B0 ∼ 10−4.

From these spatio-temporal scales of tokamak micro-
turbulence, one can make a very rough estimate of trans-
port coefficient Dturb using a dimensional analysis based
on a random-walk argument:

Dturb ∼ (∆r)2

∆t
∼ ∆ω

k2
r

∝ ω∗

k2
r

∼
(
kθ

k2
rρi

)
ρi

L
· cTi

eB
.

If we further assume that kθ ∼ kr ∝ ρ−1
i as observed

3 MHD instabilities sometimes lead to a catastrophic termination
of a plasma discharge called a disruption, or otherwise severely
limit the performance of plasmas.

FIG. 1 Spatial wave-number spectra obtained from spatial
correlation coefficients in the poloidal direction for (a) the
Adiabatic Toroidal Compression tokamak (Mazzucato, 1982)
and (b) the Tokamak Fusion Test Reactor (Fonck et al., 1993).

FIG. 2 Spatial profile of the total rms density-fluctuation
amplitude obtained by Beam Emission Spectroscopy on the
Tokamak Fusion Test Reactor (Fonck et al., 1993).

in gyrokinetic simulations with self-generated zonal flows
(see Table I) and in some experiments (Fonck et al., 1993;
McKee et al., 2003), we obtain

Dturb ∼ ρi

L
· cTi

eB
.

This scaling is called gyroBohm because the Bohm scal-
ing (∼ cTi/eB) is reduced by a factor ρi/L involving
the ratio of gyroradius to a macroscopic length scale.
This gyroBohm transport scaling is expected when local
physics dominates. Sometimes, it can be modified due to
a variety of mesoscale phenomena (Itoh and Itoh, 2001)
such as turbulence spreading (Chen et al., 2004; Garbet
et al., 1994; Gurcan et al., 2005, 2006; Hahm et al., 2004a,
2005; Itoh et al., 2005; Kim et al., 2003; Lin and Hahm,
2004; Naulin et al., 2005; Villard et al., 2004b; Waltz and
Candy, 2005; Zonca et al., 2004) and avalanches (Dia-
mond and Hahm, 1995; Garbet and Waltz, 1998; Naulin
et al., 1998; Newman et al., 1996; Politzer et al., 2002;
Sarazin and Ghendrih, 1998).

On the other hand, some early simulations without
self-generated zonal flows (see Table I for examples) have
reported ∆r ∝

√
Lρi, with kθ ∝ ρ−1

i , from which we
obtain the Bohm scaling Dturb ∼ cTi/eB. While the
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distinction between Bohm scaling and gyroBohm scaling
may seem quite simple and obvious, it is complicated by
many subtle issues (Lin et al., 2002; Waltz et al., 2002).

As stated above, the nonlinear gyrokinetic formalism
pursues a dynamical reduction of the original Vlasov-
Maxwell equations for both computational and analytic
feasibility while keeping the general description of the
relevant physical phenomena of interest intact. In this
Section, we describe the standard nonlinear gyrokinetoc
ordering (Frieman and Chen, 1982) with an emphasis on
physical motivations. We note that our understanding
of microturbulence based on experimental observations
was incomplete when the earlier versions of nonlinear gy-
rokinetic equations were being developed. Therefore, the
original motivation of the ordering might have been some-
what different from our interpretation here. The adia-
batic invariance of the new magnetic moment µ is, how-
ever, established on the fundamental fluctuation-based
space-time orderings ω � Ω and |k⊥| � L−1, which
have broad experimental basis for the most important
plasma instabilities in strongly magnetized plasmas.

The nonlinear gyrokinetic Vlasov-Maxwell equations
are traditionally derived through a multiple space-time-
scale expansion that relies on the existence of one or more
small (dimensionless) ordering parameters (Frieman and
Chen, 1982). These ordering parameters are, in turn,
defined in terms of the following characteristic physical
parameters associated with the background magnetized
plasma (represented by the Vlasov distribution F and
the magnetic field B) and the fluctuation fields (repre-
sented by the perturbed Vlasov distribution δf and the
perturbed electric and magnetic fields δE and δB):

ω = characteristic fluctuation frequency
k‖ = characteristic fluctuation parallel wavenumber

|k⊥| = characteristic fluctuation perpendicular
wavenumber

Ω = ion cyclotron frequency

vth =
√
Ti/mi = ion thermal speed

ρi = vth/Ω = ion thermal gyroradius
LB = characteristic background magnetic-field

nonuniformity length scale
LF = characteristic background plasma density

and temperature nonuniformity length scale

First, the background plasma is described in terms of the
(guiding-center) small parameter εB ≡ ρi/LB as

|ρi ∇ lnB| ∼ εB and
∣∣∣∣
1
Ω
∂ lnB
∂t

∣∣∣∣ ∼ ε3B, (4)

where the background time-scale ordering (ε3B) is consis-
tent with the transport time-scale ordering (Hinton and
Hazeltine, 1976); note that the background Vlasov dis-

tribution F satisfies a similar space-time ordering4 with
εF ≡ ρi/LF. The background magnetized plasma is,
therefore, treated as a static, nonuniform medium that is
perturbed by low-frequency electromagnetic fluctuations
characterized by short wavelengths perpendicular to the
background magnetic field and long wavelengths parallel
to it.

Next, the fluctuating fields (δf, δE, δB) are, first, de-
scribed in terms of two space-time ordering parameters
(ε⊥, εω):

|k⊥| ρi ≡ ε⊥ ∼ 1 and
ω

Ω
∼ εω � 1. (5)

Note that, while microturbulence spectra of present-day
high-temperature plasmas typically peak around ε⊥ ∼
0.1 − 0.2 < 1 at nonlinear saturation, the linear growth
rates are typically highest at ε⊥ ∼ 1. Hence, since
shorter wavelength fluctuations can affect longer wave-
length modes via nonlinear interactions, it is desirable to
have an accurate description of the relatively short wave-
length fluctuations (ε⊥ ∼ 1) as well. Second, since it is
important to have an ordering in which a strong wave-
particle interaction (e.g., Landau damping) is captured
at the lowest order, we require that ω ∼ |k‖|vth and, thus,
we also have the ordering

|k‖|
|k⊥|

∼ εω
ε⊥
. (6)

Note that the most dangerous plasma instabilities in a
strong magnetic field tend to satisfy this parallel order-
ing. Third, the relative fluctuation levels are described
in terms of the amplitude ordering parameter εδ:

∣∣∣∣
δf

F

∣∣∣∣ ∼ c|δE⊥|
B vth

∼ |δB|
B

∼ εδ � 1. (7)

The electric fluctuation ordering

εδ ∼ c|δE⊥|
B vth

∼ ε⊥
e δφ

Ti
(8)

implies that, for ε⊥ ∼ 1 and Te ∼ Ti, we have e δφ/Te ∼
εδ. In addition, a covariant description of electromag-
netic fluctuations requires that the parallel component
δA‖ ≡ b̂ · δA of the perturbed vector potential satifies
the amplitude ordering (v‖/c) δA‖ ∼ δφ, where the par-
allel particle velocity is v‖ ∼ vth, so that

εδ ∼
v‖

c

e δA‖

Ti
∼

|δB⊥|
ε⊥B

, (9)

4 Note that the ratio εB/εF < 1 can be used to formally define an
auxiliary ordering parameter known as the inverse-aspect-ratio
parameter a/R in toroidal magnetized plasmas, where a and R
denote the minor and major radii; we shall not make use of this
auxiliaryordering parameter in the present work and, henceforth,
we assume that εF ∼ εB .
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FIG. 3 Regimes of validity of nonlinear (A) and linear (B)
drift-kinetic and nonlinear (C) and linear (D) gyrokinetic the-
ories displayed on a plot of normalized electrostatic potential
(L/ρi) e δφ/Te ∼ εδ/(ε⊥εB) versus ε⊥, where the ordering pa-
rameters (εδ, ε⊥, εB) are defined in the text and δ � 1 denotes
an ordering parameter that distinguishes linear from nonlin-
ear theories or drift-kinetic from gyrokinetic theories.

which implies that, for ε⊥ ∼ 1, we have |δB⊥|/B ∼ εδ.
Hence, the orderings (8) and (9) imply that the terms
|k‖|δφ and (ω/c) δA‖ in the parallel perturbed electric
field δE‖ have similar orderings (for ε⊥ ∼ 1):

|k‖| δφ
(ω/c) δA‖

∼
|k‖|/|k⊥|
ω/Ω

∼ 1
ε⊥
,

so that |δE‖|/|δE⊥| ∼ |k‖|/|k⊥| ∼ εω/ε⊥ � 1. Lastly,
for a fully electromagnetic gyrokinetic ordering (and
high-β plasmas, where β ≡ 8πP/B2), we also require
that |δB‖|/B ∼ β εδ (Brizard, 1992)5; note, here, that
we use the gyrokinetic gauge condition ∇⊥ · δA⊥ = 0,
which represents the low-frequency gyrokinetic limit of
the Lorentz gauge c−1∂tδφ + ∇ · δA = 0. While εω and
εδ are comparable in practice (e.g., εω ∼ εδ ∼ 10−3), it
is useful to keep these parameters separate for ordering
purposes and greater flexibility. Note that, because of
the perpendicular ordering ε⊥ ∼ 1, full finite-Larmor-
radius (FLR) effects must be retained in the nonlinear
gyrokinetic formalism.

Lastly, the regimes of validity of various drift-
kinetic and gyrokinetic theories are summarized in
Fig. 3 in terms of the normalized electrostatic potential
(L/ρi) e δφ/Te ∼ εδ/(ε⊥εB) (Dimits et al., 1992). Note
that one needs εδ � 1 for any perturbative nonlinear
kinetic equations: for drift-kinetic theories, we require

5 While e δφ/Te � |δB⊥|/B � |δB‖|/B for typical low-to-modest
β tokamak plasmas, the fluctuation ordering (7) is retained for
its generality (which, thus, makes it applicable to high-β devices
such as spherical tori).

ε⊥ � 1, while for gyrokinetic theories (ε⊥ ∼ 1), we re-
quire εδ ∼ εB. The latter ordering implies that the linear
drive term (∼ ∇δφ× b̂ ·∇F ) is of the same order as the
nonlinear E×B coupling term (∼ ∇δφ× b̂ ·∇δf); this
is a generic situation for strong turbulence, which yields
a nonlinear saturation roughly at a mixing length level
δn ∼ (ρi/L)n (nonetheless, with a subsidiary ordering,
the nonlinear gyrokinetic equations can describe weak
turbulence as well).

B. Frieman-Chen Nonlinear Gyrokinetic Equation

The first significant work on nonlinear gyrokinetic
equations in general magnetic geometry was presented
by Frieman and Chen (1982), who used a conventional
approach based on a maximal multi-scale-ordering ex-
pansion involving a single ordering parameter ε (ε ∼
εB ∼ εω ∼ εδ). Here, the linear-physics-drive terms are
ordered at εω εδ and εB εδ (which recognizes the crucial
role played by the background magnetic-field nonunifor-
mity), while the nonlinear coupling terms are ordered at
ε2δ. The main purpose of the Frieman-Chen (FC) gyroki-
netic equations was for analytic applications and it has
indeed served its original motivation during the past two
decades. For instance, many nonlinear kinetic theories of
tokamak microturbulence (see Table I and references in
Horton (1999)) have used the FC equations as the start-
ing point. The number of assumptions on the general FC
ordering was minimum at least in the context of nonlin-
ear gyrokinetics (we elaborate this point later on).

The material presented here only summarizes some as-
pects of the work of Frieman and Chen (1982) relevant
to our discussion (and we use notation consistent with
the remainder of our paper). We begin with the Vlasov
equation

df

dt
≡ ∂f

∂t
+

dz
dt

· ∂f
∂z

= 0, (10)

where z = (x,p) denote the particle phase-space coordi-
nates and f(z, t) denotes the Vlasov particle distribution.
Here, the Vlasov equation (10) states that the particle
distribution f(z(t; z0), t) = f(z0; 0) is a constant along
an exact particle orbit z(t; z0), where z0 ≡ z(0; z0) de-
notes the orbit’s initial condition.

Following an iterative approach initially used by Hastie
et al. (1967), Frieman and Chen (1982) introduce de-
compositions of the Vlasov distribution f = F + εδ δf
and the particle’s equations of motion dz/dt = dZ/dt+
εδ dδz/dt, where (F, dZ/dt) represent the background
plasma dynamics and (δf, dδz/dt) represent the per-
turbed plasma dynamics associated with the presence of
short-wavelength fluctuating electromagnetic fields δE =
−∇δφ− c−1∂tδA and δB = ∇× δA.

Next, Frieman and Chen introduce a short-space-scale
averaging (denoted by an overbar) with the definitions
f ≡ F and (dz/dt) ≡ dZ/dt. Hence, the short-space-
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scale average of the Vlasov equation (10) yields

∂F

∂t
+

dZ
dt

· ∂F
∂z

≡ DF

Dt
= − ε2δ

(
dδz
dt

· ∂δf
∂z

)
, (11)

which describes the long-time evolution of the back-
ground Vlasov distribution F as a result of the back-
ground plasma dynamics (represented by the averaged
Vlasov operator D/Dt) and the nonlinear (ε2δ) short-
wavelength-averaged (quasilinear) influence of the fluc-
tuating fields. Here, Frieman and Chen (1982) expand
the solution F = F0 + εB F1 + · · · for the background
Vlasov equation (11) up to first order in εB and without
the nonlinear fluctuation-driven term (εδ = 0), where the
gyroangle-dependent part of the first-order correction

εB F̃1 = −
(∫

dζ

Ω
µ̇0

)
∂F0

∂µ
(12)

is expressed in terms of the lowest-order distribution
F0(X⊥, E , µ), which is a function of the perpendicu-
lar components of the guiding-center position X⊥ (i.e.,
b̂ ·∇F0 = 0), the (lowest-order) guiding-center kinetic
energy E (with Ė0 ≡ 0), and the (lowest-order) guiding-
center magnetic moment µ. In Eq. (12), µ̇0 denotes the
time derivative of the lowest-order magnetic moment,
which is ordered at εB for a time-independent magnetic
field and is explicitly gyroangle-dependent.6

By subtracting the averaged Vlasov equation (11)
from the Vlasov equation (10), we obtain the fluctuat-
ing Vlasov equation

Dδf

Dt
= − dδz

dt
· ∂F
∂z

− dδz
dt

· ∂δf
∂z

+
(
dδz
dt

· ∂δf
∂z

)
,

(13)
where the left side contains terms of order εωεδ and εBεδ,
while the first term on the right side provides the lin-
ear drive for δf (at order εBεδ) and the remaining terms
involve the short-spatial-scale nonlinear coupling (at or-
der ε2δ). Note that a quasilinear formulation is obtained
from Eq. (13) by retaining only the first term on the right
side and substituting the (eikonal) solution for δf (as a
functional of F ) into the averaged Vlasov equation (11).

Next, Frieman and Chen (1982) adopt a standard iter-
ative procedure (Hastie et al., 1967) designed to solve the
fluctuating Vlasov equation (13) by introducing a decom-
position of the perturbed Vlasov distribution δf in terms
of its adiabatic and nonadiabatic components (Antonsen

6 Using (E ,µ) rather than (v‖, µ) as the velocity-space coordinates
reduces the number of nonzero terms when either F0 is isotropic
in velocity space (i.e., ∂F0/∂µ = 0 at constant E), or the electro-
magnetic fields are time-independent such that Ė = 0. Thus,
it can sometimes be advantageous to the (v‖, µ)-formulation.
However, for more complex realistic nonlinear applications, we
find the (v‖, µ)-formulation more straightforward in describing
physics.

and Lane, 1980; Catto et al., 1981):

δf ≡
[
e δφ

∂

∂E
+

e

B

(
δφ−

v‖

c
δA‖

) ∂

∂µ

]
F0

+ e−ρ ·∇
(
δg −

e〈δψgc〉
B

∂F0

∂µ

)
. (14)

Here, δg denotes the gyroangle-independent nonadiabatic
part of the perturbed Vlasov distribution, δA‖ ≡ δA · b̂
denotes the component of the perturbed vector poten-
tial parallel to the background magnetic field B = B b̂
(v‖ denotes the parallel component of the guiding-center
velocity), 〈 〉 denotes gyroangle averaging (ρ denotes the
lowest-order gyroangle-dependent gyroradius vector) and
the effective first-order gyro-averaged potential is

〈δψgc〉 ≡
〈
eρ ·∇

(
δφ − v

c
· δA

)〉

=
〈
δφgc − v

c
· δAgc

〉
. (15)

Note that all terms on the right side of Eq. (14)
are ordered at εδ and an additional adiabatic term
∇F0 · δA× b̂/B (of order εBεδ) has been omitted. For
the sake of clarity in the discussion presented below, we
refer to the adiabatic terms involving the perturbed po-
tentials (δφ, δA‖) evaluated at the particle position as
the particle adiabatic terms, while the adiabatic term in-
volving the effective first-order Hamiltonian (15), where
perturbed potentials are evaluated at the guiding-center
position, as the guiding-center adiabatic term.

By substituting the nonadiabatic decomposition (14)
into the fluctuating Vlasov equation (13), Frieman and
Chen (1982) obtain (after a tremendous amount of te-
dious algebra) the nonlinear gyrokinetic equation for
nonadiabatic part δg of the perturbed Vlasov distribu-
tion

dgcδg

dt
= −

(
e
∂〈δψgc〉
∂t

∂

∂E +
cb̂

B
×∇〈δψgc〉 ·∇

)
F0

− cb̂

B
×∇〈δψgc〉 ·∇δg (16)

where D/Dt ≡ dgc/dt denotes the unperturbed averaged
Vlasov operator expressed in guiding-center coordinates
(X, E , µ). Here, we note that the time evolution of the
nonadiabatic part δg depends on the effective first-order
Hamiltonian (15). The terms appearing on the left side
of Eq. (16), as well as the F0-terms on the right side, are
ordered at εωεδ and εBεδ, while the last term on the right
side is ordered at ε2δ and, thus, represents the nonlinear
coupling terms, which are absent from previous linear gy-
rokinetic models (Antonsen and Lane, 1980; Catto et al.,
1981). The nonlinear coupling terms include the (linear)
perturbed E×B velocity (cb̂/B) ×∇〈δφgc〉, the magnetic
flutter velocity (v‖/B) 〈δB⊥gc〉, and the perturbed grad-
B drift velocity (− b̂/B) ×∇〈v⊥ · δA⊥gc〉. The nonlinear
gyrokinetic Vlasov equation (48) derived by Frieman and



9

Chen (1982) contains additional terms, defined in their
equation (45), that are subsequently omitted in their fi-
nal equation (50).

A self-consistent description of nonlinear gyrokinetic
dynamics requires that the Maxwell equations for the
perturbed electromagnetic fields δE and δB be expressed
in terms of particle charge and current densities repre-
sented as fluid moments of the nonadiabatic part δg of
the perturbed Vlasov distribution (14). For example, us-
ing the nonadiabatic decomposition (14), the perturbed
particle fluid density δn ≡

∫
d3p δf is expressed as

δn =
∫
d3P

〈
e−ρ ·∇

(
δg − e〈δψgc〉

B

∂F0

∂µ

)〉
, (17)

where d3P denotes the momentum-space integral in
guiding-center coordinates (which involves a gyroangle
integration that is explicitly represented, here, by the
gyroangle average 〈 〉). We immediately note that the
particle adiabatic terms in Eq. (14) have cancelled out of
Eq. (17) and only the guiding-center adiabatic and nona-
diabatic terms contribute to δn. We shall show later on
that this guiding-center adiabatic contribution leads to
the so-called polarization density (see Sec. C.2); a similar
treatment for the perturbed particle moment

∫
d3pv δf

leads to the cancellation of particle adiabatic terms and
the definition of the magnetization current in terms of
the guiding-center adiabatic and nonadiabatic terms.

We note that the Frieman-Chen nonlinear gyrokinetic
Vlasov (16) is contained in modern versions of the non-
linear gyrokinetic Vlasov equation (Brizard, 1989a). The
Frieman-Chen formulation, for example, contains the po-
larization density (while there was no explicit mention
about it in the FC paper). For most analytic applica-
tions (see Table I), a separate treatment of this term is
not necessary. However, an explicit treatment of the po-
larization density as the dominant shielding term in the
gyrokinetic Poisson’s equation (Lee, 1983) has provided
a crucial computational advantage in nonlinear gyroki-
netic simulations. It is also a key quantity in relating
the nonlinear gyrokinetic approach to reduced magneto-
hydrodynamics (Hahm et al., 1988).

C. Modern Nonlinear Gyrokinetic Equations

The major difficulties encountered in the conventional
Frieman-Chen derivation of Eq. (16) involve (a) inserting
the solution (12) for the first-order correction F1 to the
background Vlasov distribution F0 into the first term on
the right of Eq. (13) and (b) constructing a new mag-
netic moment µ that is invariant at first order in εB
and εδ. While the Frieman-Chen equations are valid up
to order ε2 and should be fine for immediate practical

FIG. 4 Exact and reduced single-particle orbits in a magnetic
field.

purposes,7 including initial interactions of linear modes
and the early phase following nonlinear saturation, their
work did not consider preserving the conservation laws of
the original Vlasov-Maxwell equations (e.g., total energy
and momentum). For instance, the sum of the kinetic
energy and field energy, as well as phase-space volume,
are not conserved up to the nontrivial order. A lack
of phase-space-volume conservation can introduce ficti-
tious dissipation that can affect the long-term behavior
of the (presumed) Hamiltonian system. Moreover, ignor-
ing the O(ε3) nonlinear wave-particle interactions due to
parallel-velocity-space nonlinearity, for example, can ar-
tificially limit the energy exchange between particles and
waves.

In contrast to conventional methods used for deriving
nonlinear gyrokinetic equations, which consist of a regu-
lar perturbation expansion in terms of small parameters
and a direct gyrophase-average, the modern nonlinear
gyrokinetic derivation pursues a reduction of dynami-
cal dimensionality via phase-space coordinate transfor-
mations. The modern derivation of the nonlinear gyroki-
netic Vlasov equation is, thus, based on the construction
of a time-dependent phase-space transformation from
(old) particle coordinates z = (x,p) to (new) gyrocenter
phase-space coordinates Z (to be defined later) such that
the new gyrocenter equations of motion dZ/dt are inde-
pendent of the fast gyro-motion time scale at arbitrary
orders in εB and εδ. The purpose of this transformation
is to have the fast gyro-motion time scale effectively de-
coupled from the slow reduced time scales. In the course
of this derivation, the important underlying symmetry
and conservation laws of the original system are kept in-
tact. Moreover, in contrast to the conventional derivation
(where different small parameters are lumped together
via a particular ordering), various expansion parameters

7 The Frieman-Chen paper was published in 1982 at a time when
computer power and plasma diagnostics capabilities were far
lower than the present-day equivalents.
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appear at different stages of the modern derivation. This
feature makes the modifications of ordering for specific
applications more transparent, such as nonlinear gyroki-
netic equations with strong E×B shear flows as described
in Appendix E.1.

By definition, the phase-space transformation z → Z is
formally expressed in terms of an asymptotic expansion
in powers of the perturbation-amplitude ordering param-
eter εδ:

Z ≡
∑

n=0

εnδ Zn(z), (18)

where the lowest-order term Z0(z) is expressed in
terms of an asymptotic expansion in powers of the
background-plasma ordering parameter εB associated
with the guiding-center transformation (see Figure 4).
Note that the original particle dynamics dz/dt in Eq. (10)
can be represented as a Hamiltonian system dz/dt ≡
{z, H}z, where H(z, t) denotes the particle Hamiltonian
and { , }z denotes the Poisson bracket on particle phase
space with coordinates z (which are, generically, non-
canonical). Since Hamiltonian systems have important
conservation properties, e.g., the Liouville theorem as-
sociated with the invariance of the phase-space volume
under Hamiltonian evolution (Goldstein et al., 2002), we,
thus, require that the new equations of motion dZ/dt be
also expressed as a Hamiltonian system in terms of a new
Hamiltonian H(Z, t) and a new Poisson bracket { , }Z

such that dZ/dt ≡ {Z, H}Z.
We now turn our attention to the impact of the phase-

space transformation (18) on the Vlasov equation (10)
itself. The phase-space transformation z → Z induces a
transformation from the (old) particle Vlasov distribu-
tion f to a (new) reduced Vlasov distribution F , subject
to the scalar-invariance property F (Z) = f(z), such that
the new Vlasov distribution F is constant along a re-
duced orbit Z(t). From the scalar-invariance property,
the induced transformation f → F is, therefore, defined
as

f(z) ≡ F (Z) = F

(∑

n=0

εnδ Zn(z)

)
, (19)

which generates an asymptotic expansion in powers of εδ:

f ≡
∑

n=0

εnδ fn(F ), (20)

where each term fn(F ) is expressed in terms of deriva-
tives of the new Vlasov distribution F . For exam-
ple, we consider the infinitesimal constant translation
x→ X = x+ ε and the induced transformation f → F :

f(x) ≡ F (X) = F (x+ ε) =
∑

n=0

εn

n!
dnF (x)
dxn

≡
∑

n=0

εn fn(F (x)),

where fn(F ) ≡ (1/n!) dnF/dxn, which clearly shows that
the two functions f and F are formally different func-
tions. Hence, we recognize that the nonadiabatic decom-
position (14) is, in fact, a similar asymptotic expansion
f = f0 + εδ δf + ..., where f0 and δf are expressed in
terms a reduced Vlasov distribution F .

Lastly, in order for our new Vlasov kinetic theory to
be dissipation-free, we require that the phase-space trans-
formation (18) be invertible (i.e., entropy-conserving) so
that no information about the fast-time-scale particle dy-
namics is lost. Hence, we must also define the following
inverse relations

z ≡
∑

n=0

εnδ zn(Z), (21)

F (Z) ≡ f(z) = f

(∑

n=0

εnδ zn(Z)

)
, (22)

F ≡
∑

n=0

εnδ Fn(f), (23)

which are justified by the smallness of the ordering pa-
rameter εδ � 1. We note that, within canonical Hamil-
tonian perturbation theory (Goldstein et al., 2002), for
example, the relation between the (old) particle Hamil-
tonian H and the (new) reduced Hamiltonian H is ex-
pressed as

H(Z, t) ≡ H(z, t) − ∂S

∂t
(z, t), (24)

where S denotes the scalar field that generates the time-
dependent canonical transformation z → Z and each
function (H,S,H) is itself expressed as a power expan-
sion in εδ (and εB).

The purpose of the modern formulation of the nonlin-
ear gyrokinetic Vlasov theory is to provide powerful algo-
rithms necessary to construct the phase-space transfor-
mations (18) and (21) and the induced transformations
(20) and (23). These algorithms are based on applica-
tions of differential geometric methods associated with
Lie-transforms (see Appendix A for a primer on these
mathematical methods).

III. SIMPLE FORMS OF NONLINEAR GYROKINETIC
EQUATIONS

We now present the simplified forms of the nonlinear
gyrokinetic equations that are recommended for simula-
tions and analytic applications. Therefore, this Section
will provide a quick reference to readers who are mainly
interested in applications of nonlinear gyrokinetic formu-
lations, rather than theoretical derivations of mathemat-
ical structures thereof. The full nonlinear gyrokinetic
equations will be systematically derived later in Sections
V and VI.

In this review, we do not attempt to cover exhaustively
the recent remarkable progress in nonlinear gyrokinetic
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simulations (Tang, 2002; Tang and Chan, 2005). Instead,
we discuss relevant physics issues that arise when nonlin-
ear gyrokinetic equations are simplified and applied to
specific collective waves and instabilities in plasmas. A
relatively complete survey of fusion-relevant instabilities
can be found in Connor and Wilson (1994) and Horton
(1999), while a partial summary of applications of non-
linear gyrokinetic formulations is provided in Table I. It
should be noted that some of the early simulations were
performed as the modern nonlinear gyrokinetic formu-
lation were being developed. Hence, not all of the gy-
rokinetic theoretical knowledge discussed in this review
article was available then.

A. General Gyrokinetic Vlasov-Maxwell Equations

For nonlinear simulations, the nonlinear gyrokinetic
Vlasov equation (1) for the gyrocenter distribution F is
written in terms of the Hamiltonian gyrocenter equations
of motion

dX
dt

= v‖
B∗

B∗
‖

+
cb̂

eB∗
‖

×

(
µ ∇B + e ∇δΨgy

)
, (25)

and

dp‖

dt
= − B∗

B∗
‖

·

(
µ ∇B + e ∇δΨgy

)

− e

c

∂δA‖gy

∂t
, (26)

where the overbar notation used to identify the gyrocen-
ter coordinates is omitted for the remainder of this Sec-
tion. Here, Hgy = p2

‖/2m+µB+e δΨgy denotes the gyro-
center Hamiltonian, where the effective gyrocenter per-
turbation potential δΨgy contains terms that are linear in
the perturbed electromagnetic potentials (δφ, δA) [e.g.,
the effective linear potential 〈δψgc〉 defined in Eq. (15)]
and terms that are nonlinear (quadratic) in (δφ, δA).
Next, the gyrocenter Poisson-bracket (symplectic) struc-
ture is represented by the modified magnetic field B∗

(with B∗
‖ ≡ b̂ ·B∗)

B∗ ≡ B + (c/e) p‖ ∇× b̂ + δBgy, (27)

where the first term denotes the background magnetic
field B ≡ B b̂, the second term is associated with the
guiding-center curvature drift, and the third term rep-
resents the symplectic magnetic perturbation δBgy ≡
∇× δAgy, which may or may not be present depending
on the choice of gyrocenter model adopted (see below).
The perturbed linear gyrocenter dynamics contained in
Eq. (25) includes the linear perturbed E × B velocity
δuE = (cb̂/B) ×∇δφ, the perturbed magnetic-flutter
velocity v‖ δB⊥/B, and the perturbed grad-B velocity
(cb̂/eB) ×µ∇δB‖. Note that, when magnetic perturba-
tions are present, the gyrocenter parallel momentum p‖

appearing in Eq. (26) is either a canonical momentum if
the symplectic magnetic perturbation δAgy is chosen so
that δA‖gy ≡ b̂ · δAgy = 0 or a kinetic momentum (i.e.,
p‖ = mv‖) if δA‖gy 6= 0. Moreover, the magnetic-flutter
velocity v‖ δB⊥/B is either included in v‖ δBgy/B (in
the Symplectic gyrocenter model) or in (cb̂/B) ×∇δΨgy

(in the Hamiltonian gyrocenter model) (Brizard, 1989a;
Hahm et al., 1988), while the inductive part (∂tδA‖gy)
of the perturbed electric field appears on the right side
of the gyrocenter parallel force equation (26) only in the
Symplectic gyrocenter model. Lastly, we note that, for
a specific application of nonlinear gyrokinetics, not all
terms in Eqs. (25)-(26) are used simultaneously; we have
written all the terms, here, for easy reference within this
Section.

Next, a closed self-consistent description of the in-
teractions involving the perturbed electromagnetic field
and a Vlasov distribution of gyrocenters implies that the
gyrokinetic Maxwell’s equations should be written with
charge-current densities expressed in terms of the gyro-
center distribution function. Hence, the gyrokinetic Pois-
son equation (2) is written as

∇2δφ = − 4π
∑

e

∫
d3p

〈
e−ρ ·∇(TgyF

)〉

≡ − 4πe (Ni − ne) + 4π ∇ ·Pgy, (28)

where Ni denotes the ion gyrofluid density, ne denotes
the electron drift-fluid density (k⊥ρe → 0), and the gy-
rocenter polarization density is defined as

ρpol ≡ −∇ ·Pgy

=
∑

e

∫
d3p

〈
e−ρ ·∇ (TgyF − F )

〉
. (29)

The gyrokinetic Ampère equation (3), on the other hand,
is written as

∇× (B + δB) =
4π
c

∑
e

∫
d3p

〈
v e−ρ ·∇(TgyF

)〉

≡ 4π
c

(Ji − je) + 4π ∇×Mgy, (30)

where Ji and je denote the ion gyrofluid and electron
drift-fluid current densities, and the gyrocenter magneti-
zation current is defined as

Jmag ≡ c∇×Mgy

=
∑

e

∫
d3p

〈
e−ρ ·∇ [v (TgyF − F )]

〉
.(31)

Here, the gyrocenter polarization vector Pgy and the
gyrocenter magnetization vector Mgy are expressed in
terms of the difference (TgyF − F ) between the guiding-
center distribution TgyF (expressed as the pull-back of
the gyrocenter distribution) and the gyrocenter distribu-
tion F , which explicitly involves the perturbed electro-
magnetic potentials (δφ, δA). The variational formula-
tion for the nonlinear gyrokinetic Vlasov-Maxwell equa-
tions reveals that these gyrokinetic polarization and mag-
netization effects are also associated with derivatives of
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the nonlinear gyrocenter Hamiltonian e δΨgy with respect
to the perturbed electric and magnetic fields δE and δB,
respectively:

Pgy ≡ −
∑

e

∫
d3p F

(
∂δΨgy

∂δE

)

=
∑ ∫

d3p F πgy, (32)

Mgy ≡ −
∑

e

∫
d3p F

(
∂δΨgy

∂δB

)

=
∑ ∫

d3p F
(
µgy + πgy ×

p‖

mc
b̂
)
, (33)

where πgy denotes the gyrocenter electric-dipole mo-
ment, µgy denotes the gyrocenter magnetic-dipole
moment, and the gyrocenter magnetization vector
(33) includes a moving-electric-dipole contribution
πgy × (p‖/mc)b̂ (Jackson, 1975).

Lastly, the nonlinear gyrokinetic Vlasov-Maxwell equa-
tions possess an exact energy conservation law dE/dt ≡
0, where the global gyrokinetic energy integral is

E =
∫
d6Z F

(
p2
‖

2m
+ µB + e δΨgy − e

〈
T−1

gy δφgc

〉
)

+
∫

d3x

8π
(
|∇δφ|2 + |B + δB|2

)
, (34)

where T−1
gy δφgc denotes the gyrocenter push-forward of

the perturbed scalar potential. Note that this exact con-
servation law is either constructed directly from the non-
linear gyrokinetic equations or is derived by applying the
Noether method within a gyrokinetic variational formu-
lation.

The gyrocenter pull-back and push-forward operators,
which represent the fundamental tools used in the mod-
ern derivation of the nonlinear gyrokinetic equations (1)-
(34), will be defined in Section IV. For the remainder of
this Section, we discuss various limiting cases of the non-
linear gyrokinetic equations, which are presented in gen-
eral magnetic geometry (while some applications which
we mention, were made in simple geometry).

B. Electrostatic Fluctuations

First, we start the case when only electrostatic fluctu-
ations are present (i.e., δA ≡ 0). The electrostatic non-
linear gyrokinetic equations in general geometry (Hahm,
1988) can be used for studies of most drift-wave-type
fluctuations driven by the expansion free energy asso-
ciated with the gradients in density and temperature.
Note that sound-wave dynamics as well as linear and non-
linear Landau damping (Sagdeev and Galeev, 1969) are
all contained in the nonlinear gyrokinetic formulations.
The electrostatic nonlinear gyrokinetic equations can be
used for ion dynamics associated with ion-temperature-
gradient (ITG) instability, electron drift waves including

trapped-electron-mode (TEM), collisionless trapped-ion-
modes (TIM), universal and dissipative drift instabilities.
These gyrokinetic equations can also be used for electron
dynamics of electron-temperature-gradient (ETG) insta-
bility. While an unmagnetized “adiabatic” ion response
is commonly used for ETG studies, more accurate treat-
ment of ion dynamics associated with ETG instability
can be made possible with a gyrokinetic formulation with
a proper high-k behavior. Finally, the nonlinear gyroki-
netic formulations can also be used to study zonal flows
(Diamond et al., 2005) and Geodesic Acoustic Modes
(Winsor et al., 1968), which are typically linearly stable
A partial summary of nonlinear gyrokinetic applications
of these examples is listed in Table I.

In the electrostatic case, the modified magnetic field
(27) has the guiding-center form (with δBgy ≡ 0), and
the effective gyrocenter perturbation potential δΨgy in
the gyrocenter equations of motion (25)-(26) is expressed
in simplified form as

δΨgy = 〈δφgc〉 − e

2B
∂

∂µ

〈
δφ̃2

gc

〉
, (35)

which retains full FLR effects in both the linear term and
the nonlinear term,8 where δφ̃gc ≡ δφgc − 〈δφgc〉 denotes
the gyroangle-dependent part of δφgc ≡ exp(ρ ·∇) δφ.
From gyrokinetic Maxwell’s equations, only the gyroki-
netic Poisson equation (28) is relevant in the electrostatic
limit, where the gyrocenter pull-back TgyF consistent
with the simplified effective gyrocenter perturbation po-
tential (35) is

TgyF = F +
e δφ̃gc

B

∂F

∂µ
.

Thus, the integrand on the right side of the gyrokinetic
Poisson equation (28) includes the polarization term

e−ρ ·∇ (TgyF − F ) = − e f0
T⊥

(
δφ− e−ρ ·∇〈δφgc〉

)
,

(36)
where f0 ≡ e−ρ ·∇F0 denotes the background particle
Vlasov distribution expressed in terms of a Maxwellian
distribution F0 in µ (with temperature T⊥). Lastly, the
gyrokinetic energy invariant (34) includes the perturba-
tion term

e δΨgy − e
〈
T−1

gy δφgc

〉
=

e

2B
∂

∂µ

〈
δφ̃2

gc

〉
, (37)

which is consistent with the effective gyrocenter pertur-
bation potential (35) and the gyrokinetic Poisson equa-
tion (28), with the polarization density (36).

8 An additionalnonlinear term involving the multi-dimensional ex-

pression b̂ ·〈∇δΦ̃gc×∇δφ̃gc〉, where δΦ̃gc =
∫

δφ̃gc dζ, is omitted
here for clarity.
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The energy-conserving gyrokinetic Vlasov-Poisson
equations constructed with the effective gyrocenter per-
turbation potential (35) and the gyrokinetic polarization
density (36) can be written in a more familiar form (Du-
bin et al., 1983) by Fourier transforming the gyrokinetic
Poisson equation (28) into k-space:

n0

(
|k|2λ2

Di

) eδφk

Ti⊥
= δnik − δnek, (38)

where λ2
Di ≡ Ti⊥/(4πn0e

2) and the perturbed ion fluid
density

δnik = δNik − n0 (1 − Γ0)
eδφk

Ti⊥

+ n0

[
ρ2
i (ik⊥ ·∇ lnn0) (Γ1 − Γ0)

] eδφk

Ti⊥
(39)

is expressed in terms of the perturbed ion gyrofluid den-
sity δNik ≡

∫
d3p

〈
e−iρ · k⊥

〉
δFik and Γn(b) ≡ In(b)e−b

is expressed in terms of modified Bessel functions In (of
order n), with b ≡ |k⊥|2ρ2

i . Note that, while the last
term in Eq. (39) is smaller than the leading term and
is neglected by most authors, it is crucial in preserving
the correct form of the polarization density (Dubin et al.,
1983; Hahm et al., 1988). The invariant energy for these
electrostatic gyrokinetic equations is

E =
∫
d6Z δFi

(
µB +

mi

2
v2
‖

)

+
∫
d6z δfe

(me

2
v2
)

+
∫
d3x

8π
|δE|2

+
n0e

2

2Ti

∫
d3k

(2π)3
(1 − Γ0)|δφk|2, (40)

which provides an accurate linear response for arbitrary
k⊥ρi and dominant E × B nonlinearity needed for most
applications.

For both simulation and analytic applications, often
the distribution function F = F0 + δF is split into the
equilibrium part F0 and the perturbed part δF , with
δF/F0 ∼ εδ. One can also write the equilibrium part and
the perturbed part of Eqs. (25)-(26) separately. Then,
Eqs. (1)-(26) become

∂δF

∂t
+
dZ
dt

· ∂δF
∂Z

= − dδZ
dt

· ∂F0

∂Z
, (41)

where the perturbed equations of motion are

dδX
dt

=
cb̂

B∗
‖

×∇〈δφgc〉 and
dδv‖

dt
= − B∗

mB∗
‖

·∇〈δφgc〉,

and the full equations of motion are

dX
dt

= v‖
B∗

B∗
‖

+
cb̂

eB∗
‖

×
(
e ∇〈δφgc〉 + µ ∇B

)
, (42)

and
dv‖

dt
= − B∗

mB∗
‖

·
(
e ∇〈δφgc〉 + µ ∇B

)
. (43)

Note that the second term on the left hand side of
Eq. (41) contains the dominant E × B nonlinearity
and the subdominant velocity-space parallel nonlinearity
[(dδv‖/dt) ∂δF/∂v‖]. If we ignore this parallel velocity-
space nonlinearity in the last term of Eq. (43)), the
physics contained in Eqs. (41)-(43) is essentially the same
as the electrostatic limit of the Frieman-Chen gyroki-
netic equation (16). One consequence of omitting this
term is that now the energy invariant and Eq. (38) are
not conserved to the same order. While most turbu-
lence simulations have not kept this small subdominant
term for simplicity, some simulations (Hatzky et al., 2002;
Sydora et al., 1996; Villard et al., 2004b) have kept it. In
principle, simulations with this term should have better
energy-conservation property and, therefore, less time-
accumulated error. This term can, thus, turn out to be
crucial in the long-time simulations; this topic is one of
active areas of current research.

The nonlinear gyrokinetic Vlasov-Poisson equations
(35)-(37) can be further simplified by taking the long-
wavelength (drift-kinetic) limit (k⊥ρi � 1) of the non-
linear correction in the effective gyrocenter perturbation
potential (35):

eδΨgy = e〈δφgc〉 − m

2
|δuE|2, (44)

where the second term has a definite physical meaning of
normalized kinetic energy associated with the perturbed
E × B drift (Scott, 2005). There is a one-to-one corre-
spondence with this term, and the polarization density
term in the gyrokinetic Poisson equation, and the slosh-
ing energy term in the energy invariant. Indeed, in the
same drift-kinetic limit (Dubin et al., 1983), the linear
gyrocenter polarization vector in the gyrokinetic Pois-
son equation (28) is expressed in terms of the gyrocenter
electric-dipole moment

πgy ≡ − e
∂δΨgy

∂δE⊥
(45)

= − mc2

B2
∇⊥δφ ≡ cb̂

B
×
(
mδuE

)
,

which is directly related to the nonlinear terms in the ef-
fective gyrocenter perturbation potential (44); note that
the linear term 〈δφgc〉 contains the guiding-center polar-
ization vector, which is automatically included in the def-
inition of the ion gyrofluid density. Note that because the
gyrocenter electric-dipole moment (45) is proportional
to the particle’s mass, the dominant contribution to the
polarization density comes from the ion species. More-
over, we note that representing the polarization drift as
a shielding term in the gyrokinetic Poisson equation pro-
vided one of the principal computational advantages of
the gyrokinetic approach.9 Lastly, the energy invariant

9 There exists a simple relation between the polarization current
Jpol and the polarization density ρpol (Fong and Hahm, 1999;
Krommes, 2002) via continuity equation: ∂tρpol + ∇ · Jpol = 0.
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consistent with the simplified effective gyrocenter pertur-
bation potential (44) and the gyrokinetic Poisson equa-
tion (28), with gyrocenter polarization vector (45), in-
cludes the nonlinear term

eδΨgy − e
〈
T−1

gy δφgc

〉
=

m

2
|δuE|2. (46)

The simplified nonlinear gyrokinetic Vlasov-Poisson
equations based on Eqs. (44)-(46), thus, highlight the
three pillars of nonlinear gyrokinetic theory: a gyrocen-
ter Hamiltonian (44) that contains nonlinear (quadratic)
terms, a gyrokinetic Poisson equation that contains a po-
larization density derived from the nonlinear gyrocenter
Hamiltonian (45), and an energy invariant that includes
all the relevant nonlinear coupling terms (46). An energy-
conserving set of nonlinear electrostatic gyrofluid equa-
tions, with full FLR effects retained in the linear terms
and the nonlinear terms expressed in the drift-kinetic
limit, was derived by Strintzi et al. (2005) by variational
methods.

While the nonlinear electrostatic gyrokinetic equations
have a clear physical meaning, this set has not been uti-
lized much for applications due to its complexity. For
tokamak core turbulence, the relative density-fluctuation
amplitude is typically less than 1 percent, and the nonlin-
ear corrections to the effective potential are indeed small.
However, these nonlinear corrections may play important
roles in edge turbulence where the relative fluctuation
amplitude is high, typically greater than 10 percent (see
Fig.2).

C. Shear-Alfvenic Magnetic Fluctuations

It has been shown by Hahm et al. (1988) that the re-
duced magnetohydrodynamic (MHD) equations (whose
derivation makes use of the ratio k‖/k⊥ � 1 as an ex-
pansion parameter) can be recovered from the electro-
magnetic nonlinear gyrokinetic equations. Note, here,
that for finite-β plasmas (with me/mi < β � 1), per-
pendicular magnetic fluctuations δB⊥ ≡ ∇⊥δA‖ × b̂ be-
come important as the magnetic-flutter v‖ δB⊥/B be-
comes comparable to the perturbed (linear) E × B ve-
locity (cb̂/B) ×∇⊥δφ (i.e., δA‖ v‖/c ∼ δφ). Therefore,
physics associated with shear-Alfven waves and instabil-
ities (which include a wide variety of MHD instabilities)
can be studied using the gyrokinetic approach. Early
applications to MHD modes consisted of the various hy-
brid approaches with nonlinear gyrokinetic description
of energetic particle dynamics and MHD description of
bulk plasmas. The nonlinear gyrokinetic approach has
also been applied to the tearing and kink instabilities
for which the free energy comes from the radial gradient
of equilibrium plasma current. For these simulations,
the electron dynamics should include the radial variation
of the equilibrium current along the perturbed magnetic
field to describe the release of the current free energy. It
should also be noted that the electromagnetic modifica-
tions of drift wave turbulence, which is often referred to

as “drift-Alfvén” turbulence, is an outstanding topic in
magnetic confinement physics. There have been nonlin-
ear simulations based on nonlinear gyrokinetic formula-
tions (some examples of applications are listed in Table
I).

Since the early days of derivation of modern nonlinear
gyrokinetic formulation (Hahm et al., 1988), it became
apparent that there can be at least two different versions
of electromagnetic nonlinear gyrokinetic equations. One
version is the Hamiltonian formulation, which uses the
parallel canonical momentum p‖ as an independent vari-
able, the other is the Symplectic formulation, where the
parallel velocity v‖ is used as an independent variable.
Each approach has its own advantages and drawbacks.
We confine ourselves only to the case where the nonlin-
ear modifications of perturbed potential are expressed
in the drift-kinetic limit, which may turn out to be im-
portant in the nonlinear gyrokinetic simulation of edge
turbulence as stated before.

1. Hamiltonian (p‖) formulation

In the Hamiltonian formulation, the magnetic pertur-
bation δA‖ ≡ b̂ · δA is treated as part of the gyrocenter
Hamiltonian, with all linear and nonlinear δA‖-terms en-
tirely included in the effective gyrocenter potential δΨgy

in Eqs. (25)-(26) (i.e., the linear perturbation potential
δψgc = δφgc − (p‖/mc) δA‖gc is manifestly covariant)
while the symplectic magnetic perturbation is δAgy ≡ 0.
It is worth noting that the gyrocenter parallel velocity
v‖ ≡ b̂ · dX/dt is expressed in terms of the gyrocenter
parallel canonical momentum p‖ and the perturbed par-
allel vector potential e δA‖/c:

v‖ ≡ 1
m

(
p‖ − εδ

e

c
〈δA‖gc〉 + · · ·

)
.

From this reason, this Hamiltonian formulation is some-
times referred to as the “canonical-momentum” formu-
lation or more casually the Pz-formulation following the
terminology from an early work (Hahm et al., 1988) in a
staight magnetic field.

This formulation deserves two important remarks.
First, the expression ∂/∂t associated with the paral-
lel induction electric field is absent on the right side
of Eq. (26). This feature is computationally desirable
(Hahm et al., 1988) and is one of the motivations for
the canonical-momentum formulation alongside the ex-
plicit manifestation of covariance (Krommes and Kim,
1988). Second, in the perpendicular gyrocenter veloc-
ity (25), the second term b̂ ×∇〈δψgc〉 contains both the
perturbed E × B velocity and the magnetic-flutter mo-
tion along the perturbed magnetic field (which often be-
comes stochastic). The E × B drift turbulence is most
likely anomalous transport mechanism in magnetically
confined plasmas with low to moderate values of β. A
detailed explanation of this mechanism can be found in
Scott (2003). While the test-particle transport in the
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stochastic magnetic fields has been thoroughly studied
(Krommes et al., 1983; Rechester and Rosenbluth, 1978),
a fully self-consistent calculation of the net transport due
to this mechanism in collisionless plasmas is extremely
difficult (Krommes and Kim, 1988; Terry et al., 1986,
1988; Thoul et al., 1987, 1988).

For the Hamiltonian gyrocenter formulation of shear-
Alfvenic fluctuations, the effective gyrocenter perturba-
tion potential is given in simplified form as (Hahm et al.,
1988)

eδΨgy = e〈δψgc〉 +
e2δA2

‖

2 mc2

− m

2

∣∣∣∣δuE +
p‖

m

δB⊥

B

∣∣∣∣
2

, (47)

where the linear term retains full FLR effects while the
nonlinear terms are given in the drift-kinetic limit, with
δB⊥ ≡ ∇δA‖ × b̂ denoting the perturbed magnetic field.
The gyrokinetic Maxwell’s equations now consist of the
gyrokinetic Poisson equation (28), with the linear gyro-
center polarization vector expressed in terms of the gy-
rocenter electric-dipole moment

πgy ≡ − e
∂δΨgy

∂δE⊥
(48)

= − mc2

B2

(
∇⊥δφ −

p‖

mc
∇⊥δA‖

)
,

=
cb̂

B
×
(
mδuE + p‖

δB⊥

B

)
,

where magnetic-flutter motion along perturbed magnetic
field lines now contribute to the polarization density, and
the gyrokinetic parallel Ampère equation

− ∇2
⊥δA‖ = −

(
ω2

p

c2

)
δA‖ +

4π
c

(Ji‖ − je‖)

+ 4π ∇ ·
(
Mgy × b̂

)
, (49)

where the linear gyrocenter magnetization vector

Mgy ≡ −
∑

e

∫
d3p f0

(
∂δΨgy

∂δB⊥

)
(50)

=
∑ ∫

d3p f0

(
πgy ×

p‖

mc
b̂
)

only displays the moving-electric-dipole contribution.
The explicit appearance of the collisionless skin depth
(ωp/c) on the right side of Eq. (49), whose dominant
contribution comes from the electron species, suggests
a possibility that it can be a characteristic correlation
length for electromagnetic turbulence in magnetized plas-
mas. While this fact alone is not sufficient theoreti-
cal evidence, turbulence at the scale of collisonless skin
depth has been simulated (Horton et al., 2000; Yagi
et al., 1995) and measured from experiments (Wong
et al., 1997). This “canonical-momentum” formulation

has been widely used for kink mode, tearing mode, and
drift-tearing mode nonlinear gyrokinetic simulations as
listed in Table I. Lastly, the gyrokinetic energy invari-
ant consistent with the effective gyrocenter perturbation
potential (47), the gyrokinetic polarization density (48),
and the gyrokinetic parallel magnetization current (50)
includes the terms

eδΨgy − e〈T−1
gy δφgc〉 = −

ep‖

mc
〈δA‖gc〉 +

e2δA2
‖

2 mc2

+
1
2

(
m |δuE|2 −

p2
‖

mB2
|δB⊥|2

)
. (51)

We conclude that, in the Hamiltonian gyrocenter model
of shear-Alfvenic fluctuations, the magnetic-flutter per-
turbed motion changes the gyrocenter polarization den-
sity (48), while the perturbed E ×B motion contributes
to the gyrocenter magnetization current (50). Note that,
if one decides to drop some contributions to the gyro-
center polarization and magnetization vectors that are
subdominant compared to other terms in the gyrokinetic
Poisson-Ampère equations, they must be dropped simul-
taneously in the effective gyrocenter perturbation poten-
tial and the gyrokinetic invariant.

2. Symplectic (v‖) formulation

While the Hamiltonian formulation has some com-
putational advantages (Hahm et al., 1988) and is in a
mathematically-concise form readily suitable for renor-
malization (Krommes and Kim, 1988), it is more straight-
forward to identify the physical meaning of various terms
in an alternative “Symplectic” (or vz) formulation. It is
also true that, in the Hamiltonian formulation, it is of-
ten inefficient to calculate the relatively large terms such
as p‖ and (e/c) δA‖ which appear explicitly, up to an
accuracy which is sufficient for calculation of their dif-
ference mv‖ (Chen et al., 2003; Lin and Wang et al.,
2005; Mishchenko et al., 2004). In this sense alone, it
is more efficient computationally and is easier to under-
stand physics if a smaller term “v‖” is used as an inde-
pendent variable. In the symplectic formulation, the per-
turbed parallel vector potential δA‖ appears explicitly in
the gyrocenter Poisson bracket (where δAgy = 〈δA‖gc〉 b̂
and δBgy = ∇× δAgy), not in the gyrocenter Hamil-
tonian part. As a consequence, the resulting Euler-
Lagrange equations contain the induction part of the
electric field with ∂〈δA‖gc〉/∂t. This is not a compu-
tationally attractive feature as stated before.

This symplectic version of the electromagnetic non-
linear gyrokinetic equation is more suitable in showing
its relation to various reduced fluid equations by taking
moments (Brizard, 1992). For instance, one of the key
points in understanding the shear-Alfvén physics in the
context of the electromagnetic nonlinear gyrokinetic for-
mulation is to recognize that the “vorticity evolution”
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in the reduced MHD equation is equivalent to the evo-
lution of the ion polarization density, which is the dif-
ference between the ion gyrofluid density and the elec-
tron density (Brizard, 1992; Hahm et al., 1988). It is
straightforward to extend a simple illustration of deriv-
ing the vorticity evolution equation of reduced MHD in
Hahm et al. (1988), to include the gyro-center drift due
to magnetic field inhomogeneity (for the driving term for
ballooning and interchange instability) and the variation
of the equilibrium current along the perturbed magnetic
field (for the driving term for kink, tearing, and peeling
instabilties).

For the Symplectic formulation of shear-Alfvenic fluc-
tuations, the effective gyrocenter perturbation potential
is given in simplified form as (Hahm et al., 1988)

eδΨgy = e〈δφgc〉 +
µ

2B
|δB⊥|2

− m

2

∣∣∣∣δuE +
p‖

m

δB⊥

B

∣∣∣∣
2

, (52)

where the linear term, which retains full FLR ef-
fects, includes only the perturbed electrostatic potential
(the symplectic perturbed magnetic potential δAgy ≡
〈δA‖gc〉 b̂ appears in the modified magnetic field B∗ and
the inductive part ∂t〈δA‖gc〉 of the parallel perturbed
electric field) while the nonlinear terms are given in the
drift-kinetic limit. The gyrokinetic Maxwell’s equations
now consist of the gyrokinetic Poisson equation (28),
where the gyrocenter electric-dipole moment πgy is given
by Eq. (48), and the gyrokinetic parallel Ampère equa-
tion

− ∇2
⊥δA‖ =

4π
c

(Ji‖ − je‖) + 4π ∇ ·
(
Mgy × b̂

)
,

(53)
where the linear gyrocenter magnetization vector has
the moving-electric-dipole contribution shown in Eq. (50)
and an intrinsic gyrocenter magnetic-dipole moment con-
tribution

µgy ≡ − µ
δB⊥

B
. (54)

Lastly, the gyrokinetic energy invariant consistent with
the effective gyrocenter perturbation potential (52), the
gyrokinetic polarization density, and the gyrokinetic par-
allel magnetization current includes the terms

eδΨgy − e〈T−1
gy δφgc〉 =

µ

2B
|δB⊥|2

+
m

2

(
|δuE|2 −

p2
‖

m2B2
|δB⊥|2

)
. (55)

An energy-conserving set of nonlinear drift-Alfvén fluid
equations, with linear and nonlinear terms both ex-
pressed in the drift-kinetic limit, was derived by Brizard
(2005b) by variational methods.

D. Compressional Magnetic Fluctuations

The treatment of the compressional Alfvén wave is be-
yond the scope of the low-frequency nonlinear gyroki-
netic formulation. If ω ∼ k⊥vA, then ω/Ω ∼ k⊥vA/Ω ∼
k⊥ρi/β

1/2. Therefore, with the full FLR description in
gyrokinetics (k⊥ρi ∼ 1), it is impossible to satisfy the
low-frequency gyrokinetic ordering ω/Ω � 1, for a typi-
cal value of β < 1 encountered in magnetically-confined
plasmas. Hence, to describe the compressional Alfvén
wave, it is necessary to use a drift-kinetic description
(k⊥ρi � 1). It has been shown that it is possible
to decouple the gyro-motion from dynamics associated
with high-frequency waves with ω/Ω > 1 and develop
a high-frequency linear gyrokinetic equation (Lashmore-
Davies and Dendy, 1989; Tsai et al., 1984). It has also
been shown that the phase-space Lagrangian and Lie-
transform perturbation method can be very useful in de-
riving the linear high-frequency gyrokinetic equation in
a more transparent way. It is instructive to follow the
derivation of the compressional Alfvén wave linear dis-
persion relation from the high-frequency gyrokinetic ap-
proach (Qin et al., 1999). However, a satisfactory nonlin-
ear high-frequency gyrokinetic formulation has not been
derived to date and we do not discuss the progress in
the linear high-frequency gyrokinetic formulation in this
review.

Although the compressional Alfvén wave does not ex-
ist within the nonlinear (low-frequency) gyrokinetic for-
mulation, the compressional component (δB‖ ≡ b̂ · δB)
of the perturbed magnetic field δB becomes gradually
important as the plasma β value is increased. So one
must keep δB‖ for a quantitatively accurate description
of fluctuations in relatively high-β plasmas, for example,
those encountered in spherical tori including the National
Spherical Torus Experiment (Ono et al., 2003) and the
Mega-Amp Spherical Tokamak (Sykes et al., 2001).

The fully electromagnetic nonlinear gyrokinetic Vlasov
equation is presented in Section V. Here, we use the
Hamiltonian gyrocenter model (with δAgy ≡ 0) and ex-
press the effective gyrocenter perturbation potential in
the drift-kinetic limit as

eδΨgy = e
(
δφ −

p‖

mc
δA‖

)
+ µ δB‖ − e

c
δA⊥ ·vgc

+
e2δA2

‖

2mc2
− m

2

∣∣∣∣δuE +
p‖

m

δB⊥

B

∣∣∣∣
2

− e

c
δA⊥ ·

(
δuE +

p‖

m

δB⊥

B

)
, (56)

where we have added the linear term e δA⊥ ·vgc/c, which
includes the perpendicular guiding-center velocity vgc

(involving the grad-B and curvature drifts). The linear
perpendicular gyrocenter dynamics is represented by the
linear perturbed E × B velocity (b̂ ×∇δφ), the linear
magnetic-flutter velocity (v‖ δB⊥), and the linear per-
turbed grad-B drift (µ b̂ ×∇δB‖). While in most fusion
plasmas (with β < 1), the radial transport due to this



17

last term is subdominant to the other transport mech-
anisms driven by E × B transport and magnetic flut-
ter transport, this drift can be important in geophysi-
cal applications (Chen, 1999) and the cross-field diffu-
sion of cosmic rays due to turbulence (Otsuka and Hada,
2003); linear gyrokinetic simulations are currently being
extended to high-β astrophysical plasmas (Howes et al.,
2006). Although the nonlinear terms in the gyrocenter
potential (56) are small compared to the linear terms,
they nonetheless play an important role in contributing
to the gyrocenter polarization and magnetization vectors

πgy =
cb̂

B
×
(
e

c
δA⊥ + mδuE + p‖

δB⊥

B

)
, (57)

µgy = − µ b̂. (58)

Note, here, that the δA⊥-contribution to the gyrocen-
ter polarization density vanishes if we assume quasi-
neutrality. Moreover, the lowest-order contribution of
the intrinsic magnetization current, derived from the gy-
rocenter magnetic-dipole moment (58), to the perpendic-
ular gyrokinetic Ampère equation yields the perpendic-
ular pressure balance condition δB‖ + 4π δP⊥/B = 0,
where δP⊥ denotes the perturbed perpendicular (total)
pressure (Brizard, 1992; Tang et al., 1980); a straight-
forward demonstration of this condition can be found in
Roach et al. (2005). Lastly, the corresponding energy
invariant includes the terms

eδΨgy − e 〈T−1
gy δφgc〉 = −

ep‖

mc
δA‖ + µ δB‖

− e

c
δA⊥ ·

(
vgc +

p‖

m

δB⊥

B

)

+
1
2

(
m |δuE|2 −

p2
‖

mB2
|δB⊥|2

)
. (59)

IV. LIE-TRANSFORM PERTURBATION THEORY

After having presented simple forms of the nonlinear
gyrokinetic equations in the previous Section, we now
focus our attention on the transformation from particle
phase-space coordinates to gyrocenter phase-space coor-
dinates that allow the dynamical reduction of the original
Vlasov-Maxwell equations to generate energy-conserving
nonlinear gyrokinetic Vlasov-Maxwell equations.

We begin this Section with a brief introduction to
the extended phase-space Lagrangian formulation of
charged-particle dynamics in a time-dependent electro-
magnetic field. Here, the electromagnetic field is repre-
sented by the potentials Aµ = (φ,A), while the eight-
dimensional extended phase-space noncanonical coordi-
nates Za = (xµ; pµ) ≡ (ct,x;w/c,p) include the po-
sition x of a charged particle (mass m and charge e),
its kinetic momentum p = mv, and the canonically-
conjugate energy-time (w, t) coordinates; in this work,
we use the convenient Minkowski space-time metric g =

diag(−1, 1, 1, 1) whenever we need a concise covariant ex-
pression. The use of an eight-dimensional representation
of phase space is motivated by the fact that, in the pres-
ence of time-dependent electromagnetic fields, the energy
of a charged particle is no longer conserved but instead
changes according to an additional Hamilton’s equation
dw/dt ≡ e ∂ψ/∂t, where ψ ≡ φ − A ·v/c = −Aµvµ/c
denotes the effective electromagnetic potential. Hence,
by introducing the canonical pair (w, t), where the en-
ergy coordinate w = E is equal to the conserved energy
in the time-independent case, new extended Hamilton’s
equations for charged-particle motion in time-dependent
electromagnetic fields can be written.

First, the complete representation of the Hamiltonian
dynamics of a charged particle in an electromagnetic field
(represented by the four-potentials Aµ) is expressed in
terms of a Hamiltonian functionH and a Poisson-bracket
structure { , }, which satisfies the following properties
(valid for arbitrary functions f , g, and h): the antisym-
metry property

{f, g} = − {g, f}, (60)

the Leibnitz rule

{f, (g h)} = {f, g} h + g {f, h}, (61)

and the Jacobi identity

0 = {f, {g, h}} + {g, {h, f}} + {h, {f, g}}. (62)

To be more specific, we introduce the general form for
the Poisson bracket {f, g}:

{f, g} ≡ ∂f

∂Za
Jab ∂g

∂Zb
, (63)

where Jab denotes the components of the Poisson ten-
sor and summation over repeated indices is, henceforth,
implied (here, latin letters a, b, c, ... go from 1 to 8 while
greek letters µ, ν, ... go from 0 to 3). The bilinear form of
the Poisson bracket (63) automatically satisfies the Leib-
nitz rule (61), the antisymmetry property (60) requires
that the Poisson tensor be antisymmetric, Jba = − Jab,
and the Jacobi identity (62) requires that

0 = Ja` ∂`J
bc + Jb` ∂`J

ca + Jc` ∂`J
ab, (64)

where ∂` ≡ ∂/∂Z`. We note that the extended canonical
Poisson tensor

Jcan =




0 0 g 0
0 0 0 g

− g 0 0 0
0 − g 0 0




immediately satisfies all three properties.
Next, Hamilton’s equations are expressed as Ża =

{Za, H} = Jab ∂bH in terms of the extended-phase-
space Hamiltonian

H(Z) =
|p|2

2m
+ e φ − w ≡ H(z, t) − w, (65)
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where H(z, t) denotes the standard time-dependent
Hamiltonian and the physical single-particle motion
takes place on the subspace

H(Z) = H(z, t) − w = 0. (66)

Note that, within the canonical formalism, the Poisson-
bracket structure is independent of the electromagnetic
field and the Hamiltonian depends explicitly on the elec-
tromagnetic potentials (φ,A). Within the noncanoni-
cal formalism, however, the Hamiltonian retains only its
dependence on the electrostatic potential φ and deriva-
tives of the magnetic potential A appear in the Poisson-
bracket structure.

A. Single-particle Extended Lagrangian Dynamics

The extended-phase-space Lagrangian, or Poincaré-
Cartan differential one-form (Arnold, 1989), for a charged
particle in eight-dimensional extended phase space is ex-
pressed in noncanonical form as

Γ̂ =
(e
c

A + p
)

· dx − w dt − H dτ

≡ Γa(Z) dZa − H(Z) dτ, (67)

where Γa are known as the symplectic components of the
extended-phase-space Lagrangian Γ̂, and τ denotes the
Hamiltonian orbit parameter. In Eq. (67), the symbol d
denotes an exterior derivative with the property

d2f = d (∂af dZa) = ∂2
abf dZa ∧ dZb = 0, (68)

which holds for any scalar field f , where the wedge prod-
uct ∧ is antisymmetric (i.e., df ∧ dg = − dg ∧ df); we
will use the standard-derivative notation d whenever the
exterior-derivative properties are not involved (see Ap-
pendix A for further details). Note that, as a result of
property (68), we may add an arbitrary gauge term dS to
the extended-phase-space Lagrangian (67) without mod-
ifying the Hamiltonian dynamics.

Next, to obtain the extended Hamilton’s equations of
motion from the phase-space Lagrangian (67), we intro-
duce the single-particle action integral

S =
∫

Γ̂ =
∫ τ2

τ1

(
Γa

dZa

dτ
− H

)
dτ, (69)

where the end points τ1 and τ2 are fixed. Hamilton’s
Principle δS =

∫
δΓ̂ = 0 for single-particle motion in

extended phase space yields

0 =
∫ (

δZa ∂Γb

∂Za
dZb + Γa dδZa − δZa ∂H

∂Za
dτ

)

=
∫

δZa

[
ωab dZb − ∂H

∂Za
dτ

]
(70)

where

ωab ≡ ∂Γb

∂Za
− ∂Γa

∂Zb
(71)

denotes a component of the 8×8 antisymmetric Lagrange
two-form ω ≡ dΓ (Goldstein et al., 2002), and integra-
tion by parts of the second term was performed (with the
usual assumption of virtual displacements δZa vanishing
at the end points). Hence, stationarity of the particle ac-
tion (69) yields the extended phase-space Euler-Lagrange
equations

ωab
dZb

dτ
=

∂H
∂Za

. (72)

For regular (nonsingular) Lagrangian systems, the La-
grange matrix ω is invertible. The components of the
inverse of the Lagrange matrix J ≡ ω−1, known as the
antisymmetric Poisson matrix, are the fundamental Pois-
son brackets

(ω−1)ab ≡ {Za, Zb} = Jab(Z). (73)

Using the identity relation

Jca ωab = δc
b, (74)

the Euler-Lagrange equations (72) become the extended
Hamilton’s equations

dZa

dτ
= Jab ∂H

∂Zb
= {Za, H}. (75)

By using the identity (74), it can be shown that the Ja-
cobi identity (64) holds if the Lagrange matrix satisfies
the identity dω = 0, or

∂a ωbc + ∂b ωca + ∂c ωab = 0, (76)

which is automatically satisfied since ω ≡ dΓ is an exact
two-form (i.e., ωab = ∂aΓb − ∂bΓa). Hence, any Poisson
bracket derived through the sequence Γ → ω = dΓ →
J = ω−1 automatically satisfies the Jacobi identity (62).

Using the symplectic part of the extended phase-space
Lagrangian (67), the Lagrange two-form ω ≡ dΓ is

ω = dpµ ∧ dxµ +
e

2c
εijkB

k dxi ∧ dxj

− e

c

∂Ai

∂t
dxi ∧ dt, (77)

from which, using the inverse relation (73), we construct
the extended noncanonical Poisson bracket

{f, g} =
∂f

∂xµ

∂g

∂pµ
− ∂f

∂pµ

∂g

∂xµ
+

eB
c

· ∂f
∂p

× ∂g

∂p

− e

c

∂A
∂t

·
(
∂f

∂w

∂g

∂p
− ∂f

∂p
∂g

∂w

)
. (78)

The Hamiltonian dynamics in extended phase space is,
thus, expressed as

dx
dt

=
∂H
∂p

= v,

dp
dt

= −∇H +
e

c

(
∂A
∂t

∂H
∂w

+
∂H
∂v

×B
)

= e
(
E +

v
c

×B
)
,

dw

dt
=

∂H
∂t

− e

mc

∂A
∂t

· ∂H
∂v

= e

(
∂φ

∂t
− v

c
· ∂A
∂t

)
,
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where the Hamilton equation dt/dτ = {t, H} = +1 was
used to substitute the orbit parameter τ with time t.

B. Perturbation Theory in Extended Phase Space

A variational formulation of single-particle pertur-
bation theory, where the small dimensionless ordering
parameter ε is used as a measure of the amplitude
of the fluctuating electromagnetic fields, can be intro-
duced through the new phase-space Lagrangian one-form
(Brizard, 2001)

Γ̂′ ≡ Γa dZa − H dτ − S dε, (79)

where the symplectic components Γa and the Hamilto-
nian H now depend on the perturbation parameter ε
(e.g., either εB or εδ) and the scalar field S is the generat-
ing function for an infinitesimal canonical transformation
that smoothly deforms a particle’s extended phase-space
orbit from a reference orbit (at ε = 0) to a perturbed
orbit (for ε 6= 0). From the phase-space Lagrangian (79),
we construct the action path-integral S′

C =
∫

C Γ̂′ evalu-
ated along a fixed path C in the (τ, ε)-parameter space.

The modified Principle of Least Action for perturbed
single-particle motion in extended phase space

0 =
∫

δZa

[
ωab dZb − ∂H

∂Za
dτ −

(
∂S
∂Za

+
∂Γa

∂ε

)
dε

]
,

whose derivation is similar to Eq. (70), now yields the
extended perturbed Hamilton’s equations

dZa

dτ
= {Za, H} , (80)

dZa

dε
= {Za, S} − ∂Γb

∂ε

{
Zb, Za

}
, (81)

where Eq. (80) is identical to Eq. (75) except that the
extended Hamiltonian H and symplectic components
Γa now depend on the perturbation parameter ε, while
Eq. (81) determines how particle orbits evolve under the
perturbation ε-flow.

We note that the order of time evolution (τ -flow) and
perturbation evolution (ε-flow) is not physically relevant.
The commutativity of the two Hamiltonian (τ, ε) flows,
therefore, leads to the path independence of the action in-
tegral

∫
Γ̂′ in the two-dimensional (τ, ε) orbit-parameter

space. Hence, considering two arbitrary paths C and C
with identical end points on the (τ, ε)-parameter space
and calculating the action path-integrals S′

C =
∫
C

Γ̂′ and
S′

C
=
∫

C Γ̂′, the path-independence condition S′
C

= S′
C

leads, by applying Stokes’ Theorem for differential one-
forms (Flanders, 1989), to the condition

0 =
∫

C

Γ̂′ −
∫

C

Γ̂′ ≡
∮

∂D

Γ̂′ =
∫

D

dΓ̂′,

where D is the area enclosed by the closed path ∂D ≡
C − C. Here, the two-form dΓ̂′ on the (τ, ε)-parameter

space is

dΓ̂′ = dε ∧ dτ

[
dZa

dε
ωab

dZb

dτ
−
(
∂H
∂ε

+
∂H
∂Za

dZa

dε

)

+
(
∂S
∂Za

+
∂Γa

∂ε

)
dZa

dτ

]

≡ dε ∧ dτ

(
{S, H} −

∂H
∂ε

+
∂Γa

∂ε
{Za, H}

)
,

where Eqs. (80)-(81) were used. The condition of path
independence requires that dΓ̂′ = 0, which yields the
Hamiltonian perturbation equation

dS
dτ

≡ {S, H} =
∂H
∂ε

− ∂Γa

∂ε
{Za, H} , (82)

relating the generating scalar field S to the perturbation-
parameter dependence of the extended Hamiltonian
(∂εH = φ1 + · · ·) and Poisson bracket (∂εΓa =
A1 · ∂x/∂Za + · · ·). Here, the perturbed evolution op-
erator d/dτ = d0/dτ + · · · and the generating function
S = S1 + · · · are expanded in powers of ε, with the
lower-order operator d0/dτ considered to be explicitly
integrable. In practice, the first-order term S1 is solved
explicitly as

S1 ≡
(
d0

dτ

)−1 [
e φ1 − e A1 · v0

c

]
, (83)

where v0 ≡ d0x/dτ = {x, H0} denotes the particle’s
unperturbed velocity. In order to determine the higher-
order terms Sn (for n ≥ 2), however, a more systematic
approach, based on applications of the Lie-transform per-
turbation method, is required.

C. Near-identity Phase-space Transformations

The Hamiltonian perturbation equation (82) arises
naturally within the context of the dynamical reduction
of single-particle Hamilton’s equations (80) through the
decoupling of fast orbital time scales from the relevant
electromagnetic fluctutation time scales. The most effi-
cient method for deriving reduced Hamilton’s equations
is based on the Hamiltonian (Cary and Kaufman, 1981;
Lichtenberg and Lieberman, 1984) or the phase-space La-
grangian (Cary and Littlejohn, 1983) Lie-transform per-
turbation methods.10

The process by which a fast time scale is removed from
Hamilton’s equations Ża = {Za, H} involves a near-
identity transformation on extended particle phase space
(Littlejohn, 1982a):

Tε : Z → Z(Z; ε) ≡ TεZ, (84)

10 Hamiltonian Lie-transform perturbation theory is a special case
of phase-space Lagrangian Lie-transform perturbation theory, in
which the Poisson-bracket – or symplectic – structure is unper-
turbed.
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FIG. 5 The phase-space transformation Z = T Z and its in-
verse Z = T −1Z induce a pull-back operator F = TF and a
push-forward operator F = T−1F .

with Z(Z; 0) = Z, and its inverse

T −1
ε : Z → Z(Z ; ε) ≡ T −1

ε Z, (85)

with Z(Z ; 0) = Z, where ε � 1 denotes a dimensionless
ordering parameter. By adopting the techniques of Lie-
transform perturbation theory, these phase-space trans-
formations are expressed in terms of generating vector
fields (G1,G2, ...) as

T ±1
ε ≡ exp

(
±

∞∑

n=1

εn Gn · d

)
, (86)

where the nth-order generating vector field Gn is chosen
to remove the fast time scale at order εn from the per-
turbed Hamiltonian dynamics. Here, we explicitly write
the near-identity transformations (84) and (85) as

Za
(Z, ε) = Za + εGa

1 + ε2
(
Ga

2 +
1
2
Gb

1

∂Ga
1

∂Zb

)
+ · · · ,

(87)
and

Za(Z , ε) = Za − εGa
1 − ε2

(
Ga

2 − 1
2
Gb

1

∂Ga
1

∂Zb

)
+ · · · ,

(88)
up to second order in the perturbation analysis. Note
that the new extended phase-space coordinates include
the pair of fast action-angle coordinates (Jg ≡ µB/Ω, ζ)
and the reduced phase-space coordinates ZR such that
the magnetic moment µ = µ0 + ε µ1 + · · · is an exact
invariant of the reduced Hamiltonian dynamics and the
Hamiltonian dynamics of the reduced coordinates ZR is
independent of the fast angle ζ.

Next, using the transformation (84), we define the
pull-back operator on scalar fields (Abraham and Mars-
den, 1978; Littlejohn, 1982a) induced by the near-identity
transformation (84):

Tε : F → F ≡ TεF , (89)

i.e., the pull-back operator Tε transforms a scalar field F
on the phase space with coordinates Z into a scalar field
F on the phase space with coordinates Z:

F(Z) = TεF(Z) = F(TεZ) = F(Z).

Using the inverse transformation (85), we also define the
push-forward operator (Littlejohn, 1982a):

T−1
ε : F → F ≡ T−1

ε F , (90)

i.e., the push-forward operator T−1
ε transforms a scalar

field F on the phase space with coordinates Z into a
scalar field F on the phase space with coordinates Z :

F(Z) = T−1
ε F(Z) = F(T −1

ε Z) = F(Z).

The pull-back and push-forward operators can now be
used to transform an arbitrary operator C : F (Z) →
C[F ](Z) acting on the extended Vlasov distribution func-
tion F . First, since C[F ](Z) is a scalar field, it trans-
forms to T−1

ε C[F ](Z) with the help of the push-forward
operator (90). Next, we replace the extended Vlasov
distribution function F with its pull-back representation
F = TεF and define the transformed operator Cε as

Cε[F] ≡ T−1
ε

(
C[TεF ]

)
. (91)

We now apply this induced transformation on the Vlasov
equation in extended phase space

dF
dτ

≡ {F , H}Z = 0, (92)

where d/dτ defines the total derivative along a particle
orbit in extended phase space and { , }Z denotes the ex-
tended Poisson bracket on the original extended phase
space (with coordinates Z). Hence, the transformed
Vlasov equation is written as

0 =
dεF
dτ

≡ T−1
ε

(
d

dτ
TεF

)
= {F , H}Z , (93)

where the total derivative along the transformed particle
orbit dε/dτ is defined in terms of the transformed Poisson
bracket { , }Z and the transformed Hamiltonian

H ≡ T−1
ε H. (94)

Here, the transformation of the Poisson bracket by Lie-
transform methods is performed through the transforma-
tion of the extended phase-space Lagrangian, expressed
as

Γ = T−1
ε Γ + dS, (95)

where S denotes a (canonical) scalar field used to simplify
the transformed phase-space Lagrangian (95), i.e., it has
no impact on the new Poisson-bracket structure

ω = dΓ = d
(
T−1

ε Γ
)

= T−1
ε dΓ ≡ T−1

ε ω, (96)
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since d2S = 0 (i.e., ∂2
abS − ∂2

baS = 0) and T−1
ε commutes

with d (see Appendix A).
Note that the extended-Hamiltonian transformation

(94) may be re-expressed in terms of the regular Hamil-
tonians H and H as

H = T−1
ε H − ∂S

∂t
, (97)

where S is the canonical scalar field introduced in
Eq. (95); note the similarity with Eq. (24). The new
extended phase-space coordinates are chosen so that
dεZ

a
/dτ = {Za

, H}Z are independent of the fast an-
gle ζ and the adiabatic invariant µ satisfies the ex-
act equation dεµ/dτ ≡ 0. The dynamical reduction of
single-particle Hamiltonian dynamics has, thus, been suc-
cessfully achieved by phase-space transformation via the
construction of a fast invariant µ with its canonically-
conjugate fast-angle ζ becoming an ignorable coordinate.

D. Lie-transform Methods

In Lie-transform perturbation theory (Littlejohn,
1982a), the pull-back and push-forward operators (89)
and (90) are expressed as Lie transforms:

T±1
ε ≡ exp

(
±
∑

n=1

εn £n

)
(98)

where £n denotes the Lie derivative generated by the
nth-order vector field Gn (Abraham and Marsden, 1978).
A Lie derivative is a special differential operator that
preserves the tensorial nature of the object it operates
on (see Appendix A for more details). In Eq. (94), for
example, the Lie derivative £nH of the scalar field H is
defined as the scalar field

£nH ≡ Ga
n ∂aH. (99)

In Eq. (95), on the other hand, the Lie derivative £nΓ
of a one-form Γ ≡ Γa dZa is defined as the one-form
(Abraham and Marsden, 1978)

£nΓ ≡ Gn · dΓ + d (Gn · Γ)
= [ Ga

n ωab + ∂b (Ga
n Γa) ] dZb, (100)

where ωab ≡ ∂aΓb − ∂bΓb are the components of the two-
form ω ≡ dΓ. Note that, at each order εn, the terms
d(Gn · Γ) can be absorbed in the gauge term dSn in
Eq. (95).

1. Transformed extended Poisson-bracket structure

We now write the extended phase-space Lagrangian
Γ ≡ Γ0 + εΓ1 and the extended Hamiltonian H ≡
H0+εH1 in terms of an unperturbed (zeroth-order) part
and a perturbation (first-order) part. The Lie-transform

relations associated with Eq. (95) are expressed (up to
second order in ε) as Γ0a ≡ Γ0a and

Γ1 = Γ1 − G1 · ω0 + dS1, (101)

Γ2 = −G2 · ω0 − 1
2

G1 · (ω1 + ω1) + dS2. (102)

A general form for the new Poisson bracket { , }Z is
obtained by allowing the new phase-space Lagrangian
to retain symplectic perturbation terms Γ ≡ Γ0 + εΓ1.
By chossing a specific form for the perturbed gyrocenter
symplectic structure Γ1, we can, thus, solve Eqs. (101)
and (102) for the generating vector field (G1,G2) ex-
pressed in terms of the scalar fields (S1, S2). Here, we
note that the new phase-space Lagrangian Γ ≡ ΓR +
Jg dζ, where the reduced phase-space Lagrangian ΓR is
independent of the fast angle ζ and, by application of the
Noether theorem (Cary, 1977), the canonically-conjugate
action Jg is an invariant (i.e., dJg/dt = {Jg, H}Z ≡ 0).

The first-order generating vector field G1 needed to
obtain the gyrocenter extended phase-space Lagrangian
(101) is

Ga
1 = {S1, Za}0 +

(
Γ1b − Γ1b

)
Jba

0 (103)

where { , }0 is the Poisson-bracket structure associated
with the unperturbed Poisson matrix Jab

0 . Here, we note
that the generating vector field (103) is divided into two
parts: a canonical part generated by the gauge func-
tion S1 and a symplectic part generated by the difference
∆Γ1b ≡ Γ1b − Γ1b between the old and new phase-space
Lagrangian symplectic components.

Next, for the second-order generating vector field G2,
the condition Γ2 ≡ 0 yields the following solution for G2

in terms of the scalar field S2:

Ga
2 = {S2, Za}0 − 1

2
Gb

1 (ω1bc + ω1bc )Jca
0 , (104)

where ω1bc and ω1bc denote the components of the first-
order perturbed Lagrange matrices. We note that the
second-order generating field (104) is, once again, divided
into a canonical part (generated by S2) and a symplectic
part (generated by Γ1b and Γ1b).

The near-identity extended-phase-space transforma-
tion (87) is, thus, expressed in terms of the asymptotic
expansion

Za
= Za + ε

(
{S1, Za}0 + ∆Γ1b J

ba
0

)
+ O(ε2),

(105)
and its explicit expression requires a solution of the scalar
fields (S1, ...); for most practical applications, however,
only the first-order function S1 is needed.

2. Transformed extended Hamiltonian

By substituting the generating vector fields (103) and
(104) into the Lie-transform relations associated with
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Eq. (94):

H1 = H1 − G1 · dH0, (106)

H2 = − G2 · H0 −
1
2

G1 · d
(
H1 + H1

)
, (107)

we obtain the first-order and second-order terms in the
transformed extended Hamiltonian:

H1 = H1 − (Γ1a − Γ1a) Ża
0 − {S1, H0}0

≡
(
K1 + Γ1a Ża

0

)
− {S1, H0}0 , (108)

and

H2 = −{S2, H0}0 − 1
2
Ga

1 ∂a (K1 +K1

)

− 1
2
Gb

1

{
(Γ1b + Γ1b), H0

}
0

− 1
2

(Γ1b + Γ1b)
(
Ga

1 ∂aŻb
0

)
, (109)

where we used the Poisson-bracket properties (60)-(62).
In Eqs. (108)-(109), Ża

0 ≡ {Za, H0}0 denotes the zeroth-
order Hamilton’s equations and

K1 ≡ H1 − Γ1a Ża
0 , (110)

denotes the effective first-order Hamiltonian (and K1 ≡
H1 − Γ1a Ża

0 ). Note, here, that the choice of Γ1, which
is relevant only for magnetic perturbations, affects both
the new Poisson-bracket structure { , }Z and the new
Hamiltonian H ≡ H −w.

The two Hamiltonian relations (108)-(109) contain
terms on the right side that exhibit both fast and slow
time-scale dependence: the slow-time-scale terms are ex-
plicitly identified with the new Hamiltonian term Hn on
the left side, while the fast-time-scale terms are used to
define the gauge function Sn. The solution for the new
first-order Hamiltonian (108) is, thus, expressed in terms
of the fast-angle averaging operation 〈· · ·〉 as

H1 ≡ 〈K1〉 + Γ1a Ża
0 , (111)

where the Poisson bracket { , }, henceforth, denotes
the zeroth-order Poisson bracket { , }0 (unless other-
wise noted) and S1 can be chosen such that 〈S1〉 ≡ 0.
The first-order gauge function S1 is determined from the
perturbation equation

d0S1

dτ
≡ {S1, H0} = K̃1 ≡ K1 − 〈K1〉, (112)

whose solution is S1 ≡ (d0/dτ )−1K̃1, where (d0/dτ )−1

denotes an integration along an unperturbed extended
Hamiltonian orbit; note that this formal solution is iden-
tical to the solution (83) obtained by variational meth-
ods. To lowest order in the fast orbital time scale, the
unperturbed integration

S1 = (d0/dτ )−1K̃1 ≡ Ω−1

∫
K̃1dζ (113)

involves an indefinite fast-angle integration, where Ω ≡
d0ζ/dt denotes the fast-angle frequency; note also that
the solution (113) for the first-order gauge function S1

does not depend on the choice of Γ1.
The solution for the new second-order Hamiltonian

(109) yields the fast-angle-averaged expression

H2 = − 1
2
〈{S1, {S1, H0}}〉 − 〈∆Γ1a {Za, K1}〉

− 1
2
〈
∆Γ1a Jab

0

{
(Γ1b + Γ1b), H0

}〉

−
1
2

〈
∆Γ1a

{
Za, Żb

0

}
(Γ1b + Γ1b)

〉
, (114)

where the first term corresponds to the standard
quadratic ponderomotive Hamiltonian (Cary and Kauf-
man, 1981) while the remaining terms (which depend on
the symplectic choice Γ1) will be discussed below. The
second-order gauge function S2 appearing in Eq. (109) is
not needed in what follows since the phase-space trans-
formation from guiding-center coordinates to gyrocenter
coordinates is only needed to first order in εδ.

E. Reduced Vlasov-Maxwell Equations

The extended Vlasov equation (92) may be converted
into the regular Vlasov equation as follows. First, in
order to satisfy the physical constraint (66), the extended
Vlasov distribution is expressed as

F(Z) ≡ c δ[w−H(z, t)] f(z, t), (115)

where f(z, t) denotes the time-dependent Vlasov distri-
bution on regular phase space z = (x,p). By integrating
the extended Vlasov equation (92) over the energy co-
ordinate w (and using dτ = dt), we, thus, obtain the
regular Vlasov equation

0 =
df

dt
≡ ∂f

∂t
+

dz
dt

· ∂f
∂z
. (116)

Next, the push-forward transformation of the extended
Vlasov distribution (115) yields the reduced extended
Vlasov distribution

F(Z) ≡ c δ[w−H(z, t)] f (z, t), (117)

where the reduced extended Hamiltonian H ≡ H(z, t) −
w is defined in Eq. (94). Lastly, the extended reduced
Vlasov equation

dεF
dτ

≡ {F , H}ε = 0 (118)

can be converted into the regular reduced Vlasov equa-
tion by integrating it over the reduced energy coordinate
w, which yields the reduced Vlasov equation

0 =
dεf

dt
≡ ∂f

∂t
+

dεz
dt

· ∂f
∂z
, (119)
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where f (z, t) denotes the time-dependent reduced Vlasov
distribution on the new reduced phase space. Hence, we
see that the pull-back and push-forward operators play
a fundamental role in the transformation of the Vlasov
equation to the reduced Vlasov equation.

We now investigate how the pull-back and push-
forward operators are used in the transformation of
Maxwell’s equations

∇ ·E = 4π ρ, (120)

∇×B− 1
c

∂E
∂t

=
4π
c

J, (121)

where the charge-current densities
(
ρ

J

)
=
∑

e

∫
d4p F

(
1
v

)
(122)

are defined in terms of the extended Vlasov distribution
F (with d4p = c−1dw d3p) and E ≡ −∇φ − c−1∂A/∂t
and B ≡ ∇×A satisfy the constraints ∇ ·B = 0 and
∇×E + c−1 ∂tB = 0.

The charge-current densities (122) can be expressed in
terms of the general expression (where time dependence
is omitted for clarity)

‖vµ‖(r) ≡
∫
d3p vµ f =

∫
d4p vµ F

=
∫
d3x

∫
d4p vµ δ3(x − r) F , (123)

where vµ = (c,v) and the delta function δ3(x−r) means
that only particles whose positions x coincide with the
field position r contribute to the moment ‖vµ‖(r). By ap-
plying the extended (time-dependent) phase-space trans-
formation Tε : Z → Z (where time t itself is unaffected)
on the right side of Eq. (123), we obtain the push-forward
representation for the fluid moments ‖vµ‖:

‖vµ‖(r) =
∫
d3x

∫
d4p

(
T−1

ε vµ
)
δ3(x + ρε − r) F

=
∫
d3p e−ρε ·∇[ (T−1

ε vµ
)
f
]
, (124)

where T−1
ε vµ = (c,T−1

ε v) denotes the push-forward of
the four-velocity vµ and

ρε ≡ T−1
ε x− x

= − ε Gx
1 − ε2

(
Gx

2 − 1
2

G1 · dGx
1

)
+ · · · (125)

denotes the displacement between the push-forward
T−1

ε x of the particle position x and the (new) reduced
position x, which is defined in terms of the generating
vector fields (103) and (104).11

11 We immediately note the similarity between the general form
(124) for the push-forward representation of fluid moments and
the Frieman-Chen expression (17) for the perturbed plasma den-
sity δn.

The push-forward representation for the charge-
current densities, therefore, introduces polarization and
magnetization effects into the Maxwell equations, which
transforms the microscopic Maxwell’s equations (120)-
(121) into the macroscopic (reduced) equations

∇ ·D = 4π ρ, (126)

∇×H − 1
c

∂D
∂t

=
4π
c

J, (127)

where the reduced charge-current densities (ρ,J) are de-
fined as moments of the reduced Vlasov distribution F :

(
ρ

J

)
=
∑

e

∫
d4p F

(
1
v

)
, (128)

and the microscopic electric and magnetic fields E and
B are replaced by the macroscopic fields (Jackson, 1975)

D = E + 4πPε

H = B − 4πMε

}
. (129)

Here, Pε and Mε denote the polarization and magnetiza-
tion vectors associated with the dynamical reduction in-
troduced by the phase-space transformation (87). Lastly,
the relation between the particle charge-current densities
(ρ,J) and the reduced charge-current densities (ρ,J):

ρ ≡ ρ − ∇ ·Pε, (130)

J ≡ J +
∂Pε

∂t
+ c∇×Mε, (131)

defines the polarization density ρpol ≡ −∇ ·Pε, the po-
larization current Jpol ≡ ∂Pε/∂t, and the magnetization
current Jmag ≡ c∇×Mε. The derivation of the polar-
ization and magnetization vectors Pε and Mε is done
either directly by the push-forward method (124) or by
variational method

(D, H) ≡ 4π
(
∂L
∂E

, − ∂L
∂B

)
, (132)

where L denotes the Lagrangian density for the re-
duced Vlasov-Maxwell equations. While the direct push-
forward method is relatively straightforward to use (see
Appendix C for details), the variational method allows
a direct derivation of the exact conservation laws (e.g.,
energy) for the reduced Vlasov-Maxwell equations (see
Section VI.C).

F. Example: Oscillation-center Hamiltonian Dynamics

Before proceeding with the derivation of the non-
linear gyrokinetic equations, we consider the Lie-
transform derivation of the oscillation-center (pondero-
motive) Hamiltonian dynamics for charged particles mov-
ing in high-frequency, short-wavelength electromagnetic
(wave) fields. The derivation of the ponderomotive
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Hamiltonian is the paradigm for the application of Lie-
transform methods in plasma physics (Cary and Kauf-
man, 1981), and it introduces important concepts that
translate well to the low-frequency limit appropriate for
gyrokinetics. Another example of a successful applica-
tion of Lie-transform perturbation theory involves the
perturbation analysis of a charged-particle beam orbit
in a wiggler magnetic field (Kishimoto et al., 1995).
For the sake of simplicity of presentation, however, we
consider a weakly-inhomogeneous unmagnetized plasma
background in the presence of a weakly-inhomogeneous
electric potential Φ0, so that the wave amplitudes are also
weakly-varying in space and time, and we ignore the self-
consistent back-reaction Vlasov-Maxwell response, since
we focus our attention on deriving the reduced Hamilto-
nian dynamics.

In order to separate the space-time scales appearing in
this problem, we introduce the eikonal representation for
the wave fields:
(
φ1

A1

)
≡

(
φ̃1

Ã1

)
eiΘ/ε0 +

(
φ̃∗

1

Ã∗
1

)
e− iΘ/ε0 , (133)

where the wave amplitudes (denoted, here, by a tilde)
are weakly-varying space-time functions and derivatives
of the eikonal phase Θ(ε0r, ε0t):

ε−1
0 ∇Θ(ε0r, ε0t) = k(ε0r, ε0t)
ε−1
0 ∂tΘ(ε0r, ε0t) = − ω(ε0r, ε0t)

}
(134)

define the weakly-varying wavevector k and wave fre-
quency ω. Here, the eikonal parameter ε0 is defined as
ε0 ∼ k−1|∇ lnΦ0| ∼ ω−1|∂t lnΦ0| in terms of the back-
ground electric potential Φ0.

The extended-phase-space Hamiltonian dynamics of
charged particles in such electromagnetic-wave fields is
expressed in terms of the extended phase-space La-
grangian

Γ =
(
p + εδ

e

c
A1

)
· dx − w dt

≡ Γ0 + εδ Γ1, (135)

where p = mv denotes the kinetic momentum of the
charged particle, and the extended Hamiltonian

H =
1

2m
|p|2 + e (Φ0 + εδ φ1) − w

≡ H0 + εδ H1. (136)

Here, we see that both the Hamiltonian and the sym-
plectic (Poisson-bracket) structure exhibit explicit de-
pendence on the eikonal phase Θ and, thus, a particle
orbit exhibits both fast-wave space-time scales and slow-
background space-time scales.

By definition, the oscillation-center Hamiltonian dy-
namics must be expressed in terms of an extended-phase-
space Lagrangian Γ and Hamiltonian H that are ex-
plicitly independent of the eikonal phase Θ. Hence,

we choose the Hamiltonian representation Γ ≡ Γ0 (i.e.,
Γn ≡ 0 for n ≥ 1 and all magnetic perturbations are
transfered to the oscillation-center Hamiltonian), so that
the first-order generating vector field is obtained from
Eq. (103) as

Ga
1 = {S1, Za}0 +

e

c
A1 · {x, Za}0 . (137)

Here, we note that the symplectic part (second term) of
the generating vector field (137) was used to remove the
wave-field perturbation on the Poisson-bracket structure
(135) and we, henceforth, use the notation { , } ≡ { , }0.

Next, the second-order generating vector field is ob-
tained from Eq. (104) as

Ga
2 = {S2, Za} − 1

2
Gb

1 ω1bc J
ca
0 , (138)

where (assuming that Gt
n ≡ 0 so that particle and

oscillation-center times are identical)

Gb
1 ω1bc J

ca
0 = − e

c
Gx

1 ·B1 × {x, Za}

− e

c
Gx

1 · ∂A1

∂t
{t, Za} .

The near-identity extended-phase-space transformation
from particle coordinates Za = (x,p;w, t) to oscillation-
center coordinates Za

= (x,p;w, t) is, thus, expressed
(up to first order in εδ) as

Za
= Za + εδ

(
{S1, Za} +

e

c
A1 · {x, Za}

)
, (139)

and its explicit expression requires a solution for the
scalar fields (S1, ...).

By substituting the generating vector fields (137) and
(138) into Eqs. (108)-(109), we obtain the following
Hamiltonian relations

H1 = e
(
φ1 − v

c
· A1

)
− {S1, H0}

≡ e ψ1 − {S1, H0} , (140)

and

H2 = −
{(
S2 − e

2c
A1 · {x, S1}

)
, H0

}

+
e2 |A1|2

2mc2
− e

2
{S1, ψ1} . (141)

First, we note that, since the wave fields (133) are ex-
plicitly eikonal-dependent, the gauge function S1 may be
chosen to be explicitly Θ-dependent:

S1 = S̃1 e
iΘ/ε0 + S̃∗

1 e
−iΘ/ε0 ,

and, thus, we may define the first-order oscillation-center
Hamiltonian to be identically zero: H1 ≡ 0. By sub-
stituting the eikonal representation into the equation
{S1, H0} = e ψ1, we readily find S̃1 = i eψ̃1/ω

′, where
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ω′ ≡ ω − k · v denotes the Doppler-shifted wave fre-
quency. Hence, the extended-phase-space transformation
(x,p, w, t) → (x,p, w, t) is defined (to first order in εδ)
as

x = x − εδ
∂S1

∂p
+ · · · ,

p = p + εδ

(
∇S1 +

e

c
A1

)
+ · · · ,

w = w − εδ
∂S1

∂t
+ · · · ,

where the presence of the perturbed vector potential A1

in the definition of the oscillation-center momentum p
implies that it is a canonical momentum (in contrast to
the kinetic momentum p = mv). In what follows, it
is useful to define the eikonal-dependent displacement
ξ ≡ ∂S1/∂p between the particle position x and the
oscillation-center position x (Hatori and Washimi, 1981).
Here, the eikonal amplitude ξ̃ is expressed as

ξ̃ ≡ − e

mω′2

(
Ẽ1 +

v
c

× B̃1

)
(142)

for the first-order oscillation-center phase-space displace-
ment. By substituting the eikonal solution S̃1 into the
second-order eikonal-averaged Hamiltonian (141), we ob-
tain the second-order oscillation-center Hamiltonian

H2 =
e2 |Ã1|2

mc2
− e

{
ε−1
0 Θ, Im

(
S̃∗

1 ψ̃1

)}

≡ m |ω′ ξ̃|2 = − e ξ̃
∗
·
(
Ẽ1 +

v
c

× B̃1

)
, (143)

from which we obtain the oscillation-center velocity

v ≡ {x, H} = v + ε2δ
∂H2

∂p
, (144)

where the ponderomotive Hamiltonian H2 introduces
nonlinear effects into the oscillation-center Hamiltonian
dynamics.

Lastly, the oscillation-center transformation (139) in-
troduces polarization and magnetization effects into
Maxwell’s equations. The oscillation-center (ponderomo-
tive) polarization and magnetization vectors are derived
in Appendix C by the direct push-forward method as

Posc = ε2δ
∑ ∫

d3p f π2, (145)

Mosc = ε2δ
∑ ∫

d3p f

(
µ2 + π2 × v

c

)
, (146)

where f denotes the oscillation-center Vlasov distri-
bution, π2 = ek× (i ξ̃ × ξ̃

∗
) denotes the second-

order ponderomitive electric-dipole moment, µ2 =
(e/c)ω′ (i ξ̃ × ξ̃

∗
) denotes the second-order pondero-

motive magnetic-dipole moment, and a moving-electric-
dipole contribution (Jackson, 1975) also appears in
Eq. (146).

These expressions show that nonlinear ponderomotive
terms in the oscillation-center Hamiltonian can not only
modify the oscillation-center Hamiltonian dynamics but
also introduce back-reaction effects into Maxwell’s equa-
tions that generate second-order eikonal-independent
electromagnetic fields.

V. NONLINEAR GYROKINETIC VLASOV EQUATION

We are now ready to apply the methods of Lie-
transform perturbation theory presented in Section IV to
the dynamical reduction associated with the perturbed
dynamics of charged particles (mass m and charge e)
moving in a background time-independent magnetic field
B0 = ∇×A0 in the presence of low-frequency electro-
magnetic fluctuations represented by the perturbation
four-potential δAµ = (δφ, δA), whose amplitude is or-
dered with a dimensionless small parameter εδ � 1.
Here, we focus our attention on deriving the nonlinear
gyrocenter Hamiltonian and the associated nonlinear gy-
rokinetic Vlasov equation and postpone the derivation of
the self-consistent gyrokinetic Maxwell equations and the
gyrokinetic energy conservation law to Section VI.

The eight-dimensional extended phase-space dynam-
ics is expressed in terms of the extended phase-space
Lagrangian Γ = Γ0 + εδ Γ1, where Γ0 ≡ [(e/c)A0 +
p] · dx − wdt and Γ1 ≡ (e/c) δA · dx, and the ex-
tended phase-space Hamiltonian H = H0 + εδ H1, where
H0 ≡ |p|2/2m−w and H1 ≡ e δφ. Note that, while elec-
trostatic fluctuations perturb the Hamiltonian alone, full
electromagnetic fluctuations perturb both the Hamilto-
nian (H1) and the symplectic one-form (Γ1).

The standard gyrokinetic analysis for magnetized plas-
mas perturbed by low-frequency electromagnetic fluc-
tuations (Brizard, 1989a) proceeds by a sequence of
two near-identity phase-space transformations: a time-
independent guiding-center phase-space transformation
and a time-dependent gyrocenter phase-space transfor-
mation. This two-step decoupling procedure removes,
first, the fast gyro-motion space-time scales associated
with the (unperturbed) background magnetic field (first
step = guiding-center transformation with ordering pa-
rameter εB) and, second, the fast gyro-motion time scale
associated with the perturbation electromagnetic fields
(second step = gyrocenter transformation with ordering
parameters εδ, εω, and ε⊥).

A. Unperturbed Guiding-center Hamiltonian Dynamics

The guiding-center phase-space transformation in-
volves an asymptotic expansion, with a small dimension-
less parameter εB ≡ ρth/LB � 1 defined as the ratio of
the thermal gyroradius ρth and the background magnetic-
field length scale LB. This transformation is designed to
remove the fast gyro-motion time scale associated with
the time-independent background magnetic field B0 as-
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sociated with an unperturbed magnetized plasma (Little-
john, 1983). In previous work (Brizard, 1995), this trans-
formation was carried out to second order in εB with the
scalar potential Φ0 ordered at zeroth order in εB; in this
Section, we set the equilibrium scalar potential equal to
zero and discuss issues associated with an inhomogeneous
equilibrium electric field in Appendix E.1.

The results of the guiding-center analysis presented by
Littlejohn (1983) are summarized as follows (further de-
tails are presented in Appendix B). First, the guiding-
center transformation yields the following guiding-center
coordinates (X, p‖, µ, ζ, w, t) ≡ Zgc, where X is the
guiding-center position, p‖ is the guiding-center kinetic
momentum parallel to the unperturbed magnetic field,
µ is the guiding-center magnetic moment, ζ is the gy-
roangle, and (w, t) are the canonically conjugate guiding-
center energy-time coordinates (here, time is unaffected
by the transformation while the guiding-center energy is
chosen to be equal to the particle energy). Next, the
unperturbed guiding-center extended phase-space La-
grangian is

Γgc ≡ e

c
A∗

0 · dX + µ (mc/e) dζ − w dt, (147)

where A∗
0 ≡ A0 + (c/e) p‖ b̂0 + O(e−2) is the effective

unperturbed vector potential, with b̂0 ≡ B0/B0 and
higher-order correction terms are omitted (see Appendix
B for further details); we, henceforth, omit displaying
the dimensionless guiding-center parameter εB for sim-
plicity. The unperturbed extended phase-space guiding-
center Hamiltonian is

Hgc =
p2
‖

2m
+ µB0 − w ≡ Hgc − w. (148)

Lastly, from the unperturbed guiding-center phase-space
Lagrangian (147), we obtain the unperturbed guiding-
center Poisson bracket { , }gc, given here in terms of two
arbitrary functions F and G on extended guiding-center
phase space as (Littlejohn, 1983)

{F , G}gc ≡ e

mc

(
∂F
∂ζ

∂G
∂µ

− ∂F
∂µ

∂G
∂ζ

)

+
B∗

0

B∗
0‖

·
(
∇F ∂G

∂p‖
− ∂F
∂p‖

∇G
)

− cb̂0

eB∗
0‖

·∇F ×∇G

+
(
∂F
∂w

∂G
∂t

−
∂F
∂t

∂G
∂w

)
, (149)

where B∗
0 ≡ ∇×A∗

0 and B∗
0‖ ≡ b̂0 ·B∗

0 are defined as

B∗
0 = B0 + (c/e) p‖ ∇× b̂0

B∗
0‖ = B0 + (c/e)p‖ b̂0 ·∇× b̂0




. (150)

Note that the Jacobian of the guiding-center transforma-
tion is Jgc = mB∗

0‖ (i.e., d3x d3p = Jgc d
3X dp‖ dµ dζ)

and the background magnetic field is assumed to be a
time-independent field (e.g., on time scales shorter than
collisional time scales) so that the time derivative ∂A0/∂t
is absent from the Poisson bracket (149). The unper-
turbed guiding-center Hamiltonian dynamics is, thus, ex-
pressed in terms of the Hamiltonian (148) and the Pois-
son bracket (149) as Ża ≡ {Za, Hgc}gc. In particu-
lar, the conservation law µ̇ ≡ 0 for the guiding-center
magnetic moment follows from the fact that the guiding-
center Hamiltonian (148) is independent of the fast gy-
roangle ζ (to arbitrary order in εB).

B. Perturbed Guiding-center Hamiltonian Dynamics

We now consider how the guiding-center Hamiltonian
system (Hgc; { , }gc) is affected by the introduction of
low-frequency electromagnetic field fluctuations (δφ, δA)
satisfying the low-frequency gyrokinetic orderings (5)-
(9). Under the electromagnetic perturbations (δφ, δA),
the guiding-center phase-space Lagrangian (147) and
Hamiltonian (148) become

Γ′
gc ≡ Γ0gc + εδ Γ1gc

H′
gc ≡ H0gc + εδ H1gc




, (151)

where the zeroth-order guiding-center phase-space La-
grangian Γ0gc and Hamiltonian Hgc0 are given by (147)
and (148), respectively. In what follows, although the
three small parameters (εB, εδ, εω) may be of the same
order in the conventional nonlinear gyrokinetic ordering
(Frieman and Chen, 1982), we keep them independent
in order to emphasize their different physical origins and
to retain more flexibility in the perturbative analysis of
reduced Hamiltonian dynamics in various situations. An
outstanding example, in which this ordering flexibility is
necessary, is the case with strong E × B flow shear as
discussed in Appendix E.1.

In Eq. (151), the first-order guiding-center phase-space
Lagrangian Γgc1 and Hamiltonian H1gc are

Γ1gc =
e

c
δA(X + ρ, t) · d(X + ρ)

≡ e

c
δAgc(X, t;µ, ζ) · d(X + ρ), (152)

and

H1gc = eδφ(X + ρ, t) ≡ eδφgc(X, t;µ, ζ), (153)

where δAgc(X, t;µ, ζ) and δφgc(X, t;µ, ζ) denote per-
turbation potentials evaluated at a particle’s position
x ≡ X + ρ expressed in terms of the guiding-center po-
sition X and the gyroangle-dependent gyroradius vector
ρ(µ, ζ); here, to lowest order in εB, we ignore the spatial
dependence of ρ.
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Because of the gyroangle-dependence in the guiding-
center perturbation potentials (δφgc, δAgc), the guiding-
center magnetic moment µ is no longer conserved by
the perturbed guiding-center equations of motion, i.e.,
µ̇ = O(εδ). To remove the gyroangle-dependence from
the perturbed guiding-center phase-space Lagrangian
and Hamiltonian (152)-(153), we proceed with the time-
dependent gyrocenter phase-space transformation

Z ≡ (X, p‖, µ, ζ, w, t) → Z ≡ (X, p‖, µ, ζ, w, t),

where Z denote the gyrocenter (gy) extended phase-space
coordinates; we note that the nature of the gyrocenter
parallel momentum p‖ depends on the choice of repre-
sentation used for gyrocenter Hamiltonian dynamics (as
will be discussed below) and the time coordinate t is not
affected by this transformation.

The results of the nonlinear Hamiltonian gyrocenter
perturbation analysis (Brizard, 1989a) are summarized as
follows. To first order in the small amplitude parameter
εδ and zeroth order in the space-time-scale parameters
(εω, εB), this transformation is represented in terms of
generating vector fields (G1,G2, ...) as

Za ≡ Za + εδ G
a
1 + · · · (154)

We wish to construct a new gyrocenter Hamiltonian sys-
tem in which the new gyrocenter extended phase-space
Lagrangian is

Γ =
[ e
c

(A0 + εδ δAgy) + p‖ b̂0

]
· dX

+
mc

e
µ dζ − w dt

≡ Γ0 + εδ Γ1, (155)

where the gyrocenter symplectic-perturbation term δAgy

is defined as

δAgy ≡ α 〈δA⊥gc〉 + β 〈δA‖gc〉 b̂0. (156)

Here, the model parameters (α, β) determine the form of
the nonlinear gyrocenter model:

gyrocenter Model α β p‖

Hamiltonian 0 0 canonical
Symplectic 1 1 kinetic

⊥− Symplectic 1 0 canonical
‖ − Symplectic 0 1 kinetic

The Hamiltonian gyrocenter model (α = 0 = β) and the
symplectic gyrocenter model (α = 1 = β) are presented
by Brizard (1989a), while the parallel-symplectic gyro-
center model (β = 1, α = 0) is used by Brizard (1992) to
derive the so-called nonlinear electromagnetic gyrofluid
equations.

The Jacobian for the transformation from particle to
gyrocenter phase space is J = m2B∗

‖ , where

B∗
‖ ≡ B∗

0‖ + εδ
(
α 〈δB‖gc〉

)
, (157)

while the general form for the gyrocenter Poisson bracket
is

{F , G} =
e

mc

(
∂F
∂ζ

∂G
∂µ∗ − ∂F

∂µ∗
∂G
∂ζ

)

+
B∗

B∗
‖

·
(
∇∗F ∂G

∂p‖
− ∂F

∂p‖
∇∗G

)

− cb̂0

eB∗
‖

·∇∗F ×∇∗G

+
(
∂F
∂w

∂G
∂t

− ∂F
∂t

∂G
∂w

)
, (158)

where B∗ ≡ B∗
0 + εδ δBgy, with δBgy ≡ ∇× δAgy, and

∇∗F ≡ ∇F − εδ
e

c

(
∂δAgy

∂t

∂F
∂w

−
Ω
B

∂δAgy

∂µ

∂F
∂ζ

)
,

∂F
∂µ∗ ≡ ∂F

∂µ
− ε2δ

(
e

c

∂δAgy

∂t
· ∂δAgy

∂µ
× b̂0

)
∂F
∂w

.

We recover the guiding-center Poisson bracket (149)
from Eq. (158) with the Hamiltonian gyrocenter model
(δAgy = 0).

The nonlinear gyrocenter Hamilton’s equations are

Ẋ =
cb̂0

eB∗
‖

×
(
∇H + εδ

e

c

∂δAgy

∂t

)

+
∂H

∂p‖

B∗

B∗
‖
, (159)

ṗ‖ = − B∗

B∗
‖

·
(
∇H + εδ

e

c

∂δAgy

∂t

)
, (160)

where the gyrocenter Hamiltonian H = H0 + εδ H1 +
ε2δ H2 is derived in the next sections. Here, we note that
the gyrocenter Hamilton’s equations (159)-(160) satisfy
the gyrocenter Liouville theorem

0 =
∂B∗

‖

∂t
+ ∇ ·

(
B∗

‖ Ẋ
)

+
∂

∂p‖

(
B∗

‖ ṗ‖

)
. (161)

C. Nonlinear Gyrocenter Hamiltonian Dynamics

We now briefly review the first-order and second-order
perturbation analysis leading to the derivation of the
nonlinear gyrocenter Hamiltonian.

We begin with the first-order analysis. From Eq. (103),
with Γ1 ≡ (e/c) δAgy · dX, the first-order generating vec-
tor field for the gyrocenter phase-space transformation is

Ga
1 = {S1, Za}0 +

e

c
δAgc · {X + ρ, Za}0

−
e

c
δAgy · {X, Za}0 , (162)

or its components can be explicitly given as

GX
1 = − b̂0

∂S1

∂p‖
− cb̂0

eB0
×∇S1
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+

(
δAgc − α 〈δA⊥gc〉

)
× b̂0

B0
, (163)

G
p‖
1 = b̂0 ·∇S1 +

e

c

(
δA‖gc − β 〈δA‖gc〉

)
, (164)

Gµ
1 =

e

mc

(
e

c
δA⊥gc · ∂ρ

∂ζ
+

∂S1

∂ζ

)
, (165)

Gζ
1 = − e

mc

(
e

c
δA⊥gc · ∂ρ

∂µ
+

e

mc

∂S1

∂µ

)
, (166)

Gw
1 = − ∂S1

∂t
, (167)

where effects due to background magnetic field nonuni-
formity are omitted for clarity. Here, we note that the
gyrocenter parallel momentum is expanded as

p‖ = p‖ + εδ
e

c

(
δA‖gc − β 〈δA‖gc〉

)
+ · · · , (168)

which shows that the gyrocenter parallel momentum p‖ is
a canonical momentum for gyrocenter models with β = 0
(i.e., the Hamiltonian and ⊥-Symplectic gyrocenter mod-
els).

The first-order gyrocenter Hamiltonian is determined
from the first-order Lie-transform equation (108) as

H1 ≡ e δψgc − {S1, H0}0,

where the effective first-order potential is defined as

δψgc ≡ δφgc − δAgc · v
c

+ β
v‖

c
〈δA‖gc〉. (169)

The gyroangle-averaged part of this first-order equation
yields

H1 ≡ e 〈δψgc〉 = e
〈
δφgc − v⊥

c
· δA⊥gc

〉

−
ev‖

c
(1 − β) 〈δA‖gc〉, (170)

while the solution for the scalar field S1 is

S1 =
e

Ω0

∫
δψ̃gc dζ ≡ e

Ω0
δΨ̃gc, (171)

where δψ̃gc ≡ δψgc − 〈δψgc〉 denotes the gyroangle-
dependent part of the first-order effective potential (169).

While the (linear) first-order gyrocenter Hamiltonian
(170) is sufficient for applications of linear gyrokinetic
theory (i.e., in the absence of polarization and mag-
netization effects in Maxwell’s equations), it must be
supplemented by a (nonlinear) second-order gyrocenter
Hamiltonian H2 for two important reasons. First, the
second-order gyrocenter Hamiltonian H2 is needed in
order to obtain the important polarization and magne-
tization effects which, within the variational formula-
tion of self-consistent gyrokinetic Vlasov-Maxwell theory
presented here, have variational definitions expressed in
terms of the partial derivatives ∂H2/∂E1 and ∂H2/∂B1,
respectively (see Section III). Second, once polarization

and magnetization effects are included in the gyrokinetic
Maxwell equations, the second-order gyrocenter Hamil-
tonian H2 must be kept in the gyrokinetic Vlasov La-
grangian density in order to obtain an exact energy con-
servation law (derived by Noether method) for the gy-
rokinetic Vlasov-Maxwell equations.

Hence, the general expression for the second-order gy-
rocenter Hamiltonian is obtained from Eq. (114) as

H2 = − e2

2Ω0

〈{
δΨ̃gc, δψ̃gc

}
0

〉

+
e2

2mc2

(〈
|δAgc|2

〉
− β 〈δA‖gc〉2

)

+ α 〈δA⊥gc〉 · b̂0

B0
×∇H1, (172)

where the first term (denoted K2) describes low-
frequency ponderomotive effects associated with the
elimination of the fast gyro-motion time scale while the
remaining terms explicitly involve magnetic perturba-
tions and the choice of gyrocenter-model parameters
(α, β).

D. Nonlinear Gyrokinetic Vlasov Equation

Once the linear gyrocenter Hamiltonian (170) and the
nonlinear gyrocenter Hamiltonian (172) is obtained, it
is a simple step to derive the corresponding nonlinear
gyrokinetic Vlasov equation for the gyrocenter Vlasov
distribution F :

0 =
∂F

∂t
+
{
F, Hgy

}
, (173)

where the nonlinear gyrocenter Hamiltonian is Hgy =
Hgc + e δΨgy. Up to second order in the amplitude pa-
rameter εδ, the extended phase-space gyrocenter Hamil-
tonian is, therefore, expressed as

H = H0 + εδ e〈δψgc〉 +
ε2δ e

2

2mc2
〈
|δAgc|2

〉

− ε2δ e
2

2 Ω0

〈{
δΨ̃gc, δψ̃gc

}〉
, (174)

where H0 = p2
‖/2m+ µB0 −w denotes the unperturbed

extended guiding-center Hamiltonian. In order to sim-
plify our presentation, we, henceforth, adopt the Hamil-
tonian gyrocenter model (with α = 0 = β) for the re-
mainder of this Section.

We have, thus, obtained a reduced (gyroangle-
independent) gyrocenter Hamiltonian description of
charged-particle motion in nonuniform magnetized plas-
mas perturbed by low-frequency electromagnetic fluctu-
ations. At this level, the nonlinear gyrokinetic Vlasov
equation can be used to study the evolution of a distribu-
tion of test-gyrocenters in the presence of low-frequency
electromagnetic fluctuations. For a self-consistent treat-
ment that include an electromagnetic field response to
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the gyrocenter Hamiltonian dynamics, a set of low-
frequency Maxwell’s equations with charge and current
densities expressed in terms of moments of the gyrocenter
Vlasov distribution is required.

E. Pull-back Representation of the Perturbed Vlasov
Distribution

Before proceeding to the variational derivation of the
gyrokinetic Maxwell’s equations and the exact gyroki-
netic energy invariant, we investigate the connection be-
tween the particle Vlasov distribution f and the gyro-
center Vlasov distribution F .

The perturbed Vlasov distribution is traditionally de-
composed into its adiabatic and nonadiabatic compo-
nents (Antonsen and Lane, 1980; Brizard, 1994a; Catto
et al., 1981) following an iterative solution of the per-
turbed guiding-center Vlasov equation. To simplify
the presentation, we assume that the magnetic field is
uniform and, thus, the pull-back transformation from
the guiding-center Vlasov distribution F to the particle
Vlasov distribution f is expressed as

f = TgcF = e−ρ ·∇ F (175)

The pull-back transformation from the gyrocenter Vlasov
distribution F to the guiding-center Vlasov distribution
F , on the other hand, is expressed as

F = TgyF = F + εδ
{
S1, F

}

+ εδ
e

c
δAgc ·

{
X + ρ, F

}
. (176)

We point that no information is lost in transforming the
Vlasov equation in particle phase space to the gyrokinetic
Vlasov equation in gyrocenter phase space since

df

dt
=

d

dt

(
Tgc Tgy F

)
= Tgc

[ (
T−1

gc

d

dt
Tgc

)
Tgy F

]

= Tgc

[
dgc

dt

(
Tgy F

) ]

= Tgc Tgy

[ (
T−1

gy

dgc

dt
Tgy

)
F

]

= Tgc Tgy

(
dgyF

dt

)
, (177)

so that the Vlasov equation df/dt = 0 is satisfied for
the particle Vlasov distribution f ≡ Tgc(TgyF ) if the
gyrokinetic Vlasov equation dgyF/dt = 0 is satisfied for
the gyrocenter Vlasov distribution F .

Next, we introduce the guiding-center Poisson bracket
associated with the coordinates (X, E , µ, ζ):

{F, G} = Ω
[
∂F

∂ζ

(
∂G

∂E
+

1
B

∂G

∂µ

)

−
(
∂F

∂E +
1
B

∂F

∂µ

)
∂G

∂ζ

]

+ vgc ·
(
∇F ∂G

∂E
− ∂F

∂E
∇G

)

− cb̂

eB
·∇F ×∇G, (178)

where vgc = v‖ b̂ in the absence of magnetic-field nonuni-
formity. Hence, by combining the guiding-center and gy-
rocenter pull-backs, we find the pull-back transformation
from the gyrocenter Vlasov distribution F and the par-
ticle Vlasov distribution f :

f = e−ρ ·∇
[
F − e 〈δψgc〉

(
∂F

∂E +
1
B

∂F

∂µ

)]

+ eδφ
∂F

∂E +
e

B

(
δφ−

v‖

c
δA‖

) ∂F
∂µ

+ δA× b̂

B
·∇F. (179)

where the last three terms represent the adiabatic compo-
nents of the perturbed particle Vlasov distribution while
the first two terms represent the guiding-center pull-back
of the gyrocenter Vlasov distribution F and the nonadi-
abatic component of the perturbed particle Vlasov dis-
tribution.

Lastly, by comparing the pull-back decomposition
(179) with the Frieman-Chen decomposition (14), we ob-
tain a relation between the first-order correction F1 to
the gyrocenter distribution F = F0+εδ F1 and the nona-
diabatic part G1:

F1 ≡ G1 + e 〈δψgc〉
∂F0

∂E
(180)

Substituting this relation into the nonlinear gyrokinetic
Vlasov equation (173), with the gyrocenter Hamiltonian
truncated at first order Hgy = Hgc + εδ e 〈δψgc〉:

0 =
dgyF

dt
≡ dgcF

dt
+ εδ e

{
F , 〈δψgc〉

}
,

we obtain

0 =
dgy

dt

[
F 0 + εδ

(
G1 + e 〈δψgc〉

∂F 0

∂E

) ]

= εδ
{
F 0, e 〈δψgc〉

}
+ εδ

dgcG1

dt

+ ε2δ
{
G1, e 〈δψgc〉

}
+ εδ e

dgc〈δψgc〉
dt

∂F 0

∂E
.(181)

Using the guiding-center Poisson bracket (178), we find

{
F0, e 〈δψgc〉

}
=

cb̂

B
×∇〈δψgc〉 ·∇F0

−
(
evgc ·∇〈δψgc〉

)
∂F 0

∂E

and the nonlinear gyrokinetic Vlasov equation (181) be-
comes the Frieman-Chen nonlinear gyrokinetic Vlasov:

dgcG1

dt
= −

(
e
∂〈δψgc〉
∂t

∂F 0

∂E
+

cb̂

B
×∇〈δψgc〉 ·∇F0

)
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− cb̂

B
×∇〈δψgc〉 ·∇G1, (182)

where higher-order terms (e.g., εBε
2
δ) were omitted.

Hence, the Frieman-Chen nonlinear gyrokinetic Vlasov
equation is contained in the nonlinear gyrokinetic
Vlasov equation (173). Furthermore, while the adi-
abatic/nonadiabatic decompositions have at times ap-
peared mysterious, they naturally appear in the context
of the action of the pull-back operators used in the deriva-
tion of the nonlinear gyrokinetic Vlasov equation. The
physical interpretation of the pull-back operator, in fact,
is that it performs a partial solution of the Vlasov equa-
tion associated with the fast-time gyro-motion dynamics.

VI. GYROKINETIC VARIATIONAL FORMULATION

After having derived various expressions for the non-
linear gyrocenter Hamiltonian and its associated nonlin-
ear gyrokinetic Vlasov equation, we now turn our at-
tention to deriving self-consistent expressions for the gy-
rokinetic Maxwell’s equations, in which gyrocenter po-
larization and magnetization effects appear. Once a set
of self-consistent nonlinear gyrokinetic Vlasov-Maxwell
equations is derived, we also wish to derive the exact en-
ergy conservation law these nonlinear gyrokinetic equa-
tions satisfy. These two tasks are simultaneously per-
formed in this Section by using a variational formulation
for the nonlinear gyrokinetic Vlasov-Maxwell equations
(Brizard, 2000b).

A. Reduced Variational Principle

Before proceeding to the variational formulation for-
mulation for the nonlinear gyrokinetic Vlasov-Maxwell
equations, we briefly review the variational formula-
tion of the reduced Vlasov-Maxwell equations (118) and
(126)-(127). Here, we assume that the transformation
associated with the dynamical reduction is motivated
by electromagnetic-field perturbations generated by the
first-order perturbed four-potential Aµ

1 = (φ1,A1); the
symbol “δ” is, henceforth, uniquely reserved to denote a
functional variation in the remainder of this Section.

We begin with the reduced plasma variational principle
(Brizard, 2000a)

0 = δ

∫
L d4x (183)

≡ δ

∫ [
1

16π
Fµν Fνµ + LV(F , A1µ; F1µν)

]
d4x,

where the first term represents the electromagnetic ac-
tion functional (where F = F0 + εδ F1 denotes the total
electromagnetic tensor) and the second term represents
the reduced plasma dynamics, with the reduced Vlasov

Lagrangian density defined as (Brizard, 2000a,b)

LV ≡ −
∑ ∫

d4p F H(Z , A1µ; F1µν), (184)

where H denotes the reduced Hamiltonian and F denotes
the reduced Vlasov distribution defined in Eqs. (94) and
(117), respectively. Note that the reduced particle La-
grangian density (184) depends not only on the perturbed
electromagnetic four-potential Aµ

1 = (φ1,A1), through
the standard interaction Lagrangian, but also depends
on the electromagnetic tensor F1µν = ∂µA1ν − ∂νA1µ as
a result of the dynamical reduction introduced by the
extended phase-space transformation (84).

The reduced variational principle (183) considers Eule-
rian variations for the extended reduced Vlasov distribu-
tion F defined in terms of the gauge function S(Z) and
the extended Poisson bracket (78) as

δF ≡ {S, F}ε, (185)

where { , }ε denotes the transformed Poisson bracket.
Under Eulerian variations of the electromagnetic po-

tentials δAµ and the Eulerian variation (185) of the ex-
tended Vlasov distribution F , the variation of the re-
duced Lagrangian density (183) can be expressed as

δL = −
∑ ∫

d4p S {F , H}z (186)

+ δA1µ

[
∂

∂xν

(
∂L
∂F1νµ

)
−
∑ ∫

d4p F
∂H
∂A1µ

]

+
∂

∂xν

(∑
d4p S F ∂H

∂pν

+ δA1µ
∂L
∂F1µν

)
.

Stationarity of the reduced action functional (183) with
respect to arbitrary virtual phase-space displacements
generated by S yields the reduced Vlasov equation (119)
in extended phase space. Next, stationarity with respect
to arbitrary variations δAν yields the reduced Maxwell
equations (126)-(127) expressed as Euler-Lagrange equa-
tions:

∂

∂xµ

(
∂L
∂F1µν

)
=

∂L
∂A1ν

, (187)

where the reduced four-current density J
ν ≡ (cρ, J) is

defined as

J
ν ≡ c

∂LV

∂A1ν
= −

∑ ∫
d4p F

(
c
∂H
∂A1ν

)
. (188)

It is convenient to introduce the antisymmetric macro-
scopic electromagnetic tensor (Boghosian, 1987)

Mµν ≡ − ∂L
∂F1µν

=
1
4π

Fµν +
∑ ∫

d4p F ∂H
∂F1µν

, (189)



31

with components M0i = Di/4π and Mij = εijkHk/4π,
so that the variational definitions of the polarization and
magnetization vectors are

(Pε, Mε) ≡
(
∂LV

∂E1
,
∂LV

∂B1

)

= −
∑ ∫

d4p F
(
∂H
∂E1

,
∂H
∂B1

)
.(190)

Note that since only the second-order reduced Hamil-
tonian H2 depends on the perturbed electromagnetic
field (E1,B1), the reduced polarization and magnetiza-
tion vectors (190) are first-order expressions themselves.

Lastly, using these definitions, the macroscopic
Maxwell equations (187) become

∂Mµν

∂xµ
= − 1

c
J

ν
. (191)

and we note that the reduced polarization-magnetization
four-current density Kµ

ε ≡ (c ρpol,Jpol + Jmag) can be
covariantly defined in terms of the reduced Lagrangian
LV as

Kµ
ε ≡ − c

∂

∂xν

(
∂LV

∂F1νµ

)
, (192)

which is manifestly space-time divergenceless (∂µK
µ
ε ≡

0) as a result of the antisymmetry of the electromagnetic
tensor F1µν.

B. Nonlinear Gyrokinetic Vlasov-Maxwell Equations

We now derive the nonlinear self-consistent gyrokinetic
Vlasov-Maxwell equations (using the Hamiltonian gyro-
center model) from a reduced variational principle, which
will also be used to derive an exact energy conserva-
tion law for the gyrokinetic Vlasov-Maxwell equations.
The reduced action functional for the low-frequency
gyrokinetic Vlasov-Maxwell equations (Brizard, 2000b;
Sugama, 2000) is

Agy = −
∫
d8Z F(Z) H(Z;A1µ,F1µν)

+
∫
d4x

8π
(
|∇Φ|2 − |B|2

)
, (193)

where H denotes the nonlinear gyrocenter Hamiltonian
(174) and we, henceforth, use the notation

Φ ≡ ε φ1 and B ≡ B0 + ε∇×A1,

we omit the overbar to denote gyrocenter coordinates
and functions on extended gyrocenter phase space (and
set ε ≡ εδ) and summation over species is implied
wherever appropriate. The absence of the inductive
part − c−1∂tA1 of the perturbed electric field E1 in
the Maxwell part of the reduced action functional (193)

means that the displacement current ∂tE1 will be ab-
sent from Ampère’s equation; this is consistent with the
low-frequency approximation (εω � 1) used in nonlinear
gyrokinetic ordering (5)-(6).

The variational principle δAgy =
∫
δLgy d

4x ≡ 0 for
the nonlinear low-frequency gyrokinetic Vlasov-Maxwell
equations is based on Eulerian variations for F(Z) and
(φ1,A1). Hence, variation of Agy with respect to δF and
δAµ

1 (x) = (δφ1, δA1) yields

δAgy =
∫
d4x

4π

(
ε ∇δφ1 ·∇Φ − ε∇× δA1 ·B

)

−
∫
d8Z

[
δF(Z) H

+ F(Z)
∫
d3x

(
δA1µ(x)

δH

δA1µ(x)

) ]
.(194)

Here, the Eulerian variation δF is constrained to be of
the form

δF ≡ {S, F}, (195)

where { , } is the extended guiding-center Poisson
bracket (149). The functional derivatives δH/δA1µ(x)
in Eq. (194), on the other hand, are evaluated using the
gyrocenter Hamiltonian (174) (to second order in ε) as

δH

δA1µ(x)
≡ − ε e

〈
T−1

gy

(
vµ

c
δ3gc

)〉
, (196)

where δ3gc ≡ δ3(x − X − ρ), T−1
gy denotes the gyrocenter

push-forward operator, and we used the identity

A1µ(X + ρ) =
∫
d3x δ3(x − X− ρ) A1µ(x)

so that

δAµ
1gc

δA1ν(x)
= δµν δ3gc.

After re-arranging terms and integrating by parts, the
variation (194) becomes

δAgy =
∫
d4x (∂ · Jgy) −

∫
d8Z S {F , H} (197)

−
∫
d4x

{
ε δφ1

[
∇2Φ
4π

+ e

∫
d6Z F

〈
T−1

gy δ
3
gc

〉 ]

+ ε δA1 ·
[
∇×B

4π
− e

∫
d6Z F

〈
T−1

gy

(v
c
δ3gc

)〉]}
,

where the first term on the right side of Eq. (197) involves
the exact space-time divergence

∂ · Jgy ≡ ∂

∂xµ

(∫
d4p S F Ẋµ

)

+ ∇ ·
(
ε
δφ1

4π
∇Φ − ε

δA1

4π
×B

)
, (198)
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where Ẋµ ≡ {Xµ, H} denotes the lowest-order gyrocen-
ter four-velocity. Since Eq. (198) is an exact space-time
divergence, it does not contribute to the reduced varia-
tional principle δAgy ≡ 0.

By requiring that the action functional Agy be sta-
tionary with respect to arbitrary variations S and δAµ

1

(which vanish on the integration boundaries), we find the
nonlinear gyrokinetic Vlasov equation

0 = {F , H}, (199)

and the gyrokinetic Maxwell equations: the gyrokinetic
Poisson equation

∇2Φ(x) = − 4π e
∫
d6Z F

〈
T−1

gy δ3gc

〉

≡ − 4π e
∫
d3p

〈
e−ρ ·∇ (TgyF )

〉
, (200)

and the gyrokinetic Ampère equation

∇×B(x) =
4π e
c

∫
d6Z F (Z)

〈
T−1

gy

(
v δ3gc

)〉

≡ 4π e
c

∫
d3p

〈
e−ρ ·∇ (v TgyF )

〉
,(201)

which are actually valid for all gyrocenter models dis-
cussed in Sec. V.B. If we now integrate the extended gy-
rokinetic Vlasov equation {F , H}Z = 0 over the energy
coordinate w, we obtain the standard nonlinear gyroki-
netic Vlasov equation written explicitly as

∂F

∂t
+

(
B∗

B∗
‖

∂H

∂p‖
+

cb̂

eB∗
‖

×∇H

)
·∇F

−

(
B∗

B∗
‖

·∇H

)
∂F

∂p‖
= 0. (202)

The nonlinear equations (200), (201), and (202), with
the gyrocenter Hamiltonian (174), are the self-consistent
nonlinear gyrokinetic Vlasov-Maxwell equations in gen-
eral magnetic field geometry (Brizard, 1989a).

C. Gyrokinetic Energy Conservation Law

We now apply the Noether method on the gyrokinetic
action functional (193) to derive an exact gyrokinetic
energy conservation law. By substituting Eqs. (199),
(200), and (201) into Eq. (197), the variational equation
δAgy ≡

∫
δLgy d

4x yields the Noether equation

δLgy ≡ ∂ · Jgy. (203)

In the Noether method, the variations (S, δAµ
1 , δLgy) are

expressed in terms of generators for infinitesimal trans-
lations in space or time.

Following a translation in time t → t+δt, the variations
S, δφ1, δA1, and δLgy become, respectively,

S = −w δt

δφ1 = −δt ∂tφ1

δA1 = −δt ∂tA1 ≡ c δt (E1 + ∇φ1)

δLgy = −δt ∂tLgy





. (204)

In Eq. (204), the gyrokinetic Vlasov-Maxwell Lagrangian
density is Lgy = (|∇Φ|2 − |B|2)/8π after the physical
constraint H = 0 is imposed in the space-time integrand
of the reduced action functional (193).

By combining Eq. (204) with Eqs. (198) and (203),
we obtain, after rearranging and cancelling some terms
(Brizard, 2000b), the local gyrokinetic energy conserva-
tion law:

∂Egy

∂t
+ ∇ ·Sgy = 0, (205)

where the gyrokinetic energy density is

Egy =
∫
d3p F

(
H − e

〈
T−1

gy Φgc

〉)

+
1
8π
(
|∇Φ|2 + |B|2

)
, (206)

while the gyrokinetic energy density flux is

Sgy =
∫
d3p F

(
H Ẋ − e

〈
T−1

gy vΦgc

〉)

+
ε

4π

(
cE1 ×B − Φ ∇

∂φ1

∂t

)
. (207)

We obtain the following expression for the global gy-
rokinetic energy conservation law dE/dt = 0, where the
global gyrokinetic energy is

E =
∫

d3x

8π
(
|∇Φ|2 + |B|2

)

+
∫
d6Z F

(
H − e

〈
T−1

gy Φgc

〉)
. (208)

The existence of an exact energy conservation law for
nonlinear gyrokinetic equations provides a stringent test
on simulations based on nonlinear electrostatic (Dubin
et al., 1983; Hahm, 1988) and electromagnetic (Brizard,
1989a; Hahm et al., 1988) gyrokinetic equations.

VII. SUMMARY

The foundations of modern nonlinear gyrokinetic the-
ory are based on three important pillars: (1) a gyroki-
netic Vlasov equation written in terms of a Hamiltonian
with quadratic low-frequency ponderomotive-like terms;
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(2) a set of gyrokinetic Maxwell equations written in
terms of the gyrocenter Vlasov distribution that contain
low-frequency polarization and magnetization terms (de-
rived from the quadratic nonlinearities in the Hamilto-
nian); and (3) an exact energy conservation law for the
gyrokinetic Vlasov-Maxwell equations that includes all
the relevant linear and nonlinear coupling terms.

These three pillars were emphasized in Section III,
where simplified forms of the nonlinear gyrokinetic equa-
tions were presented for the cases of electrostatic fluc-
tuations, shear-Alfvenic fluctuations, and compressional
magnetic fluctuations. In the full electromagnetic case,
the gyrocenter polarization and magnetization vectors
were defined in terms of derivatives of the effective gy-
rocenter perturbation potential with respect to the per-
turbed electric and magnetic fields, respectively.

Through the use of Lie-transform perturbation meth-
ods on extended particle phase space, we showed the
derivation of a set of nonlinear low-frequency gyroki-
netic Vlasov-Maxwell equations describing the reduced
Hamiltonian description of gyrocenter dynamics in a
time-independent background magnetic field perturbed
by low-frequency electromagnetic fluctuations. A self-
consistent treatment is obtained through a low-frequency
gyrokinetic variational principle and an exact gyroki-
netic energy conservation law is obtained by applying
the Noether method. Physical motivations for nonlinear
gyrokinetic equations and various applications in theory
and simulations thereof were discussed.
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APPENDIX A: MATHEMATICAL PRIMER

This Appendix presents a brief summary of the dif-
ferential geometric foundations of Lie-transform pertur-
bation methods. We also present a brief discussion of
general magnetic geometry in terms of magnetic coordi-
nates.

1. Exterior Differential Calculus

Differential k-forms (Flanders, 1989)

ωk =
1
k!
ωi1i2...ik dzi1 ∧ dzi2 ∧ · · · ∧ dzik

are fundamental objects in the differential geometry of n-
dimensional space (with coordinates z), where the com-
ponents ωi1i2...ik are antisymmetric with respect to inter-
change of two adjacent indices since the wedge product
∧ is skew-symmetric (i.e., dza ∧ dzb = − dzb ∧ dza) with
respect to the exterior derivative d (which has properties
similar to the standard derivative d).

Note that the exterior derivative dωk of a differential
k-form (or k-form for short) ωk is a (k+1)-form. Here, we
are interested in the exterior derivatives of scalar fields f
(defined as 0-forms) and 1-forms Γ = Γa dza. First, the
exterior derivative of a 0-form f is defined as

df ≡ ∂af dza, (A1)

and, thus, df is a differential 1-form; note that its com-
ponents are the components of ∇f . Next, the exterior
derivative of a 1-form Γ is a 2-form:

dΓ ≡ dΓb ∧ dzb = ∂aΓb dza ∧ dzb,

which, as a result of the skew-symmetry of the wedge
product ∧, may be expressed as

dΓ =
1
2

(∂aΓb − ∂bΓa) dza ∧ dzb

≡ 1
2
ωab dza ∧ dzb, (A2)

where ωab = −ωba denotes the antisymmetric compo-
nents of the 2-form ω ≡ dΓ.

An important difference between the exterior deriva-
tive d and the standard derivative d comes from the prop-
erty that d2ωk = d(dωk) ≡ 0 for any k-form ωk. Indeed,
for a 0-form, we find

d2f = ∂2
abf dza ∧ dzb = 0,
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since ∂2
abf is symmetric with respect to interchange a ↔

b, and for a 1-form:

d2Γ =
1
3!

(∂aωbc + ∂bωca + ∂cωab) dza ∧ dzb ∧ dzc = 0.

A k-form ωk is said to be closed if its exterior derivative
is dωk ≡ 0, while a k-form ωk is said to be exact if it can
be written in terms of a (k-1)-form Γk−1 as ωk ≡ dΓk−1.
Poincaré’s Lemma states that all closed k-forms are ex-
act (as can easily be verified), while its converse states
that all exact k-forms are closed. For example, the in-
finitesimal volume element in three-dimensional space
with curvilinear coordinates u = (u1, u2, u3) and Jaco-
bian J :

Ω ≡ J (u) du1 ∧ du2 ∧ du3

is a closed 3-form since dΩ ≡ 0. Hence, according to the
converse of Poincaré’s Lemma, there exists a 2-form σ
such that Ω ≡ dσ, where

σ ≡
1
2
εijk σ

k(u) dui ∧ duj

defines the infinitesimal area 2-form, with the Jacobian
defined as J ≡ ∂σi(u)/∂ui.

We now introduce the inner-product operation involv-
ing a vector field v and a k-form ωk, denoted in the
present work as v ·ωk, which creates a (k− 1)-form. For
example, for a 1-form, it is defined as v ·Γ = va Γa while
for a 2-form, it is defined as

v ·ω ≡ 1
2
(
va ωab dzb − ωab v

b dza
)

= va ωab dzb.

Note that d(v ·Ω) = J−1∂a(J va)Ω ≡ (∇ ·v)Ω.
The Lie derivative £v along the vector field v of a k-

form ωk is defined in terms of the Homotopy formula
(Abraham and Marsden, 1978)

£vωk ≡ v · dωk + d (v ·ωk) . (A3)

Here, we see that the Lie derivative of a k-form is itself
a k-form. For example, the Lie derivative of a 0-form f
along the vector field v is £vf ≡ v ·df = va ∂af (i.e., the
directional derivative v ·∇f), while the Lie derivative of
a 1-form Γ = Γa dza is

£vΓ = [va ωab + ∂b (v · Γ)] dzb.

Note that the Lie derivative satisfies the Leibnitz prop-
erty £v(f g) = (£vf) g+f (£vg) and £v commutes with
d. For example, we consider the four-dimensional elec-
tromagnetic 1-form A = Aµ dxµ and its Lie derivative
£δx along the four-vector δxµ = (cδt, δx):

£δxA = δxµ Fµν dxν + d (δxµAµ) ≡ − δA,

which defines the perturbed electromagnetic four-
potential δAµ = (δφ, δA).

Next, we define the Lie transform generated by the
vector field v as T ≡ exp£v such that T is distributive
T(f g) ≡ (Tf) (Tg) and T commutes with d. For ex-
ample, the pull-back operator Tε = exp(ε£ξ) associated
with the nonuniform space transformation

X = x + ε ξ +
ε2

2
ξ ·∇ξ + · · · ,

which is generated by the vector field ε ξ, yields the iden-
tity

f(x) = F (X) = F

(
x + ε ξ +

ε2

2
ξ ·∇ξ + · · ·

)

= F (x) + ε ξ ·∇F (x) +
ε2

2
ξ ·∇(ξ ·∇F ) + · · ·

= exp (ε ξ ·∇) F (x) ≡ exp
(
ε£ξ

)
F (x). (A4)

Hence, we see that the pull-back operator associated
with a near-identity transformation is expressed as a Lie-
transform operation along the vector fields that generate
the transformation.

2. General Magnetic Field Geometry

A general magnetic field is written in divergenceless
form (at least locally) as

B ≡ ∇α×∇β, (A5)

where α and β are called Euler potentials (Stern, 1970).
Here, each magnetic field line is labeled by α and β (since
B ·∇α = 0 = B ·∇β), and the magnetic vector potential
A (with B ≡ ∇×A) can be written as

A ≡ 1
2

(α∇β − β∇α) + ∇γ, (A6)

where the gauge function γ (which may be multi-valued)
is involved in the definition of magnetic helicity A ·B =
B ·∇γ. Since the gauge term ∇γ does not play a role in
what follows, however, we henceforth omit it.

Another useful representation for the magnetic field is
the covariant (Clebsch) representation

B ≡
∑

i

λi ∇χi, (A7)

where (λi, χ
i) are Clebsch potentials (Seliger and

Whitham, 1968); here, the index i goes from 1 to 3 (at
most). Note that these potentials must still satisfy the
condition ∇ ·B = 0. The Clebsch representation is useful
when an explicit expression for ∇×B ≡

∑
i ∇λi ×∇χi

is known. For example, if ∇×B ≡ 0, the magnetic field
B can then simply be written as B ≡ ∇χ.

The magnetic field representations (A5) and (A7) al-
low the introduction of the magnetic coordinates Ψi ≡
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(α, β, s), where α and β are the Euler potentials for B
and s is the spatial coordinate along a magnetic field line:

∂x
∂s

≡ b̂ ≡ B
B
. (A8)

Using the notation y ≡ (α, β) for coordinates in the space
of field-line labels (i.e., each magnetic field line is repre-
sented as a point in y-space), the magnetic vector poten-
tial (A6) can also be written as

A ≡ 1
2

∑

a,b

ηab y
a ∇yb, (A9)

where ηab is anti-symmetric in its indices (with η12 =
+1 = − η21).

To define a magnetic geometry, we require the com-
plete sets of contravariant basis vectors (∂x/∂Ψi) and
covariant basis vectors (∇Ψi). Since the vectors ∇ya are
given in Eq. (A9) and ∂x/∂s is given by Eq. (A8), we
only need expressions for ∇s and ∂x/∂ya . In deriving
these expressions, we use the orthogonality relations

∇Ψi · ∂x
∂Ψj

= δi
j , (A10)

between the contravariant and covariant basis vectors.
Using these relations, we obtain the following expression
for ∇s:

∇s ≡ b̂ −
∑

a

Ra ∇ya (A11)

where

Ra ≡ b̂ · ∂x
∂ya

=
∑

i

λi

B

∂χi

∂ya
, (A12)

while we find for ∂x/∂ya :

∂x
∂ya

≡ Ra b̂ +
∑

b

ηab ∇yb × B
B2

. (A13)

It is now quite simple to check that the sets (∇ya,∇s)
and (∂x/∂ya, ∂x/∂s) satisfy the relations (A10).

Next, we construct the parallel gradient operator ∂‖ ≡
b̂ ·∇ = ∂/∂s and the perpendicular gradient operator
∇⊥ ≡ − b̂× (b̂×∇), which only has ya-components:

∂x
∂ya

·∇⊥ ≡ ∂

∂ya
− Ra

∂

∂s
≡ ∂⊥a.

Hence, the gradient operator can be expressed as ∇ ≡
b̂∂‖ +∇ya ∂⊥a. Lastly, the Jacobian for the transforma-
tion x → (α, β, s) is

∂x
∂α

× ∂x
∂β

· ∂x
∂s

≡ B−1 ≡ (∇α×∇β ·∇s)−1, (A14)

so that d3x ≡ B−1 d2y ds is the infinitesimal volume
element in magnetic coordinates.

APPENDIX B: UNPERTURBED GUIDING-CENTER
HAMILTONIAN DYNAMICS

1. Guiding-center Phase-space Transformation

Under the time-independent guiding-center transfor-
mation (x,p) → (X, p‖, µ, ζ), the particle phase-space
Lagrangian Γ = (p + eA/c) · dx − (|p|2/2m) dt is trans-
formed into the guiding-center phase-space Lagrangian

Γgc =
[
ε−1 e

c
A + p‖ b̂ − ε

(mc
e

)
µR∗

]
· dX

+ ε
(mc
e

)
µ dζ − Hgc dt, (B1)

where ε ≡ εB denotes the ratio of the characteristic gy-
roradius to the magnetic-field gradient length scale, the
vector R∗ is defined below, and the guiding-center Hamil-
tonian is

Hgc =
p2
‖

2m
+ µB. (B2)

The guiding-center phase-space Lagrangian (B1) and
guiding-center Hamiltonian (B2) were originally derived
by Littlejohn (1983) by Lie-transform methods in the
form of asymptotic expansions Zα

gc = Zα
0 + εGα

1 + · · ·,
where the components of the first-order generating vec-
tor field are

Gx
1 = − ρ0 = − mc

e

√
2µ
mB

ρ̂, (B3)

G
p‖
1 = (mc/e)µ

(
a1 : ∇b̂ + b̂ ·∇× b̂

)

− p‖ ρ0 ·
(
b̂ ·∇b̂

)
, (B4)

Gµ
1 = ρ0 ·

(
µ ∇ lnB +

mv2
‖

B
b̂ ·∇b̂

)

− µ
v‖

Ω

(
a1 : ∇b̂ + b̂ ·∇× b̂

)
, (B5)

Gζ
1 = − ρ0 ·R +

∂ρ0

∂ζ
·∇ lnB +

v‖

Ω
a2 : ∇b̂

+
mv2

‖

2µB

(
b̂ ·∇b̂ · ∂ρ0

∂ζ

)
. (B6)

Here, we use the rotating (right-handed) unit vectors
(b̂, ⊥̂, ρ̂):

⊥̂ = − 1̂ sin ζ − 2̂ cos ζ =
∂ρ̂

∂ζ
,

ρ̂ = 1̂ cos ζ − 2̂ sin ζ = − ∂⊥̂
∂ζ

,

defined in terms of the fixed (local) unit vectors 1̂× 2̂ =
b̂ (see Figure 6), the vector field R = ∇⊥̂ · ρ̂ = ∇1̂ · 2̂
denotes Littlejohn’s gyrogauge vector field (Littlejohn,
1983, 1988), which is used to define the gradient operator

∇∗ ≡ ∇ + R∗ ∂

∂ζ
, (B7)
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FIG. 6 Fixed unit vectors (1̂, 2̂, b̂) and rotating unit vectors

(⊥̂, ρ̂, b̂). Gyrogauge invariance involves an arbitrary rotation

of the perpendicular unit vectors 1̂ and 2̂ about the parallel

unit vector b̂.

where R∗ ≡ R + (b̂ ·∇× b̂) b̂/2, and the gyroangle-
dependent dyadic matrices (a1, a2) are defined as

a1 = − 1
2

(
ρ̂ ⊥̂ + ⊥̂ ρ̂

)
=

∂a2

∂ζ
,

a2 =
1
4

(
⊥̂ ⊥̂ − ρ̂ ρ̂

)
= − 1

4
∂a1

∂ζ
.

We also note that the guiding-center kinetic energy E =
p2
‖/2m+µB is identical to the particle kinetic energy (to

first order) since

GE
1 = (p‖/m)Gp‖

1 + BGµ
1 + Gx

1 ·µ∇B ≡ 0.

Note that gyrogauge invariance is defined in terms of
the requirement that the guiding-center Hamiltonian dy-
namics be not only independent of the gyroangle ζ but
also how it is measured. Hence, by introducing the gyro-
gauge transformation ζ′ = ζ + χ(X), the perpendicular
unit vectors (1̂, 2̂) are transformed as 1̂′ = 1̂ cosχ+2̂ sinχ
and 2̂′ = − 1̂ sinχ + 2̂ cos χ so that the vector R trans-
forms as R′ = R + ∇χ. For the guiding-center Hamilto-
nian dynamics to be gyrogauge invariant, the guiding-
center phase-space Lagrangian (B1) must contain the
term dζ − R · dX.

2. Guiding-center Hamiltonian Dynamics

The Jacobian J = mB∗
‖ for the guiding-center trans-

formation (x,p) → (X, p‖, µ, ζ) is defined in terms of the
guiding-center phase-space function B∗

‖ = b̂ ·B∗ derived
from the generalized magnetic field

B∗ ≡ B + ε
(cp‖
e

)
∇× b̂,

where the second-order gyrogauge-invariant term
ε2 (mc2/e2)µ∇×R∗ is omitted (note that while the

vector R is gyrogauge-dependent, its curl ∇×R is not).
The guiding-center Poisson bracket is constructed from
the guiding-center phase-space Lagrangian (B1) and is
expressed in terms of two arbitrary functions F and G
of (X, p‖, µ, ζ) as

{F, G}gc = ε−1 e

mc

(
∂F

∂ζ

∂G

∂µ
− ∂F

∂µ

∂G

∂ζ

)

+
B∗

B∗
‖

·
(
∇∗F

∂G

∂p‖
− ∂F

∂p‖
∇∗G

)

− ε
cb̂

eB∗
‖

·∇∗F ×∇∗G, (B8)

where ∇∗ is the gradient operator (B7) and the ε-ordering
clearly separates the fast gyro-motion time scale (ε−1),
the intermediate parallel time scale (ε0), and the slow
drift-motion time scale (ε).

The equations of guiding-center motion are, there-
fore, given in terms of the guiding-center Poisson bracket
(B8) and the guiding-center Hamiltonian (B2) as Żα =
{Zα, Hgc}gc:

Ẋ = v‖
B∗

B∗
‖

+ ε
cb̂

eB∗
‖

×µ∇B ≡ vgc (B9)

= v‖ b̂ + ε
cb̂

eB∗
‖

×
(
µ∇B + mv2

‖ b̂ ·∇b̂
)
,

ṗ‖ = − B∗

B∗
‖

·µ∇B, (B10)

while µ̇ ≡ − (Ω/B) ∂Hgc/∂ζ ≡ 0 and

ζ̇ = ε−1 Ω + v‖ b̂ ·R∗ + O(ε). (B11)

Note that the guiding-center Poisson bracket (B8) satis-
fies the Liouville identities

ε ∇×
(
cb̂

e

)
− ∂B∗

∂p‖
= 0 and ∇ ·B∗ = 0,

from which we derive the guiding-center Liouville theo-
rem

∇ ·
(
B∗

‖
X
dt

)
+

∂

∂p‖

(
B∗

‖
dp‖

dt

)
= 0.

3. Guiding-center Pull-back Transformation

The guiding-center pull-back transformation Tgc re-
lates the guiding-center Vlasov distribution F to the par-
ticle Vlasov distribution f = TgcF , expanded to first
order in gradient length-scale as

f = F − ρ0 ·∇F + εG
p‖
1

∂F

∂p‖
+ εGµ

1

∂F

∂µ
, (B12)
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where the second term on the right side is also or-
dered at ε. Here, f = f(x, p0‖, µ0, ζ0) is a function
of the particle position x, its kinetic momentum par-
allel to the magnetic field p0‖ = p · b̂, the lowest-order
magnetic moment µ0 = |p⊥|2/2mB and gyration angle
ζ0 = arctan[(−p · 1̂)/(−p · 2̂)]. Hence, the Vlasov equa-
tion in particle phase space (x, p0‖, µ0, ζ0) is expressed
as

0 =
df

dt
≡ ∂f

∂t
+ v ·∇f + żi

0

∂f

∂zi
0

, (B13)

where the velocity-space equations of motion żi
0 =

(ṗ0‖, µ̇0, ζ̇0) are expressed in terms of the first-order
generating-field components (B4)-(B6) as

ṗ0‖ = − ε

(
µ0 b̂ ·∇B + Ω

∂G
p‖
1

∂ζ

)
, (B14)

µ̇0 = − εΩ
∂Gµ

1

∂ζ
, (B15)

ζ̇0 = (Ω − ερ0 ·∇Ω)

+ ε

(
v‖ b̂ ·R∗ − Ω

∂Gζ
1

∂ζ

)
. (B16)

We now show that Eq. (B12) is a solution of the Vlasov
equation (B13) provided the guiding-center Vlasov distri-
bution F satisfies the guiding-center Vlasov equation

0 =
dgcF

dt
≡

∂F

∂t
+ vgc ·∇F + ṗ‖

∂F

∂p‖
, (B17)

where ∂F/∂ζ ≡ 0 and µ̇ ≡ 0; here, we use vgc = v‖ b̂ and
ṗ‖ = − ε µ b̂ ·∇B. First, we write

df

dt
=

∂F

∂t
+ ε

(
v − Ω

∂ρ0

∂ζ

)
·∇F

+
(
ṗ0‖ + εΩ

∂G
p‖
1

∂ζ

)
∂F

∂p‖

+
(
µ̇0 + εΩ

∂Gµ
1

∂ζ

)
∂F

∂µ
, (B18)

where we have used the fact that F is independent of
the gyroangle ζ. By inserting definitions (B14)-(B15) for
(ṗ0‖, µ̇0), we readily find df/dt = dgcF/dt, so that the
particle Vlasov equation (B13) is satisfied if the guiding-
center Vlasov equation (B17) is satisfied.

We conclude, therefore, that the pull-back operator Tgc

provides a partial solution of the particle Vlasov equa-
tion by integrating the fast-time-scale particle dynam-
ics. Note that the guiding-center pull-back transforma-
tion (B12) is normally derived directly from the iterative
solution of the particle Vlasov equation.

4. Bounce-center Hamiltonian Dynamics

When the characteristic time scale τ is much longer
than the bounce period (i.e., when the guiding-center

has executed many bounce cycles during time τ ), the
fast bounce angle can be asymptotically removed from
the guiding-center’s orbital dynamics and a correspond-
ing adiabatic invariant (the longitudinal or bounce ac-
tion J ≡ Jb) can be constructed. The resulting bounce-
averaged guiding-center dynamics takes place in a re-
duced two-dimensional phase space with spatial coordi-
nates (y1, y2), where each coordinate ya (with a = 1 or
2) satisfies the condition B ·∇ya = 0; the coordinates
(y1, y2) are known as magnetic field line labels and were
described in Sec. A.2. Bounce-averaged guiding-center
dynamics in static magnetic fields has also been shown
to possess a canonical Hamiltonian structure (Littlejohn,
1982b).

First, we begin with the unperturbed guiding-center
phase-space Lagrangian (B1) written in magnetic coor-
dinates as

Γ0 =
(
ε−1
d

e

2c
ηab y

a + p‖Rb

)
dyb + p‖ ds

−

(
µB +

p2
‖

2m

)
dt

≡ Fb dy
b + p‖ ds − H0 dt, (B19)

where the gyro-motion dynamics has been removed and
εd � 1 is introduced as an ordering parameter represent-
ing the ratio of the fast bounce time scale to the slow
drift time scale.

To lowest order in the εd-ordering, the fast guiding-
center motion is described by the quasi-periodic bounce
motion:

ṡ = v‖ and v̇‖ = − (µ/m) ∂‖B, (B20)

i.e., the motion is taking place along a magnetic field line
(labeled by y) and drift motion is absent (to lowest or-
der). Following a standard procedure in classical mechan-
ics (Goldstein et al., 2002), one constructs action-angle
canonical variables associated with this periodic motion.
Here, the action-angle coordinates (J,Θ) associated with
periodic bounce motion have the following lowest-order
expressions: for the bounce action J ≡ Jb = J0 + · · ·, we
find (Littlejohn, 1982b; Northrop, 1963)

J0(E , µ;y) ≡ 1
2π

∮
p‖(s, E , µ;y) ds (B21)

=
1
π

∫ s1

s0

√
2m [E − µB(s;y)] ds,

where (s0, s1) are the turning points where v‖ vanishes,
while for the bounce angle Θ = Θ0 + · · ·, we find (Little-
john, 1982b)

Θ0(s, E , µ;y) ≡ π ± ωb

∫ s

s0

ds′√
2
m [E − µB(s′;y)]

,

(B22)
where ± denotes the sign of v‖ and Θ(s = s0) ≡ π for
both branches. The bounce frequency ωb is defined from
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Eq. (B21) as

ωb(y; E , µ) ≡
(
∂J

∂E

)−1

= 2π
(∮

ds

v‖

)−1

. (B23)

We can now proceed to perform the substitution
(s, p‖) → (J,Θ) in the guiding-center phase-space La-
grangian (B19). First, we note that the transformation
(s, p‖) → (J,Θ) ≡ u is canonical since dp‖∧ds ≡ dJ∧dΘ.
In the guiding-center phase-space Lagrangian (B19), the
differential ds becomes ds = ∂αs duα and, thus, we have

Γ0 ≡
(

q

2cεd
ηab y

a + p‖ Rb

)
dyb

+
(
p‖

∂s

∂uα

)
duα − H0(y,u) dt, (B24)

where H0(y,u) ≡ µB(y; s(u)) + [p‖(y,u)]2/2m is the
lowest-order unperturbed guiding-center Hamiltonian
and explicit bounce-angle dependence now appears in
the guiding-center phase-space Lagrangian (B24). Be-
cause of its dependence on the field-line labels y, the
bounce action (B21) is not conserved at order εd [i.e.,
dJ/dt = O(εd)]. To remove the bounce-angle dependence
in the guiding-center phase-space Lagrangian (B24) and
construct an asymptotic expansion for the bounce-action
adiabatic invariant, we proceed by performing an in-
finitesimal transformation (y,u) → (y,u), where the re-
lation between the guiding-center coordinates (y,u) and
the bounce-guiding-center coordinates (y,u) is given in
terms of the asymptotic expansions

ya ≡ ya + εdG
a
1 + · · ·

uα ≡ uα + εd G
α
1 + · · ·




, (B25)

where the components Ga
n and Gα

n of the nth-order gen-
erating vector field are constructed so that the bounce
action J = J +

∑n
k=1 ε

k
dG

J
k is conserved at the nth or-

der, i.e., dJ/dt = O(εn+1
d ). The y-components of the

first-order generating vector are (Littlejohn, 1982b)

Ga
1 = − ηab c

e

(
∂S1

∂yb
+ p‖Rb

)
, (B26)

where the gauge function S1(y,u) is defined from the
relation

∂S1

∂uβ
≡ − ηαβ

2
uα − p‖(y,u)

∂s(u)
∂uβ

, (B27)

with ηαβ anti-symmetric in its indices (with η12 = +1).
The purpose of this transformation is, thus, to re-

move the bounce-angle dependence at all orders in εd.
Hence, the unperturbed bounce-averaged guiding-center
(or bounce-center) phase-space Lagrangian becomes

Γ0 ≡ ε−1
d

e

2c
ηab y

a dyb + J dΘ − H0(y, J; εd) dt,

(B28)

and the unperturbed bounce-center Hamiltonian is (Lit-
tlejohn, 1982b)

H0 ≡ H0 − εd
2

(
ωb ηab

〈
Ga

1

∂Gb
1

∂Θ

〉

b

)
, (B29)

where 〈 〉b denotes averaging with respect to Θ. The un-
perturbed bounce guiding-center Poisson bracket is de-
fined in terms of two arbitrary functions F and G on
bounce guiding-center phase space (y,u) as

{F , G} =
∂F
∂uα η

αβ ∂G
∂uβ

+ εd
c

e

∂F
∂ya η

ab ∂G
∂yb

, (B30)

where ηαβ ≡ η−1
αβ = − ηαβ and the first term on the

right represents the bounce-motion while the second term
represents the bounce-averaged drift motion.

Lastly, we note that the bounce-guiding-center posi-
tion ya is the (bounce-motion) time-averaged position of
the guiding-center position ya, i.e., ya ≡ 〈ya〉b, and thus

Λa
b ≡ ya − 〈ya〉b = − εd G

a
1(y,u) (B31)

represents the bounce-angle dependent bounce radius.

APPENDIX C: PUSH-FORWARD REPRESENTATION OF
FLUID MOMENTS

1. Push-forward Representation of Fluid Moments

Applications of Lie-transform methods in plasma
physics include the transformation of an arbitrary fluid
moment on particle phase space into a fluid moment on
the transformed phase space. In the push-forward repre-
sentation of arbitrary fluid moments, we uncover several
polarization and magnetization effects in Maxwell’s equa-
tions that are related to the phase-space transformation
itself.

We start with the push-forward representation (124)
for the moment ‖vµ‖, where vµ = (c,v), and expand it
to first order in the displacement ρε, defined in terms of
the generating vector fields (G1,G2, · · ·) by Eq. (125), so
that we obtain

‖vµ‖ =
∫
d4p

(
T−1

ε vµ
)
F

− ∇ ·
[ ∫

d4p ρε

(
T−1

ε vµ
)
F + · · ·

]
, (C1)

where integration by parts was performed to obtain the
second term and terms omitted inside the divergence
include higher-order multipole moments (e.g., electric
and magnetic quadrupole moments). Next, we derive
the push-forward representations for the four-current
Jµ = (cρ,J) ≡

∑
e ‖vµ‖. First, we derive the push-

forward expression for the charge density (130), where
ρ ≡

∑
e
∫
d4pF denotes the reduced charge density and

the polarization vector is defined as

Pε ≡
∑

e

∫
d4p ρε F , (C2)
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where eρε denotes the electric-dipole moment associated
with the charge separation induced by the phase-space
transformation.

Next, we derive the push-forward expression for the
current density (131), where the push-forward of the par-
ticle velocity v = dx/dt (using the Lagrangian represen-
tation)

T−1
ε v = T−1

ε

dx
dt

=
[
T−1

ε

d

dt
Tε

] (
T−1

ε x
)

≡ dεx
dt

+
dερε

dt
(C3)

is expressed in terms of the reduced total time derivative
dε/dt. Here, v ≡ dεx/dt denotes the reduced velocity
and we may replace the term dερε/dt in Eq. (C3) by
using the following identity based on the expression (C2)
for the reduced polarization vector:

∂Pε

∂t
=
∑

e

∫
d4p

(
∂ρε

∂t
F + ρε

∂F
∂t

)

=
∑

e

∫
d4p

(
dερε

dt

)
F

− ∇ ·
[∑

e

∫
d4p

(
dεx
dt

)
F
]
, (C4)

where the reduced Vlasov equation (93) was used and in-
tegration by parts was performed. The push-forward rep-
resentation of the current density is, therefore, expressed
as

J = J +
∂Pε

∂t
+ ∇×

[∑
e

∫
d4p

(
ρε × dεx

dt

)
F
]

− ∇ ·
[∑

e

∫
d4p

(
ρε

dερε

dt

)
F
]
, (C5)

where J ≡
∑

e
∫
d4p (dεx/dt)F denotes the reduced

current density, Jpol ≡ ∂Pε/∂t denotes the polarization
current, the third term represents the moving-electric-
dipole contribution to the magnetization vector (Jackson,
1975), and the last term represents the intrinsic magne-
tization vector (see below).

For example, the oscillation-center transformation
(discussed in Sec. IV.F) introduces nonlinear (pondero-
motive) polarization and magnetization effects as fol-
lows. First, the oscillation-center polarization vector is
expressed in terms of the eikonal-averaged (denoted by
an overbar) displacement vector

ρε = ε2δ k×
(
i ξ̃ × ξ̃

∗)
≡ ε2δ ρ2,

so that the reduced polarization vector (C2) becomes the
oscillation-center polarization vector

Posc = ε2δ
∑ ∫

d4p π2 F , (C6)

where π2 ≡ eρ2 denotes the second-order ponderomotive
electric-dipole moment. Next, the oscillation-center mag-
netization is expressed in terms of the eikonal-averaged

expressions
(
ρε × ẋε

)
= ρε × ẋε = ε2δ ρ2 ×v + · · ·

and
(

ρε

dερε

dt

)
= − ε2δ

[
i ω′

(
ξ̃
∗
ξ̃ − ξ̃ ξ̃

∗) ]
+ · · ·

so that Eq. (C5) becomes

J = J +
∂Posc

∂t
+ c ∇×Mosc,

where the oscillation-center magnetization vector

Mosc = ε2δ
∑ ∫

d4p
(
µ2 + π2 × v

c

)
F , (C7)

where µ2 ≡ ω′ (i ξ̃ × ξ̃
∗
) denotes the second-order intrin-

sic magnetic-dipole moment.

2. Push-forward Representation of Gyrocenter Fluid
Moments

Based on Lie-transform perturbation analysis pre-
sented in Sec. V, the gyrocenter displacement vector (gy-
roradius) is defined as

ρgy ≡ ρgc − εδ G∗
1 + · · · , (C8)

where ρgc denotes the gyroangle-dependent gyroradius
and the effective first-order vector field G∗

1 is defined as
[see Eqs. (163), (165), and (166)]

G∗
1 = Gx

1 + Gµ
1

∂ρ0

∂µ
+ Gζ

1

∂ρ0

∂ζ

= {S1, X + ρ0}0 + α
b̂0

B0
× 〈δA⊥gc〉. (C9)

We begin with the push-forward expression for the
fluid density

n = N − ∇ ·
(∫

d4p 〈ρgy〉 F
)
, (C10)

where n denotes the particle fluid density while N de-
notes the gyrocenter fluid density. Here, the gyroangle-
averaged gyrocenter displacement (C8) is expressed as

〈ρgy〉 = − e

B0

∂

∂µ

〈
δψ̃gc ρ0

〉
− α

b̂0

B0
× 〈δA⊥gc〉.

(C11)
The gyrocenter electric-dipole moment is now defined in
the fluid limit as

πgy ≡ e 〈ρgy〉fluid = − mc2

B2
0

(
∇⊥δφ −

u‖

c
∇⊥δA‖

)

+ (1 − α)
b̂0

B0
× δA⊥, (C12)
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where u‖ denotes the parallel drift-fluid velocity. Hence,
we see that the perturbed density δρ ≡ −∇ · (n0 πgy) is
expressed as

δρ = ∇ ·
[
mc2n0

B2
0

(
∇⊥δφ −

u‖

c
b̂0 × δB⊥

) ]

− (1 − α) ∇ ·

(
en0

b̂0

B0
× δA⊥

)
, (C13)

where the first term denotes the standard polarization
density due to low-frequency electrostatic fluctuations,
the second term denotes the covariant correction of the
polarization density due to magnetic fluctuations perpen-
dicular to the background magnetic field (Hahm et al.,
1988), and the third term is a term that appears only in
the Hamiltonian and ‖-symplectic versions (where α = 0)
of gyrokinetic theory. Here, for a uniform background
plasma, the last term becomes − en0 δB‖/B0, which
vanishes when summation of particle species is done and
quasi-neutrality is assumed. Extension of the gyrokinetic
polarization density to gyro-bounce-kinetics leads to the
neoclassical polarization density (Brizard, 2000c; Fong
and Hahm, 1999) as discussed in Appendix E.

Lastly, we note that, in the absence of electromagnetic
fluctuations (i.e., considering the guiding-center transfor-
mation alone), the difference between the perpendicular
particle flux and the perpendicular guiding-center flux,
expressed in terms of Eq. (C1) with v⊥, is given as

∇ ·
(
e

∫
d3p 〈ρ v⊥〉 F

)
= ∇×

(∫
d3p µB0

cF b̂0

B0

)

≡ ∇×

(
p⊥

cb̂0

B0

)
,

where − p⊥b̂0/B0 denotes the parallel magnetization vec-
tor (and we have ignored background magnetic field
nonuniformity). Hence, we see that the push-forward
and variational methods yield identical expressions for
the polarization and magnetization effects appearing in
reduced Maxwell’s equations.

APPENDIX D: DIRECT PROOF OF GYROKINETIC
ENERGY CONSERVATION

In this Appendix, we present a direct proof of the gy-
rokinetic energy conservation law (205). First, we express
the time derivative of Eq. (206) in four separate terms:

∂E
∂t

≡ ∂EI

∂t
+

∂EII

∂t
+

∂EIII

∂t
+

∂EIV

∂t
(D1)

where (with ε ≡ εδ and Tε ≡ Tgy)

∂EI

∂t
=
∫

∂F

∂t
H

∂EII

∂t
=
∫

F

(
∂H

∂t
− ε

〈
∂

∂t

(
T−1

ε e φ1gc

)〉)

∂EIII

∂t
=

ε2

4π
∇φ1 ·∇∂φ1

∂t
− ε

∫
∂F

∂t

〈
T−1

ε e φ1gc

〉

∂EIV

∂t
= ε

B
4π

·∇× ∂A1

∂t

where B = B0 + ε∇×A1 and
∫
(...) denotes

∫
d3p(...).

The partial time derivatives of the gyrocenter pull-back
Tε and the gyrocenter push-forward T−1

ε operators are
defined in terms of an arbitrary function G as

∂

∂t

(
T±1

ε G
)

= T±1
ε

(
∂G

∂t

)
± ε

{
∂S1

∂t
, G

}

± ε e

c

∂A1gc

∂t
· {X + ρ, G} + · · · ,(D2)

where { , } ≡ { , }gc.
The first term can be written as

∂EI

∂t
= − ∇ ·

(∫
Ẋ F H

)
, (D3)

where Ẋ ≡ {X, H} denotes the gyrocenter velocity. For
the second term, we express the partial time derivative
of the gyrocenter Hamiltonian (174) as

∂H

∂t
= ε e

〈
∂ψ1gc

∂t

〉
+

ε2e2

mc2

〈
A1gc · ∂A1gc

∂t

〉

− ε2e

〈{
S1,

∂ψ1gc

∂t

}〉

≡ ε

〈
T−1

ε

(
e
∂ψ1gc

∂t

)〉

and we use the operator formula (D2) for G = e φ1gc:

e

〈
∂

∂t

(
T−1

ε φ1gc

)〉
= e

〈
T−1

ε

(
∂φ1gc

∂t

)〉

−
〈{

∂S1

∂t
, e φ1gc

}〉

to obtain
∂EII

∂t
= ε

∫
F

[
ε

〈{
∂S1

∂t
, e φ1gc

}〉

−
〈

T−1
ε

(
e
v
c

· ∂A1gc

∂t

)〉 ]
, (D4)

where we used the identity {X + ρ, φgc} ≡ 0.
Next, we consider the third (electrostatic-energy) term

∂EIII

∂t
= ∇ ·

(
ε2 φ1

4π
∇∂φ1

∂t

)
+ ε

∫ [
e φ1gc

∂(TεF )
∂t

− ∂F

∂t

〈
T−1

ε e φ1gc

〉 ]

where we have inserted the partial time derivative of Pois-
son’s equation (200). By using the identity (D2) for the
pull-back operator (with G ≡ F )

∫
e φ1gc

[
∂

∂t
(TεF )

]
=
∫

∂F

∂t

〈
T−1

ε e φ1gc

〉

− ε

∫
F

〈{
∂S1

∂t
, e φ1gc

}〉
,
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the electrostatic energy term becomes

∂EIII

∂t
= ∇ ·

(
ε2
φ1

4π
∇∂φ1

∂t

)

− ε2
∫

F

〈{
∂S1

∂t
, e φ1gc

}〉
(D5)

Lastly, we consider the fourth (magnetic-energy) term

∂EIV

∂t
= ε ∇ ·

(
∂A1

∂t
× B

4π

)

+ ε

∫
F

〈
T−1

ε

(
ev
c

· ∂A1gc

∂t

)〉

where

∇ ·
(
∂A1

∂t
× B

4π

)
= − ε ∇ ·

[
(E1 + ∇φ1) × cB

4π

]

= − ε ∇ ·
(
cE1

4π
×B − c φ1

4π
∇×B

)

= − ε ∇ ·
( c

4π
E1 ×B

)

+ ε ∇ ·
[ ∫

F
〈
T−1

ε (ev φ1gc)
〉 ]

Hence, the magnetic energy term becomes

∂EIV

∂t
= − ε ∇ ·

[ c

4π
E1 ×B

−
∫

F
〈
T−1

ε (ev φ1gc)
〉 ]

+ ε

∫
F

〈
T−1

ε

(
ev
c

· ∂A1gc

∂t

)〉
(D6)

By adding the four terms (D3)-(D6), we obtain

∂E
∂t

= − ∇ ·
[
ε
c

4π
E1 ×B − ε2

φ1

4π
∇
∂φ1

∂t

+
∫

F
(
Ẋ H − ε

〈
T−1

ε (ev φ1gc)
〉) ]

and we recover the exact gyrokinetic energy conservation
law (205).

APPENDIX E: EXTENSIONS OF NONLINEAR
GYROKINETIC EQUATIONS

In this Appendix, we present two important extensions
of nonlinear gyrokinetic theory. First, we discuss the ex-
tension of the nonlinear gyrokinetic equations presented
in the text by introducing the effects of an inhomogeneous
equilibrium electric field. Here, two new ordering param-
eters must be introduced: the dimensionless parameter
εE represents the strength of the equilibrium E × B ve-
locity (e.g., compared to the ion thermal velocity), while
the dimensionless parameter εS represents the gradient-
length scale of the E × B shear flow (e.g., compared to
the ion thermal gyroradius).

The second extension of the nonlinear gyrokinetic
equations presented in this Appendix involves the deriva-
tion of nonlinear bounce-kinetic equations, in which the
fast bounce-motion time scale of trapped guiding-centers
is asymptotically removed by Lie-transform perturbation
methods.

1. Strong E × B Flow Shear

In Sec. II, we stated that the various expansion param-
eters appearing in nonlinear gyrokinetic theory originate
from different physical reasons, and that the standard
nonlinear gyrokinetic ordering is not a unique ordering.
In this Appendix, we present an example where a fur-
ther ordering consideration is necessary. This example
not only demonstrates the flexibility and the power of
modern Lie-transform perturbation approach, but also
addresses highly relevant forefront research issues in
magnetically-confined plasmas. While the nonlinear gy-
rokinetic theory based on the standard ordering captures
most of the essential physics associated with tokamak
core turbulence, significant experimental progress in re-
ducing turbulence and transport in the last decade has
demontrated that a new parameter regime characterized
by a strong shear in E×B flow, a steep pressure gradient,
and a low fluctuation level can be reproduced routinely.
This motivates a further improvement of the standard
nonlinear gyrokinetic ordering.

The analytical nonlinear theories of the E × B shear
decorrelation of turbulence (Biglari et al., 1990; Shaing
et al., 1990) and of transition dynamics (Carreras et al.,
1994; Diamond et al., 1994) in cylindrical geometry have
demonstrated a possible important role of the E × B
shear in L (low) mode to H (high) mode transition (Bur-
rell, 1997; Wagner et al., 1982). Consequent generaliza-
tion of the E × B shearing rate to toroidal geometry
(Hahm, 1994; Hahm and Burrell, 1995) with a proper
dependence on the poloidal magnetic field Bθ has made
this hypothesis applicable to core transport barriers in
reversed-shear plasmas (Burrell, 1997; Mazzucato et al.,
1996; Synakowski et al., 1997) and has been utilized in
the analytical threshold calculation for the transport bi-
furcation (Diamond et al., 1997).

While there have been significant progress in both
shear-flow physics (see, for example, Terry (2000)) and
transport-barrier physics (see, for example, theory re-
views by Connor and Wilson (2000) and by Hahm
(2002), and experimental reviews by Burrell (1997) and
by Synakowski et al. (1997)), nonlinear gyrokinetic simu-
lations are desirable for more quantitative comparisons to
experimental data and extrapolation to future machines.
The existing nonlinear gyrokinetic formalism in the ab-
sence of the equilibrium radial electric field (Er = 0),
needs to be further improved for an accurate description
of plasma turbulence in a core transport barrier region
with significant Er shear. We note that many previous
works, which contain the modification of the gyrokinetic
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Vlasov equation due to plasma flow (Artun and Tang,
1994; Bernstein and Catto, 1985; Brizard, 1995; Hahm,
1992), consider a situation in which the toroidal flow of
ions is the dominant contributor to the radial electric field
(Hinton et al., 1994). Therefore, those equations cannot
be applied to some core transport barriers where either
the poloidal flow or the diamagnetic flow plays a dom-
inant role. Furthermore, since the individual guiding-
center motion is determined by the electromagnetic field
rather than by the equilibrium mass-flow velocity, it is
natural to develop a gyrokinetic theory in terms of Er

(Hahm, 1996) in the laboratory frame. This approach is
also conceptually simpler than a formulation in terms of
the relative velocity in the frame moving with the mass
flow (Artun and Tang, 1994; Brizard, 1995; Hahm, 1992)
because one can formally treat the guiding-center mo-
tion part separately from the equilibrium mass-flow issue,
which is related to the determination of ion distribution
function from neoclassical theory.

A general formulation can be pursued with uE/vth ∼ 1,
in addition to the standard gyrokinetic ordering ω/Ω ∼
eδφ/Ti ∼ ρik‖ ∼ ε and k⊥ρi ∼ 1. Here, uE is the equilib-
rium E × B velocity. 12 Only the electrostatic fluctua-
tions are considered in this Appendix.

We begin with the unperturbed guiding-center phase-
space Lagrangian

Γ0 ≡
(e
c
A +muE +mv‖b̂

)
· dX+

µB

Ω
dζ −H0dt, (E1)

where the equilibrium E×B velocity uE ≡ (cb̂/B) ×∇Φ
(Littlejohn, 1981) is associated with the equilibrium po-
tential Φ, and the guiding-center Hamiltonian is

H0 = eΦ + µ (B + BE) +
m

2

(
v2
‖ + |uE|2

)
, (E2)

where

BE ≡ B
2Ω

·∇×uE (E3)

=
c

2

[
∇ ·

(
∇Φ
Ω

)
+

∇Φ
Ω

·
(
b̂ ·∇b̂

) ]

describes the finite-Larmor-orbit-average reduction of the
equilibrium potential (Brizard, 1995). While the term
µBE in the guiding-center Hamiltonian (E2) might be
smaller than m|uE|2/2, we choose to keep it because of
its clear physical meaning.

Introducing the electrostatic perturbation δφ(x, t), the
Lie-transform perturbation analysis can be carried out as
described in Sec. V and further details can be found in

12 A tokamak-specific ordering, Bθ/B ' q r/R � 1, with further
subsidiary ordering, simplifies the formulation for applications.
This exemplifies the nonuniqueness of the standard nonlinear
gyrokinetic ordering; details can be found in Hahm (1996) and
Hahm et al. (2004b).

Hahm (1996). Perturbation analysis up to the second
order is required for energy conservation up to O(ε2δ) in
the formulation in terms of total distribution function
(Brizard, 1989a; Dubin et al., 1983; Hahm, 1988). The
total phase-space Lagrangian is given up to the second
order by

Γ =
(e
c
A +muE +mv‖b̂

)
· dX +

µB

Ω
dζ

− (H0 + e δΨgy) dt, (E4)

where the effective gyrocenter perturbation potential is

δΨgy ≡ 〈δφgc〉 − e

2B
∂

∂µ

〈
δφ̃2

gc

〉
.

The corresponding Euler-Lagrange equation is

− eB∗

c
× dX

dt
−mb̂

dv‖

dt
= ∇(H0 + e δΨgy), (E5)

which can be decomposed into the following gyrocenter
equations of motion:

dX
dt

= v‖
B∗

B∗
‖

+
cb̂

eB∗
‖

×
[
e ∇(Φ + δΨgy)

+µ ∇(B +BE) +
m

2
∇|uE|2

]
, (E6)

and

dv‖

dt
= − B∗

mB∗
‖

·
[
e ∇(Φ + δΨgy)

+µ ∇(B + BE) +
m

2
∇|uE|2

]
(E7)

Although Eqs. (E6) and (E7) are mathematically concise,
those can be written in the following form which is closer
to the result of previous works in terms of the mass flow
(Artun and Tang, 1994; Brizard, 1995).

dX
dt

= uE + v‖b̂ +
cb̂

eB∗
‖

×

[
e∇δΨgy + µ∇(B +BE)

+m(uE + v‖b̂) ·∇(uE + v‖b̂)
]
, (E8)

and

dv‖

dt
= − B∗(0)

mB
∗(0)
‖

·


 e∇(Φ1 + δΨgy) + µ ∇(B +B

(0)
E )

+m(u(0)
E + v‖b̂) ·∇(u(0)

E + v‖b̂)
]
. (E9)

Here, u(0)
E ≡ b̂×∇Φ(0)/B, B∗(0) ≡ B+ m

e ∇×(u(0)
E +v‖b̂),

and B∗(0)
‖ ≡ b̂ ·B∗(0). Although Eq. (E8) is valid for an

arbitrary Φ, Eq.(E9) can be only obtained from Eq. (E7)
via a perturbative analysis (Brizard, 1995). The equilib-
rium electrostatic potential, in general, consists of two
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parts Φ ≡ Φ0 + Φ1. In most cases, Φ can be approxi-
mated by a flux function Φ0(ψ) satisfying b̂ · ∇Φ0 = 0.
The poloidal-angle-dependent Φ1(ψ, θ) can be produced,
for instance, by the centrifugal-force-driven charge sepa-
ration in strongly rotating plasmas (Connor et al., 1987;
Hinton and Wong, 1985). According to the ordering in
this section, Φ0 = O(ε−1

E ) and Φ1 = O(1). Theory of
E × B flow shear suppression of turbulence has been
also extended to include the poloidal-angle-dependent
Φ1(ψ, θ) (Hahm and Burrell, 1996) exhibiting the ten-
sor nature of shearing process by large convective cells
(Diamond et al., 2005).

With Eqs. (E8) and (E9), one can write explicitly the
gyrokinetic Vlasov equation for the gyrocenter distribu-
tion function F (X, µ, v‖, t),

∂F

∂t
+
dX
dt

·∇F +
dv‖

dt

∂F

∂v‖
= 0. (E10)

Here, we note that dµ/dt ≡ 0 and ∂F/∂ζ ≡ 0 have been
used. The accompanying gyrokinetic Poisson’s equation
expressed in terms of the gyrocenter distribution function
F (X, µ, v‖, t) is (Hahm, 1996):

∇2(Φ + δφ) = 4πe
(
ne − N i

)
, (E11)

where the ion gyrofluid density

N i ≡
∫
d3p

〈
e−ρ ·∇

(
F +

eδφ̃gc

B

∂F

∂µ

)〉

includes the ion polarization density and the electron
density ne can be obtained from the drift-kinetic equa-
tion (ρe ·∇ → 0), for instance. The invariant energy for
Eqs. (E10) and (E11) is obtained by transforming the
energy constant of the original Vlasov-Poisson system as
described in Appendix D,

E =
∫
d6Z F i

[
µ (B +BE) +

m

2
(|uE|2 + v2

‖)
]

+
∫
d6z fe

(me

2
v2
)

+
∫
d3x

8π
|E|2 (E12)

+
e2

2B

∫
d6Z F i

(
∂

∂µ

〈
δφ̃2

gc

〉)
,

where E ≡ −∇(Φ + δφ) is the total electric field. In this
total-F formulation, the second-order nonlinear correc-
tion to the effective potential should be kept alongside
the sloshing energy in order to ensure energy conserva-
tion.

On a related subject, for extension of nonlinear gyroki-
netic formulations to edge turbulence, a different order-
ing is desirable due to high relative fluctuation amplitude
in L-mode plasmas and strong E × B flow shear in H-
mode plasmas (Hahm et al., 2004b). We note that, via
a rigorous derivation, additional terms (other than the
intuitively obvious, radially-dependent Doppler-shift-like
term) appear in the gyrocenter equations of motion. Som

of these terms are kept in some comprehensive gyroki-
netic stability analysis addressing the E×B shear effects
(Peeters and Strintzi, 2004; Rewoldt et al., 1998).

For nonlinear gyrokinetic simulations of turbulence, on
the other hand, much of emphasis in the last decade
has been concentrated on the study of zonal flows which
are spontaneously generated by turbulence. The self-
generated zonal flows are radially localized (krLF � 1),
axisymmetric (kϕ = 0), and mainly poloidal E×B flows.

There have been early indications from a fluid simula-
tion (Hasegawa and Wakatani, 1985) and nonlinear gy-
rofluid simulations in 90’s (Beer, 1995; Dorland, 1993;
Hammett et al., 1993; Waltz et al., 1994) that self-
generated zonal flows can be important in drift wave
turbulence. Based on nonlinear gyrokinetic simulations
(Dimits et al., 2000; Lin et al., 1998) with a proper treat-
ment of undamped zonal flows in collisionless toroidal ge-
ometry (Rosenbluth and Hinton, 1998), it is now widely
recognized that understanding zonal flow dynamics in
regulating turbulence is essential in predicting transport
in magnetically confined plasmas quantitatively. The
important role of zonal flows has been recognized in
nearly all cases and regimes of plasma turbulence that
the plasma microturbulence problem can be referred to
as “drift wave-zonal flow problem”, thereby emphasiz-
ing the two component nature of the self-regulating sys-
tem. Both nonlinear gyrokinetic simulations and theories
have made essential contributions to this paradigm shift
as recently reviewed (Diamond et al., 2005), and have
influenced experiments. For instance, characterization of
the experimentally testable features of zonal flow proper-
ties from nonlinear gyrokinetic simulations (Hahm et al.,
2000) have motivated some experimental measurements
(see, for example, Conway et al. (2005); McKee et al.
(2003)).

One important effect of zonal flows on drift wave tur-
bulence is the shearing of turbulent eddys. While the
shearing due to mean E × B flow is well understood
and pedagogical explanations are available, the complex
spatio-temporal behavior of zonal flows introduces two
important modifications. The first one is the time vari-
ation of zonal flows. High kr components of zonal flows
can vary on the eddy turnover time scale (Beer, 1995) un-
like externally driven macroscopic E×B flows which vary
on a much slower time scale. It has been shown that fast
time varying components of zonal flows are less effective
in shearing turbulence eddies (Hahm et al., 1999).

The fundamental reason for this is that the zonal flow
shear pattern changes before the eddies can be com-
pletely torn apart. The turbulent eddies can then re-
cover some of their original shape, and the shearing effect
is reduced. This effect has been first characterized via
the “effective shearing rate” (Hahm et al., 1999). Later,
this trend was confirmed in particular turbulence mod-
els (Kim, 2005; Kim et al., 2004). This is also the rea-
son why the Geodesic Acoustic Mode (GAM) (Winsor
et al., 1968), with ωGAM ∼ vth/R, does not reduce the
ambient turbulence significantly for typical core param-
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eters (Angelino et al., 2006; Miyato et al., 2004). At
the edge, sharp pressure gradients make the diamagnetic
drift frequency at the relevant long-wavelength closer to
the GAM frequency, i.e., ω∗/ωGAM ∼ (kθR) ρi/lp ∼ 1.
Therefore, the GAM can possibly affect the edge ambi-
ent turbulence (Hallatschek and Biskamp, 2001; Scott,
2003). The second reason is the chaotic pattern of the
zonal flows. Due to this the shearing due to zonal flows
is better characterized by a random diffraction derived
from statistical approaches (Diamond et al., 2005) rather
than the coherent stretching which is applicable to the
shearing due to mean E × B shear.

2. Bounce-center-kinetic Vlasov Equation

As a second example of the extension of the nonlin-
ear gyrokinetic formalism presented in the text, we con-
struct nonlinear Hamilton equations for charged particles
in the presence of low-frequency electromagnetic fluctu-
ations with characteristic mode frequency ω such that

ωd , ω � ωb � Ω, (E13)

where ωb and ωd denote the bounce and drift frequencies
of a trapped guiding-center particle. This new time-scale
ordering, thus, allows the removal of the fast gyration and
bounce angles, i.e., the new reduced dynamics preserves
the invariance of the magnetic moment µ and the bounce
action J = Jb.

In deriving these reduced equations, we ignore
finite-Larmor-radius effects associated with the electro-
magnetic field perturbations (i.e., we take the long-
wavelength limit k2

⊥ρ
2
i � 1), and we refrain from or-

dering the perpendicular and parallel wavenumbers since
k‖/k⊥ may not be very small for some macroscopic in-
stabilities.

In the presence of electromagnetic field fluctuations,
the background magnetic field becomes perturbed. De-
pending on the characteristic time scales of the fluc-
tuating fields, this situation typically may lead to the
destruction of the guiding-center adiabatic invariants µ
and/or J . Here, the electromagnetic field fluctuations
are represented by: the perturbed scalar potential δφ,
the parallel component of the perturbed vector poten-
tial δA‖ (≡ b̂0 · δA), and the parallel component of the
perturbed magnetic field δB‖ (≡ b̂0 ·∇× δA). We shall
assume that the characteristic mode frequency ω is much
smaller than the bounce frequency ωb, i.e.,

ω

ωb
∼ εω, (E14)

where εω is a small ordering parameter; we henceforth
set εd equal to one for clarity.

The perturbed guiding-center phase-space Lagrangian
can be written as

Γ = Γ0 + εδ Γ1, (E15)

where the first-order guiding-center phase-space La-
grangian is (Brizard, 1989a)

Γ1 ≡ e

c

(
δA‖bc

∂s

∂uα

)
duα, (E16)

and the first-order guiding-center Hamiltonian is

H1 ≡ e δφgc + µ δB‖bc. (E17)

Here, dependence on the fast bounce-angle Θ is re-
introduced in Γn (n ≥ 1) because the perturbation fields
(δφgc, δA‖bc, δB‖bc) depend on Θ through s(u) ≡ s(u)
(to lowest order in εd) and y ≡ y+Λb. For example, the
perturbed scalar potential δφgc(y,u) is defined as

δφgc(y,u; t) ≡ δφ (y + Λb, s(u); t) . (E18)

In what follows, we make no assumptions about the or-
derings of the parallel and perpendicular wavenumbers.
In Eq. (E17), the gyrocenter magnetic moment

µ ≡ µ + εδ

[
eρ

B0
·∇
(
δφgc −

v‖

c
δA‖bc

)

− µ
δB‖bc

B0

]
+ · · · (E19)

is an adiabatic invariant for the low-frequency nonlinear
gyrocenter Hamiltonian dynamics (Brizard, 1989a) while
µ is the (unperturbed) guiding-center magnetic moment
and ρ is the gyroradius. The second-order gyrocenter
Hamiltonian (in the limit ρ2k2

⊥ � 1) is

H2 ≡ − mc2

2B2
0

∣∣∣∇⊥

(
δφgc −

v‖

c
δA‖bc

)∣∣∣
2

− eδA⊥bc · b̂0

B0
×∇⊥

(
δφgc −

v‖

c
δA‖bc

)
,(E20)

The new bounce-gyrocenter phase-space Lagrangian is
chosen to be of the form

Γ̂ ≡ e

2c
ηab ŷ

a dŷb + Ĵ dΘ̂ − ŵ dt, (E21)

i.e., all the electromagnetic perturbation effects have
been transfered to the bounce-gyrocenter Hamiltonian

Ĥ(ŷ, t; Ĵ) ≡ Ĥ0 + εδ Ĥ1 + ε2δ Ĥ2, (E22)

where the second-order bounce-center Hamiltonian con-
tains low-frequency ponderomotive terms associated with
the asymptotic decoupling of the bounce-motion time
scale. Here, the first-order bounce-center Hamiltonian
is

Ĥ1 ≡ e 〈δψbc〉b =
〈
e
(
δφgc −

v‖

c
δA‖bc

)〉
b

+ µ
〈
δB‖bc

〉
b
, (E23)
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where the bounce-angle averaging with respect to Θ̂ is
denoted 〈 〉b. The second-order bounce-center Hamilto-
nian, on the other hand, is

Ĥ2 ≡ 〈H2〉b +
e2

2mc2
〈
(δA‖bc)2

〉
b

− e2

2ωb

〈{
δΨ̃bc, δψ̃bc

}
bc

〉
b
, (E24)

where δΨ̃bc ≡
∫
δψ̃bc dΘ̂ and { , }bc denotes the unper-

turbed bounce-center Poisson bracket.
The nonlinear bounce-gyrocenter Hamiltonian is,

therefore, expressed as

Ĥ ≡ Ĥ0 + εδ

〈
e
(
δφgc −

v‖

c
δA‖bc

)
+ µ δB‖bc

〉
b

+ ε2δ

[
〈H2〉b +

e2

2mc2
〈(
δA‖bc

)2〉
b

− e2

2ωb

〈{
δΨ̃bc, δψ̃bc

}
bc

〉
b

]
. (E25)

This expression generalizes the previous works of Gang
and Diamond (1990) and Fong and Hahm (1999), who
considered electrostatic perturbations only. The non-
linear bounce-gyrocenter Hamilton equations presented
here contain terms associated with full electromagnetic
perturbations and include classical (〈H2〉b) and neoclas-
sical (〈{δΨ̃bc, δψ̃bc}〉b) terms. The bounce-center phase-
space transformation (y,u) → (ŷ, û) is defined up to first
order in εδ as

ŷa = ya + εδ
{
S1, y

a
}

bc

ûα = uα + εδ
{
S1, u

α
}

bc

+ εδ(e/c) δA‖bc {s, uα}bc




, (E26)

where S1 ≡ e δΨ̃bc/ωb. Lastly, the neoclassical polariza-
tion density can be defined in terms of the push-forward
expression ρpol ≡ −

∑
e∇ ·‖ρε‖, where ‖ ‖ denotes a

momentum integration over the bounce-center distribu-
tion function and

ρa
ε ≡ − εδ

{
S1, y

a + Λa
}

bc
.

By definition, the bounce-center moment ‖ρa
ε ‖ involves

a bounce-angle average and, thus, to lowest order in the
bounce-kinetic ordering, we find

〈ρa
ε 〉 = εδ

e

ωb

∂

∂Ĵ

〈
δψ̃bc Λa

〉
.

We, therefore, see that each asymptotic decou-
pling of a fast time-scale introduces a corresponding
ponderomotive-like nonlinear term in the reduced Hamil-
tonian. These ponderomotive-like terms, in turn, are
used to introduce polarization and magnetization effects
into the reduced Maxwell’s equations.
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TABLE I Applications of Nonlinear Gyrokinetic Equations

Instability Nonlinear Theory Nonlinear Simulation

Drift (Universal or Dissipative) Instability Frieman and Chen (1982) Lee (1983)

Smith et al. (1985) Lee et al. (1984)

Hahm (1992) Parker and Lee (1993)

Ion Temperature Gradient (ITG) Mode Mattor and Diamond (1989) Lee and Tang (1988)

Hahm and Tang (1990) Sydora et al. (1990)

Mattor (1992) Parker et al. (1993)

ITG Turbulence with Zonal Flows Rosenbluth and Hinton (1998) Dimits et al. (1996)

Chen et al. (2000) Lin et al. (1999)

Refs. in Diamond et al. (2005)

ITG Turbulence with Velocity-space Hatzky et al. (2002)

Nonlinearity addressing Energy Conservation Villard et al. (2004a)

Trapped Electron Mode Similon and Diamond (1984) Sydora (1990)

Gang et al. (1991) Chen and Parker (2001)

Hahm and Tang (1991) Ernst et al. (2004)

Dannert and Jenko (2005)

Trapped-Ion Mode Hahm and Tang (1996) Depret et al. (2000)

Electron-Temperature-Gradient (ETG) Mode Kim et al. (2003) Jenko et al. (2000)

Chen et al. (2005) Idomura et al. (2000)

Dorland et al. (2000)

Lin et al. (2005)

Interchange turbulence Sarazin et al. (2005)

(Kinetic) Shear Alfvén Wave Frieman and Chen (1982) Lee et al. (2001)

Hahm et al. (1988) Parker et al. (2004)

Drift-Alfvén Turbulence Briguglio et al. (2000) Briguglio et al. (1998)

Chen et al. (2001) Jenko and Scott (1999)

Chen et al. (2001)

Tearing & Internal Kink Instability Naitou et al. (1995)

Matsumoto et al. (2005, 2003)

Micro-tearing & Drift-tearing Mode Sydora (2001)

Parker et al. (2004)

Energetic Particle driven MHD Instabilities Chen (1994) Park et al. (1992)

Vlad et al. (1999) Santoro and Chen (1996)

Zonca et al. (2005) Zonca et al. (2002)

Todo et al. (2003)

Geo-magnetic Pulsation Chen and Hasegawa (1994)

Whistler Lower-hybrid Instability Lin and Wang et al. (2005)
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