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Calculation of the vacuum Green’s function
valid even for high toroidal mode number in tokamaks

M. S. Chance
Plasma Physics Laboratory, Princeton University, Princeton, New Jersey, 08543, USA

A. D. Turnbull, P. B. Snyder
General Atomics, San Diego, California, 92186-5068

The present evaluation of the Green’s function used for the magnetic scalar potential in
vacuum calculations for axisymmetric geometry in the vacuum segments ofGATO, PEST

and otherMHD stability codes has been found to be deficient even for moderately high
toroidal mode numbers,n, relevant to the edge localized peeling-ballooning modes. This
was due to the loss of numerical precision arising from the upward recursion relation used
for generating the functions from the values atn = 0 from the complete elliptic integrals
of the first and second kinds. To ameliorate this, a direct integration of the integral repre-
sentation of the function is crafted to achieve the necessary high accuracy for moderately
high mode numbers, with due consideration to the singular behavior of the integrand in-
volved. At higher mode numbers the loss of numerical precision due to cancellations from
the oscillatory behavior of the integrand is further avoided by judiciously deforming the
integration contour into the complex plane to obtain a new integral representation for the
Green’s function. Near machine precision, roughly 12 – 16 digits, can be achieved by us-
ing a combination of these techniques. The relation to the associated Legendre functions is
also described.

1 Introduction

The magnetic scalar potential that is needed to include the effects of the vacuum region in stability
calculations in axisymmetric toroidal configurations requires an accurate evaluation of the free space
Green’s function,G, in two dimensions. Historically the emphasis in past fusion research was on
the external kink modes with low order toroidal mode numbers,n. The present evaluation that is
used to calculate the Green’s function in theGATO, ERATO [1–3] andPEST [4, 5] codes relies on
an upward recursion relation in the toroidal mode number,n, initiated from the complete elliptic
functions of the first and second kinds,K andE, respectively. However, significant loss of digits
occurs when these codes are used for studying even moderately highn MHD modes. [Note that the
pseudo-vacuum version ofERATO avoids the calculation of the Green’s function and the associated
singularities altogether. It, however, has a different set of numerical problems, for example, it
cannot be used for very distant walls or a wall at infinity]. This problem has recently become more
critical because of the emerging importance of the moderately highn (typically 3 < n < 30)
peeling/ballooning modes in tokamaks which are being studied, for example, by theELITE code.
[6,7] At present the elliptic integrals are only confidently calculated at most to roughly eight digits
using relations from [8]. A few recursions inn can quickly lead to a complete loss of accuracy.
While the evaluations of the elliptic integrals have been replaced with the much more accurate
recursive method of Bulirsch [9, 10], this only postponed the problem to a few more increments in
n. These observations motivated the present work to devise other methods to evaluate the Green’s
function accurately in the range where the present methods fail.

In addition ton, it is found that the numerical properties of the Green’s function also depends
on the other characterization of the integrand, namely the parameterρ̂ ≡ [{(X − X ′)2 + (Z −
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Z ′)2}/4XX ′]1/2, the normalized distance between source and observer points in theX −Z plane,
where the notation is such that the radius vectorr = (X, φ, Z) in cylindrical coordinates. It is
evident that̂ρ can take on a wide range of values – small values, for example, when the source and
observer points are situated on the same surface; and large values when the normalizing denominator
gets small in small aspect ratio configurations and/or when the distance between the source and
observer is large in configurations that are vertically elongated or contain distant vacuum vessels,
for example. When̂ρ vanishes, the integrand has an integrable singularity which gives rise to
the logarithmic behavior of the Green’s function. The numerical difficulties associated with this
singular behavior are addressed in the numerical algorithms. It is found that the salient properties
of the function that are relevant to this work are, to a large extent, dependent on the productnρ̂.

As an alternative to using the recursion relation fornρ̂ & 1 an algorithm is constructed which
directly integrates an integral representation ofG for arbitrarynρ̂. To avoid the difficulties associated
with the singular behavior of the integrand we extract the singular behavior and use a suitable change
of variable to efficiently perform the quadratures. Maintaining the periodicity of the integrand
enables us to take advantage of the extremely high accuracy offered by the trapezoidal rule because
of the Euler-MacLaurin effect [11]. This is found to be very accurate, attaining machine precision
for nρ̂ ¿ 1. However, asnρ̂ increases the method begins to suffer from the limitation of the machine
precision because the oscillatory behavior of the integrand results in roundoff errors, limiting the
range ofnρ̂, for example, to. 10 for six digit accuracy inG. This is avoided by crafting another
method of integration which suitably deforms the integration contour into the infinite complexφ
plane so that the integrand, rather than oscillating, decays exponentially and is positive definite. In
this case Gaussian quadratures are used for the integration on a suitable finite range. As checks,
the integrands in both these cases are expanded in finite power series and integrated analytically. In
practice, all the methods of integration can be used with the desired accuracy apropos to the value
of ρ̂. To illustrate the points made, sets of results for suitable values ofρ̂ andn are presented, each
containing the numerical data from the methods described – the recursion method, the trapezoidal
integration, the Gaussian quadrature along the new contour of integration and their analytic series
integrations. The attributes and deficiencies of each method are then easily compared. In order to
give this work a wider perspective the relation to the associated Legendre functions is provided.

The paper is structured as follows. Sec. 2 describes the two dimensional Green’s function and
the techniques used to deal with the its singular behavior whennρ̂ ¿ 1. To facilitate the discussion
of the limitation of the recursion method that motivated this work, the more accurate trapezoidal
technique is described next in Sec. 3 since the actual numerical results from both can later be com-
pared. The roundoff problem associated with the trapezoidal techniques whennρ̂ ∼ 1 is discussed
here as well. In Sec. 4 the recursion relation method used for evaluating the function for moderately
high values ofn is described together with it’s breakdown whenn andρ is large. Sec. 5 deals
with the integration of the analytical series expansion of the integrand inρ̂−2. Sec. 6 describes the
new integral representation which is valid for all ranges ofn andρ̂ and in particular is accurate for
large values ofn andρ, thus complementing the methods of the previous sections. The results of
expanding the new integrand in a suitable power series valid for finiteρ̂ are also presented here. The
summary and conclusions are presented finally in Sec. 7, where we also suggest a prescription for
obtaining the Green’s function to at least 12 digits over a much wider range ofnρ̂ than previously
achieved. The relationship between the Green’s function algorithm and the associated Legendre
functions is shown in the Appendix.
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2 The two dimensional Green’s function

In this section the treatment of the singular behavior of the Green’s function in the two dimensional
space(X, Z) is described. This entails regularizing the integrand by subtracting its zeroth order
singular contribution to facilitate treating the resulting integral with a suitably accurate quadrature
scheme. The subtracted piece is in turn accurately calculated and then added back to complete the
solution. A judicious change of variable also proved helpful. It turns out that this technique is
very effective when̂ρ ¿ 1, but the onset of roundoff errors renders the results unacceptable when
nρ̂ & 10. These observations will be clarified and quantified when actual numerical results are
shown for relevant ranges of̂ρ andn.

2.1 Treatment of the singularity

Integration of the free space Green’s function in cylindrical coordinates over the toroidal angleφ′,
gives the two dimensional Green’s function in(X,Z):

Gn ≡ 1
2π

∮
ein(φ−φ′)

|r− r′| dφ′, (1)

and since

|r− r′|2 = X2 + X ′2 + (Z − Z ′)2 − 2XX ′ cos(φ− φ′) (2)

this can be written as:

Gn =
1
2π

∮
dφ

e−inφ

√
ρ2 + 4XX ′ sin2(φ/2)

, (3)

=
1

2π
√

XX ′

∫ π/2

−π/2
dφ

cos 2nφ√
ρ̂2 + sin2 φ

, (4)

whereρ̂2 = ρ2/4XX ′, with ρ2 = (X −X ′)2 + (Z − Z ′)2.

Examination of Eq. (4) shows that the singular behavior of theGn occurs when̂ρ → 0 since the
denominator vanishes whenφ → 0. This gives rise to the logarithmic dependence in the integral as
can be seen if the leading singular term is extracted by writingGn as:

2π
√

XX ′ Gn =
∫ π/2

−π/2
dφ′

cos 2nφ′ − cosφ′√
ρ̂2 + sin2 φ′

+
∫ π/2

−π/2
dφ′

cosφ′√
ρ̂2 + sin2 φ′

, (5)

≡ 2π
√

XX ′ [Greg + Gsing]. (6)

The regularized integrand ofGreg is now non-infinite asρ → 0, and the leading singularity contained
in Gsing can be evaluated analytically,

2π
√

XX ′ Gsing = 2
[
− log ρ̂ + log

(
1 +

√
ρ̂2 + 1

)]
. (7)

Thus,

Gn −−→
ρ̂→0

− 1
π
√

XX ′ log ρ̂. (8)
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The integral of Eq. (4) can be integrated directly while paying due attention to the singular prop-
erties of the integrand. If the integrand is periodic over its range of integration, the trapezoidal rule
offers remarkable accuracy because of the Euler-MacLaurin effect [11]. As written, the integrand
of Eq. (4) is periodic inφ and the pathology that occurs for small values ofρ̂ could be handled
by subtracting the singular behavior as above in Eq. (5). However the subtracted portion there is
unfortunately not periodic. So instead, we replace thecosφ term in Eq. (5) with unity, that is:

2π
√

XX ′ Gn =
∫ π/2

−π/2
dφ′

cos 2nφ′ − 1√
ρ̂2 + sin2 φ′

+
∫ π/2

−π/2
dφ′

1√
ρ̂2 + sin2 φ′

, (9)

andGsing in this case is,

2π
√

XX ′ Gsing =
∫ π/2

−π/2
dφ′

1√
ρ̂2 + sin2 φ′

(10)

=
2√

ρ̂2 + 1
K(k), (11)

whereK(k) can be accurately calculated using previously established methods, e.g. that of Bulirsch
[9, 10]. A plot of the integrand with and without the subtraction is shown in Figs. (1) and (2) for
ρ̂ = .01 andn = 10. As can be seen, even though the integrand is mathematically well conditioned,
the behavior atφ ∼ 0 is still not comfortably smooth enough for efficient numerical analysis. We
therefore introduce a change of variable that effectively packs the grid in the neighborhood of the
singularity,

φ′ = φ− δ sin 2φ, (12)

with dφ′ = (1− 2δ cos 2φ) dφ. (13)

The choice ofδ = 0.5 is optimal sincedφ′ −−→
φ→0

2φ2 dφ, which corresponds to maximal grid pack-
ing. The transformed integrands in both instances are shown in Figs. (3) and (4). Without the
regularization of Eq. (9) this transformation introduces new local extrema atφm ∼ ±1.285 ρ̂1/3

where the integrand takes on the value∼ 1.906 ρ̂−1/3, both leading only to mildly singular be-
havior. In practice, if̂ρ is not extremely small, it is often sufficient to just use the transformation
given in Eq. (12) without the regularization since it accomplishes both goals of packing the grid
points and almost regularizing the integrand at the singular point. Using both the regularization
and transformation withδ = 0.5 could be a bit of overkill. It’s significant to note that the change
of variable in Eq. (13) preserves the periodicity of the integrand which is crucial for satisfying the
Euler-MacLaurin requirement.

3 The trapezoidal integration algorithm

3.1 Results whennρ̂ ¿ 1

A demonstration of how well the numerical implementation of these techniques work whenρ̂ is
small is shown in the tables where the result from the trapezoidal integration is carried out for
various values of the parametersρ̂ andn, using an increasing number of grid points,m, starting from
16 and doubled several times to check the convergence of the algorithm. In the tables, the result
from the integration is denoted byGm and the quantitydGm/Gm is the relative difference between
the present and previousm points integration,(G − Gprev)/Gprev. The label “K for regularization”
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n ρ̂ K for regularization K, E for recursion

1 1.0E−03 none Bulirsch

Method G εtrap εexpan εeul εgauss

trapezoidal m Gm dGm/Gm

16 1.800624975390113E+00

32 2.025355996644204E+00 1.11E−01

64 2.003834472493246E+00 −1.07E−02

128 2.003460279443467E+00 −1.87E−04

256 2.003460125056524E+00 −7.71E−08

512 2.003460125056492E+00 −1.60E−14

1024 2.003460125056489E+00 −1.55E−15

recursion 2.003460125056489E+00 0.00E+00

high-n exp. −1.200893356599288E+20 −5.99E+19

high-n Eul exp. −4.666191255321733E+17 −2.33E+17

Gauss,ng = 64 2.003460148769300E+00 1.18E−08 −1.00E+00 −1.00E+00

largeρ̂, l = 10 1.296496874848175E+67 6.47E+66 6.47E+66

n ρ̂ K for regularization K, E for recursion

21 1.0E−03 none Bulirsch

Method G εtrap εexpan εeul εgauss

trapezoidal m Gm dGm/Gm

16 9.707300403760134E−01

32 8.469965739481430E−01 −1.46E−01

64 1.046917853500563E+00 1.91E−01

128 1.046543371969088E+00 −3.58E−04

256 1.046543217454265E+00 −1.48E−07

512 1.046543217454232E+00 −3.18E−14

1024 1.046543217454229E+00 −2.76E−15

recursion 1.046543217454264E+00 3.39E−14

high-n exp. −1.379714064081404E+10 −1.32E+10

high-n Eul exp. −4.824432908770844E+07 −4.61E+07

Gauss,ng = 64 1.046543217454232E+00 3.33E−15 −1.00E+00 −1.00E+00

largeρ̂, l = 10 1.176489578342860E+180 1.12E+180 1.12E+180

Table 1: Results of the integration without regularization.
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n ρ̂ K for regularization K, E for recursion

1 1.0E−03 Bulirsch Bulirsch

Method G εtrap εexpan εeul εgauss

trapezoidal m Gm dGm/Gm

16 2.003460269450408E+00

32 2.003460149376894E+00 −5.99E−08

64 2.003460125712500E+00 −1.18E−08

128 2.003460125056781E+00 −3.27E−10

256 2.003460125056490E+00 −1.45E−13

512 2.003460125056490E+00 0.00E+00

1024 2.003460125056489E+00 −4.43E−16

recursion 2.003460125056489E+00 0.00E+00

high-n exp. −1.200893356599288E+20 −5.99E+19

high-n Eul exp. −4.666191255321733E+17 −2.33E+17

Gauss,ng = 64 2.003460148769300E+00 1.18E−08 −1.00E+00 −1.00E+00

largeρ̂, l = 10 1.296496874848175E+67 6.47E+66 6.47E+66

n ρ̂ K for regularization K, E for recursion

21 1.0E−03 Bulirsch Bulirsch

Method G εtrap εexpan εeul εgauss

trapezoidal m Gm dGm/Gm

16 1.173565334436309E+00

32 8.251007266808328E−01 −4.22E−01

64 1.046543506719816E+00 2.12E−01

128 1.046543217582401E+00 −2.76E−07

256 1.046543217454231E+00 −1.22E−10

512 1.046543217454231E+00 4.24E−16

1024 1.046543217454232E+00 2.12E−16

recursion 1.046543217454264E+00 3.12E−14

high-n exp. −1.379714064081404E+10 −1.32E+10

high-n Eul exp. −4.824432908770844E+07 −4.61E+07

Gauss,ng = 64 1.046543217454232E+00 6.66E−16 −1.00E+00 −1.00E+00

largeρ̂, l = 10 1.176489578342860E+180 1.12E+180 1.12E+180

Table 2: Results of the integration with the regularization applied.
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in the header indicates whether or not the integrand is regularized using Eq. (9) and the method used
to evaluateK in Gsing. In all casesδ is set at0.5.

The results in table 1 forn = 1 and21 with ρ̂ = 10−3 indicate that without the regularization,
roughly128 points will produce a relative error of∼ 10−7 and512 points achieves near machine
precision of14 − 16 digits accuracy. The results for the same cases but with the regularization is
shown in table 2. The same accuracies can be achieved with 16 points forn = 1, 64 points for
n = 21, and 256 points for near machine precision.

It should be noted here that since any breakdown of the accuracy of the trapezoidal technique
can be easily ascertained from the value ofdGm/Gm in the tables, the results of this technique are
useful to gauge the accuracy of other methods used for calculatingGn as long as the values ofρ̂ and
n are within the regime where the trapezoidal method is accurate, the latter of course depending on
the accuracy of theK used if the integral is regularized according to Eq. (9).

3.2 Results when̂ρ & 1

Whenρ̂ ≥ 1 the integrand is well behaved but tends toward a constant amplitude; for largen the os-
cillatory behavior of the integrand with causes a Riemann-Lebesgue like cancellation of the positive
and negative contributions so that the resulting integral can be extremely small. The subtractions
required for this lead to loss of digits in the numerical implementation as it stands. An illustration
of this is in table 3(upper) where the results forρ̂ = 0.7 andn = 21 are shown. As indicated by
the lack of decrease of the relative error,dGm/Gm, asm is increased, an accuracy of roughly 4
digits is achievable. Complete breakdown of the method is seen whenn = 26 in the table (lower).
Clearly then, for these moderately high values ofn andρ̂, an alternative algorithm is necessary for
applications in this range. This issue will be addressed below in Sec. 6.

4 The recursion relation

As shown in the Appendix,Gn can be written in terms of the associated Legendre functionsPn
−1/2

and this allows us to make use of their properties in our applications. For example, the recursion
relation forPn

−1/2 has been used to generate the Green’s function forn > 1 and the corresponding
recursion relation forGn, as derived in the apppendix is,

Gn+1 =
4n(2ρ̂2 + 1)

(2n + 1)
Gn − 2n− 1

2n + 1
Gn−1, (14)

for n = 1, 2, . . .. In the GATO code an equivalent recursion is done directly on its version of
the integral representation, Eq. (4) [2]. In both cases, as shown in the Appendix, the recursion is
initiated atn = 1 from the relations ofP 0

−1/2 andP 0
1/2 to the complete elliptic integrals of the first

and second kinds,K andE, respectively.

G0 =
1

π
√

XX ′
K(k)√
ρ̂2 + 1

, (15)

G1 =
1

π
√

XX ′
(2ρ̂2 + 1)K(k)− 2(ρ̂2 + 1)E(k)√

ρ̂2 + 1
, (16)

with k2 ≡ 1
ρ̂2 + 1

. (17)
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n ρ̂ K for regularization K, E for recursion

21 7.000E−01 none Bulirsch

Method G εtrap εexpan εeul εgauss

trapezoidal m Gm dGm/Gm

16 −6.274082791960794E−02

32 −1.447698537538380E−01 5.67E−01

64 −5.968361308644754E−11 −2.43E+09

128 8.249520858094606E−14 7.24E+02

256 8.264894844900450E−14 1.86E−03

512 8.241259237540266E−14 −2.87E−03

1024 8.239665460346712E−14 −1.93E−04

recursion 1.851608323673001E−06 2.25E+07

high-n exp. 8.233536091075646E−14 −7.44E−04

high-n Eul exp. 8.233536091673747E−14 −7.44E−04

Gauss,ng = 64 8.233536091210725E−14 −7.44E−04 1.64E−11 −5.62E−11

largeρ̂, l = 10 5.286245234352444E+00 6.42E+13 6.42E+13

n ρ̂ K for regularization K, E for recursion

26 7.000E−01 none Bulirsch

Method G εtrap εexpan εeul εgauss

trapezoidal m Gm dGm/Gm

16 8.537481649732798E−02

32 −8.489516044564373E−02 2.01E+00

64 2.968671991045776E−05 2.86E+03

128 −4.423544863740858E−16 6.71E+10

256 −3.070460552478949E−16 −4.41E−01

512 −2.732189474663471E−17 −1.02E+01

1024 −4.803015624110785E−17 4.31E−01

recursion 1.135228162431733E−03 −2.36E+13

high-n exp. 1.084634837534896E−16 −3.26E+00

high-n Eul exp. 1.084634837552541E−16 −3.26E+00

Gauss,ng = 64 1.084634837538194E−16 −3.26E+00 3.04E−12 −1.32E−11

largeρ̂, l = 10 8.688359715604025E−01 −1.81E+16 8.01E+15

Table 3: Results showing the Riemann-Lebesgue like cancellations in the trapezoidal rule.
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n ρ̂ K for regularization K, E for recursion

5 5.000E−01 none A & S

Method G εtrap εexpan εeul εgauss

trapezoidal m Gm dGm/Gm

16 1.142611060415834E−03

32 1.328805434947195E−03 1.40E−01

64 1.328805434681813E−03 −2.00E−10

128 1.328805434681833E−03 1.48E−14

256 1.328805434681812E−03 −1.60E−14

512 1.328805434681821E−03 7.18E−15

1024 1.328805434681817E−03 −2.94E−15

recursion 1.328673947058222E−03 −9.90E−05

high-n exp. 1.328789444382180E−03 −1.20E−05

high-n Eul exp. 1.328807456406867E−03 1.52E−06

Gauss,ng = 64 1.328805434681792E−03 −1.88E−14 1.20E−05 −1.52E−06

largeρ̂, l = 10 3.504857328980133E+06 2.64E+09 2.64E+09

n ρ̂ K for regularization K, E for recursion

3 1.000E−00 none A & S

Method G εtrap εexpan εeul εgauss

trapezoidal m Gm dGm/Gm

16 6.623739047580020E−04

32 6.623536627594768E−04 −3.06E−05

64 6.623536627594941E−04 2.60E−14

128 6.623536627594724E−04 −3.27E−14

256 6.623536627594654E−04 −1.05E−14

512 6.623536627594542E−04 −1.70E−14

1024 6.623536627595157E−04 9.30E−14

recursion 6.623151919219140E−04 −5.81E−05

high-n exp. 6.623498857663590E−04 −5.70E−06

high-n Eul exp. 6.623542696708142E−04 9.16E−07

Gauss,ng = 64 6.623536627594345E−04 −1.23E−13 5.70E−06 −9.16E−07

largeρ̂, l = 10 3.690808208088648E−03 4.57E+00 4.57E+00

Table 4: Results of the recursion method initiated from the elliptic integrals from the expressions
in [8].
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The accuracy of the calculation ofGn is thus dependent on the stability of the recursion relation
and the numerical precision of the elliptic integrals. In theVACUUM [5] and GATO [1, 2] codes
the polynomial approximations from Abramowitz and Stegun [8] are used which are accurate to
O(10−8). SinceGn is positive, in Eq. (14) a subtraction takes place at each upward increment inn as
the recursion progresses. This causes a loss of accuracy which worsens asρ̂ increases. For example,
after j recursions the two leading terms in the expansion very roughly scale like[2(2ρ̂2 + 1)]j times
E(ρ̂) andK(ρ̂). For ρ̂ = 0.7 (e.g. anNSTX or MAST caseρ̂max∼ a/R ∼ 0.7, wherea/R signifies
the inverse aspect ratio),108 precision (the precision of the standard expansions forE andK) is
lost forn ∼ 9, and1015 precision is lost forn = 15. This is illustrated in table 4(upper). The result
of using the recursion method and its relative error,εtrap, compared with the trapezoidal method is
in the row denoted by ‘recursion’, and within this method, the entry ‘A&S’ under the header ‘K, E
for recursion’ denotes that the polynomial expressions from [8] is used for the elliptical integrals
in the recursion method. For moderate values ofρ̂(∼ 0.5) an accuracy of only 4 digits is obtained
at n = 5. For ρ̂ ∼ 1 the same accuracy is obtained at onlyn = 3, table 4(lower). Atn = 5
only the first significant digit is accurately calculated (not shown). Evidently the accuracy of this
method is clearly dependent on the precision with which theK andE are calculated. We have
substituted the much more precise algorithms of [9, 10], indicated by ‘Bulirsch’ in table 5, which
achieve near machine precision, but as seen this only delays the onset of the problem: forρ̂ = 0.5
only three digits accuracy is obtainable atn = 15. For ρ̂ ∼ 1 complete loss of accuracy occurs
at n = 13. Clearly then, as was found for the Riemann-Lebesgue like cancellation problem with
the trapeziodal method, for these moderately high values ofn andρ̂, alternative algorithms must be
devised to evaluateGn in this regime. We remark here that we have tried the algorithm forK by
Carlson [12, 13] but found it not as accurate as Bulirsch’s at very small values ofρ̂. On the other
hand the algorithm in [8] is much more accurate there than its advertised accuracy of∼ 10−8.

5 Series expansion in̂ρ−2

For ρ̂ > 1 the square root in Eq. (4) can be expanded in a convergent series insin2 φ/ρ̂2, so that,

Gn =
1

2π
√

XX ′

∫ π/2

−π/2
dφ

cos 2nφ

ρ̂

∞∑

l=0

(−1/2
l

)
sin2l φ

ρ̂2l
, (18)

=
1

2
√

XX ′
1
ρ̂

∞∑

l=n

(−1)n

(2ρ̂)2l

(
2l

l − n

) (−1/2
l

)
, (19)

or

Gn =
1√

XX ′
(−1)n

(2ρ̂)2n+1

∞∑

l=0

1
(2ρ̂)2l

(
2(l + n)

l

) (−1/2
l + n

)
, (20)

where,
(

p

q

)
=

p(p− 1) · · · (p− q + 1)
1 · 2 · · · · q ,

(
p

0

)
= 1, (21)

=
p!

q!(p− q)!
, (22)

and the expression for the integral overφ can be found in [14]. The numerical implementation of
this serves as another check against other methods for calculatingGn. The results are denoted in
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n ρ̂ K for regularization K, E for recursion

15 5.000E−01 none Bulirsch

Method G εtrap εexpan εeul εgauss

trapezoidal m Gm dGm/Gm

16 −2.406135953645585E−01

32 −5.721420479838883E−02 −3.21E+00

64 5.178946813413909E−08 1.10E+06

128 5.178946823442779E−08 1.94E−09

256 5.178946844291987E−08 4.03E−09

512 5.178946786829272E−08 −1.11E−08

1024 5.178946782969512E−08 −7.45E−10

recursion 5.182477372450577E−08 6.82E−04

high-n exp. 5.178946767960794E−08 −2.90E−09

high-n Eul exp. 5.178946802075638E−08 3.69E−09

Gauss,ng = 64 5.178946781067901E−08 −3.67E−10 2.53E−09 −4.06E−09

largeρ̂, l = 10 9.876966032775818E+08 1.91E+16 1.91E+16

n ρ̂ K for regularization K, E for recursion

13 1.000E−00 none Bulirsch

Method G εtrap εexpan εeul εgauss

trapezoidal m Gm dGm/Gm

16 −4.713699776418764E−04

32 −1.667230403506501E−03 7.17E−01

64 7.270259047564843E−12 2.29E+08

128 7.270388067623368E−12 1.77E−05

256 7.270441193529820E−12 7.31E−06

512 7.270888318505753E−12 6.15E−05

1024 7.270899919468998E−12 1.60E−06

recursion −9.694701998690181E−08 −1.33E+04

high-n exp. 7.270904580650855E−12 6.41E−07

high-n Eul exp. 7.270904582429580E−12 6.41E−07

Gauss,ng = 64 7.270904581130163E−12 6.41E−07 6.59E−11 −1.79E−10

largeρ̂, l = 10 1.966969889744283E−06 2.71E+05 2.71E+05

Table 5: Results of the recursion method initiated from the elliptic integral calculated by the Bulirsch
algorithms [10].
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n ρ̂ K for regularization K, E for recursion

3 3.0 none Bulirsch

Method G εtrap εexpan εeul εgauss

trapezoidal m Gm dGm/Gm

16 9.240693979034598E−07

32 9.263881421339369E−07 2.50E−03

64 9.263881421235284E−07 −1.12E−11

128 9.263881421187579E−07 −5.15E−12

256 9.263881421155054E−07 −3.51E−12

512 9.263881421160474E−07 5.85E−13

1024 9.263881421078617E−07 −8.84E−12

recursion 9.263874878011383E−07 −7.06E−07

high-n exp. 9.263882053755038E−07 6.83E−08

high-n Eul exp. 9.263877502044503E−07 −4.23E−07

Gauss,ng = 64 9.263881420990642E−07 −9.50E−12 −6.83E−08 −4.23E−07

largeρ̂, l = 10 9.263881421776629E−07 7.53E−11 8.48E−11

Table 6: Results forn = 3, ρ̂ = 3.0. For these values, all methods shown are fairly accurate.

the tables with the row labeled ‘largêρ’. l + 1 is the number of term used in the series, Eq. (20).
εtrap, εgaussdenote the relative error of the results compared with those of the trapezoidal and the
Gaussian methods, the latter of which is to be described in Sec. 6. As can be seen from the results
for n = 3, ρ̂ = 3.0 in Table 6, the series converges fairly rapidly. For these values ofn andρ̂, all
the methods are quite accurate but the region of validity for the present expansion does not overlap
those of the previously presented methods sufficiently enough to effectively complement them. This
will be discussed in Sec. 7.

6 An alternative representation for Gn

As found above, for moderately large values ofnρ̂ ∼ 1, the recursion methods fail and, in the
trapezoidal method, the oscillatory behavior of the integrand with almost constant amplitude causes
a cancellation of the positive and negative contributions which results in an unacceptable loss of
digits. To prevent this we examine the properties of the integrand in complexφ plane and deform
the contour of integration appropriately to avoid the oscillatory behavior of the integrand. In terms
of the now complexφ ≡ u + iv the integrand in Eq. (4) becomes

Gn =
2

π
√

XX ′ Re

∫ π/2

−π/2

e2inφ dφ√
ρ̂2 + sin2 φ

, (23)

=
2

π
√

XX ′ Re

∫ π/2

−π/2

e2in(u+iv) dφ√
ρ̂2 + (sinu cosh v − i cosu sinh v)2

. (24)

Within the range of interest,−π/2 < u < π/2, the relevant branch points occur atu = 0, v = ±v0

where

v0 = sinh−1 ρ̂. (25)

The corresponding branch cuts are chosen as shown in Fig. 6. Also shown is the deformed the
contour of integration chosen to be in the upper half plane to ensure that the integrand vanishes
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whenv → ∞. The contributions along the segmentsu = ±π/2, 0 ≤ v ≤ ∞ cancel each other (a
consequence of our choice of the integration range from−π/2 to π/2), and there is no contribution
from the branch point, so we are left with equal contributions from both sides of the branch cut
along the positive imaginary axis,

Gn =
4

π
√

XX ′ Re

∫ ∞

v0

i e−2nv dv√
ρ̂2 − sinh2 v

. (26)

Settingv ≡ v0 + z/2n this becomes

Gn =
2e−2nv0

nπ
√

XX ′

∫ ∞

0

e−z dz√
sinh2(v0 + z/2n)− ρ̂2

, (27)

=
2e−2nv0

nπ
√

XX ′

∫ ∞

0

e−z dz√
(2ρ̂2 + 1) sinh2(z/2n) + ρ̂(ρ̂2 + 1)1/2 sinh(z/n)

, (28)

where we used Eq. (25). The integrand is now non-oscillatory and positive definite leaving the
residual of the cancellations, alluded to previously whennρ̂ is large, in the exponential factor,
e−2nv0 .

The expression in the square root in the denominator of Eq. (27) can be expanded in a power
series inz aboutz = 0. With ζ ≡ z/2n,

sinh2(v0 + ζ)− ρ̂2 = (2ρ̂2 + 1) sinh2 ζ + ρ̂(ρ̂2 + 1)1/2 sinh(2ζ) (29)

= Aζ

[
1 + Bζ + Cζ2 +

B

3
ζ3 + Dζ4+ (30)

+
2B

45
ζ5 + Eζ6 +

B

315
ζ7 + Fζ8+ (31)

+
2B

14175
ζ9 + Gζ10 + · · ·

]
, (32)

where

A ≡ 2ρ̂
√

ρ̂2 + 1, B ≡ 2ρ̂2 + 1
2ρ̂

√
ρ̂2 + 1)

, (33)

C ≡ 2
3
, D ≡ 2

15
, E ≡ 4

315
, (34)

F ≡ 2
2835

, G ≡ 4
155925

, (35)

usingcosh v0 =
√

ρ̂2 + 1.

Further analysis gives,

1√
sinh2(v0 + ζ)− ρ̂2

≈
(

2n

A

)1/2 1
z1/2

8∑

l=1

αl z
l−1, (36)
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where,

α1 = 1.0, α2 = − B

4n
, α3 =

1
4n2

(
3
8
B2 − 1

3

)
, (37)

α4 = − B

16n3

(
5
8
B2 − 2

3

)
, α5 =

1
16n4

(
35
128

B4 − 3
8
B2 +

1
10

)
, (38)

α6 = − B

368640n5

(
2835B4 − 4800B2 + 1984

)
, (39)

α7 =
1

61931520n6

(
218295B6 − 441000B4 + 254016B2 − 31232

)
, (40)

α8 = − B

49545216n7

(
81081B6 − 190512B4 + 141120B2 − 31744

)
. (41)

When substituted into Eq. (27) each term in the series can be expressed in terms of the gamma
function,Γ,

Gn ≈
2

[
ρ̂2 +

√
ρ̂2 + 1

]−2n

π
√

XX ′

(
2

nA

)1/2 8∑

l=1

αl Γ
(

2l − 1
2

)
, (42)

where we used

ev0 = ρ̂2 +
√

ρ̂2 + 1, (43)

and the gamma functions are evaluated fromΓ(p + 1) = pΓ(p) with Γ(1/2) =
√

π.

One can also numerically evaluate the integral Eq. (28) directly, but it’s first convenient to in-
troduce yet another change of variable,z = t2, so that

Gn =
4
√

2 e−2nv0

nπ
√

XX ′A

∫ ∞

0

t e−t2dt√
2B sinh2(t2/2n) + sinh (t2/n)

. (44)

where the constantsA andB are defined in Eq. (33). For̂ρ 6= 0 the integrand is well behaved and
is amenable to an appropriate quadrature scheme like for example Gaussian quadratures. Because
of the strong Gaussian decay of the integrand, sufficient accuracy can still be obtained in practical
applications if the range of integration is finite. Ifρ̂ << 1, one could devise methods to deal appro-
priately with the integration, but the recursion method, for example, is already suitably accurate in
that regime.

Numerical results from the eight term expansion, Eq. (42) and the integration of Eq. (44) where
a 64 point Gaussian integration is used in the ranget = [0, 7], are given in all of the tables. The
row labeled ‘high-n exp.’, andεtrap, is the result from the eight term expansion, and its relative
error compared with result from the trapezoidal rule. The row labeled ‘high-n Eul exp.’ indicates
the results from using Wijngaarden implementation of the Euler transformation to attempt to accel-
erate the convergence of the series [9] andεtrap is the relative error compared with the trapezoidal
method. The row labeled ‘Gauss’ is the result from the integration of Eq. (44);ng is the order of
the quadrature used. The relative errors compared with the results from the trapezoidal rule,εtrap,
and the series expansion Eq. (42),εexpan, are shown for this method. Evidently this integral rep-
resentation is valid over a wide range ofρ andn whereas as expected the expansion is valid only
for the subspace wherenρ̂ is at least moderately large. The strong Gaussian decay of the integrand
enabled the infinite range of integration to be curtailed to onlyt = [0, 7]. These points will be more
elucidated in the next section.
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7 Summary and conclusions

We have presented a variety of methods to calculate the two dimensional Green’s function that is
needed in Green’s second identity to evaluate the magnetic scalar potential in the vacuum region
in tokamak geometry. [1, 5]. This was motivated by the shortcomings uncovered when the original
algorithms failed when benchmarking theGATO MHD [2] code with the moderately high toroidal
mode number,n, calculations of theELITE code. [6,7] The highly numerically efficient algorithms
that were used previously depended on an upward recursion relation inn that was initiated from the
elliptic integrals of the first and second kinds. These were calculated using polynomials approxi-
mations found in [8] that were accurate toO(10−8). The much more accurate iterative algorithms
of [9, 10] postponed the unacceptable loss of digits due to the recursion relation to a moderately
higher value ofn but the recursion still ultimately failed. These observations depend strongly on the
value ofρ̂, the normalized distance between the source and observer points in the two dimensional,
(X–Z), space, with the unacceptable breakdown of the recursion method occurring whenρ̂ ∼ 1 for
n ∼ 5− 10.

One alternative method to calculateGn to complement the accurate evaluations offered by the
recursion methods at smallnρ̂ was to integrate the Green’s function Eq. (4) directly using appro-
priate techniques to deal with the singular behavior of the kernel, and maintaining its periodicity
to take advantage of the unique accuracy offered by using the trapezoidal rule for the quadratures.
This enabled us to attain near machine accuracy (∼ 12 − 16 digits) whennρ̂ . 10. Beyond these
ranges ofρ̂ andn the algorithm begins to be compromised in accuracy because the integrand on
Eq. (4) becomes highly oscillatory and tends to almost constant amplitude. The almost equal con-
tributions of the positive and negative contributions of the integrand again result in an unacceptable
loss of digits. To avoid this, the oscillatory behavior of the integrand is suppressed by deforming the
contour of integration into the complexφ plane so that the integrand instead decays exponentially
and the resultant of the aforementioned cancellations is explicitly factored from the (now positive
definite) integrand of Eq. (44). This is reminiscent of a combination of the well known constant
phase and saddle point methods in the evaluation of integrals. Evaluation of the ensuing integral
over a suitable finite range[0, 5] using a 32 point Gaussian quadrature is more than sufficient to pro-
vide near machine precision accuracy for any practical value ofn over a large range ofnρ̂. A more
precise 64 point quadrature over[0, 7] was also incorporated. At largenρ̂ an analytical evaluation
of the integrand to an eight term series expansion of the integral provides an accurate check and
an even more numerically efficient scheme for obtainingGn. This can of course be generalized to
include more terms in the series, thereby increasing the range of applicability as needed.

There is a great deal of overlap in the parameter space ofρ̂–n where the various methods of
evaluatingGn may be acceptably accurate. In practice, the recursion method can be used for low
nρ̂ applications as is done at present - or perhaps a low order trapezoidal direct quadrature. For
moderately high values ofnρ̂ the trapezoidal method would suffice. For very high values of these
parameters the Gaussian method or the series expansion can be applied. A graphical depiction of
the accuracy properties is shown in the figures. In Fig. 7 are plotted lines of constant relative error,
ε = 10−6, in then vs. ρ̂ plane for various algorithms – trapezoidal (dotted line), the recursion (short
dashed line), the 8 term series series expansion of Eq. (42) (solid line), and the largeρ̂ expansion of
Eq. (20) withl = 10, (long dashed line). The arrow attached to each curve indicates the direction
where the relative error decreases from10−6. The dot-dashed line at upper right denotes where
the value of the integral approximately approaches the underflow limit,∼ 10−300. The recursion
method with the more accurate elliptical integral gives an accuracy of at least10−6 over most of the
region whennρ̂ . 6. The trapezoidal integration method offers the same accuracy fornρ̂ . 10.
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n ρ̂ trapezoidal, m recursion Gaussian

1 1.00E−01 ∼ 10−15, 64 −2.4E−15 −7.2E−13

2 5.00E−02 ∼ 10−16, 128 −1.8E−15 −7.0E−13

10 1.00E−02 ∼ 10−15, 256 −3.2E−15 −6.9E−13

20 5.00E−03 ∼ 10−15, 512 −4.2E−14 −6.9E−13

100 1.00E−03 ∼ 10−14, 512 8.2E−13 −6.8E−13

Table 7: Relative errors for the trapezoidal, recursion and Gaussian(32 pts) methods for various
values ofn andρ̂ keepingnρ̂ = 0.1. The number of grid points,m, for the trapezoidal method to
achieve the indicated accuracy is also shown.

On the other hand, analytically expanding and integrating Eq. (27) give the same accuracy when
nρ̂ & 4.

The much more accurate Gaussian integration of the new integral representation of Sec. 6 is
shown in then vs. ρ̂ plane of Fig. 8 over eight orders of magnitude inρ̂. The three straight lines
on the left show the results of using a Gaussian integration of Eq. (44). Dashed line:ε = 10−6

with 64 points over the range [0,7]. Solid line:ε = 10−9 using 64 points in [0,7], and this also
closely representsε = 10−6 for 32 points in [0,5]. Dotted line:ε = 10−9 using 32 points in [0,5].
In the same figure, the two lines on the right correspond toε = 10−9 for the trapezoidal (dotted
line) and recursion (dashed line) methods. The arrows indicate the direction where the relative error
decreases. The 64 point quadrature over the range [0,7] ensures an accuracy of better than10−9 for
nρ̂ & 2 × 10−3, and better than10−6 for nρ̂ & 3 × 10−4. The accuracy of the 32 point Gaussian
quadrature over the range [0,5] is better than10−6 for nρ̂ & 2 × 10−3, and better than10−9 for
nρ̂ & 1.5 × 10−2 over a range [0,5]. The accuracy of the Gaussian integration can be extended
over a wider domain if appropriate steps are taken to deal with the behavior of the integrand when
ρ̂ << 1.

A comparison of the relative error contours in Figs. (7) and (8) shows that the accuracy of the
these methods changes rapidly withnρ̂. A further comparison of the error contours in Fig. 8 enables
us to obtain the prescription for perhaps the most accurate calculation ofGn over the whole range
of n andρ; since there is considerable overlap between these methods, one could use the recursion
or trapezoidal method for, say,nρ̂ < 10−1 and the 32 points Gaussian method fornρ̂ ≥ 10−1. This
will easily ensure a relative error of better than10−12 for all nρ̂ in the practical ranges of interest.
Indeed, as shown in Table 7, the relative error with1 < n < 100 along the line wherenρ̂ = 10−1

is < 10−13 for the trapezoidal method,< 10−12 for the recursion method, and< 10−12 for the
Gaussian integration of Eq. (44).

The Greens functionGn(ρ̂) is directly related to the associated Legendre functions of the first
kind Pn

−1/2(s). We have shown this relationship by the equivalence between the natural variableρ̂
of our cylindrical geometrical space and the natural variable,s, rooted in spherical coordinates. This
enabled the new integral representation that was derived forGn(ρ̂) to be carried over toPn

−1/2(s),
and then generalized forPn

ν (s). This relationship enabled use of well known properties of the
Legendre functions to be directly applicable toGn(ρ̂).
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A Relationship to the associated Legendre functions

In order to make this work relevant to a broader context the connection of the Green’s function
to the associated Legendre functions is shown in this Appendix. ExpressingGn in terms of the
associated Legendre function of the first kind enabled the use of some of well known relations in
the application of the Green’s function used in theVACUUM code [5].

The two dimensional Green’s function in(X − Z) space is given by

Gn ≡ 1
2π

∮
1

|r− r′|e
in(φ−φ′) dφ′, (45)

where

|r− r′|2 = X2 + X ′2 + (Z − Z ′)2 − 2XX ′ cos(φ− φ′). (46)

An integral representation of the associated Legendre function as a function of its conventional
variables, which has its origins in spherical coordinates, is given by [15,16]

Pn
ν (s) =

Γ(ν + n + 1)
2πΓ(ν + 1)

∮ [
s +

√
s2 − 1 cos φ

]ν
einφ dφ. (47)

To expressGn in terms of this withν = −1/2, we set

X2 + X ′2 + (Z − Z ′)2 − 2XX ′ cosφ = f
[
s +

√
s2 − 1 cos φ

]
(48)

to solve fors andf and find that

s =
2ρ̂2 + 1

2
√

ρ̂2(ρ̂2 + 1)
=

2ρ̂2 + 1

2R̂2
= B, (49)

and f = 4XX ′ρ̂
√

ρ̂2 + 1, (50)

with R2 = 4XX ′√ρ̂2(ρ̂2 + 1) ≡ 4XX ′ R̂2. (51)

Using these relations, Eq. (45) becomes

Gn =
Γ(1/2− n)

π1/2R Pn
−1/2(s), (52)

where the reflection formula for the gamma function,Γ(z)Γ(1− z) = −zΓ(−z)Γ(z) = π csc(πz)
was used. A few other relations that occur between the variablesρ̂ ands are,

2ρ̂2 + 1 =
s√

s2 − 1
(53)

ρ̂2(ρ̂2 + 1) = R̂4 =
1

4(s2 − 1)
(54)

ρ̂±
√

ρ̂2 + 1 =
(

s± 1
s∓ 1

)1/4

. (55)

From the relations above, it is seen that0 < ρ̂ < ∞ maps onto∞ > s > 1.
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The Legendre functions for values ofn > 1 can be generated from the upward recurrence
relation,

Pn+1
−1/2(s) = − 2ns

(s2 − 1)1/2
Pn
−1/2(s)− (n− 1/2)2Pn−1

−1/2(s), (56)

or using Eqs. (52) and (53),

Gn+1 =
4n(2ρ̂2 + 1)

(2n + 1)
Gn − 2n− 1

2n + 1
Gn−1, (57)

for n = 1, 2, . . . and,

P 1
−1/2(s) =

1/2
(s2 − 1)1/2

{
P 0

1/2(s)− sP 0
−1/2(s)

}
, (58)

for n = 0. These are initiated by their relations to the complete elliptic integrals of the first and
second kinds,K andE, respectively:

P 0
−1/2(s) =

2
π

m
1/4
1 K(k), (59)

P 0
1/2(s) =

2
π

m
−1/4
1 E(k), (60)

where

k2 =
1

ρ̂2 + 1
, and m1 = 1− k2. (61)

Some of the relations used here can be derived from equations found in Erdélyi [16] and Abramowitz
and Stegun [8]. The latter reference also contains polynomial approximations for the elliptic inte-
grals which are accurate toO(10−8); for near machine precision the iterative algorithms of Bu-
lirsch [10] can be used instead.

The integral representation, Eq. (44) can also be expressed as a Legendre function. Using the
relations in Eq. (33) and in Eq. (49) to Eq. (55),Pn

−1/2(s) can be written as,

Pn
−1/2(s) =

2√
πnΓ(1/2− n)

(
s− 1
s + 1

)n/2 ∫ ∞

0

t e−t2 dt√
2s sinh2 (t2/2n) + sinh (t2/n)

, (62)

or,

Pn
−1/2(s) =

1√
πΓ(1/2− n)

(
s− 1
s + 1

)n/2 ∫ ∞

0

e−nt dt√
2s sinh2(t/2) + sinh t

. (63)

This last relation can be derived directly from the integral representation of Eq. (47) using a proce-
dure similar to the one described in Sec. 6, the essential difference being that the relevant branch
points within the range of integration,0 < u < 2π, occur instead atu = π, v0 = ±s/

√
s2 − 1.

Indeed, using this on Eq. (47) for arbitraryν (but ν > −1) and taking the discontinuity across the
branch cut properly into account, one can show that

Pn
ν (s) = (−1)n+1 Γ(ν + n + 1)

πΓ(ν + 1)

(
s− 1
s + 1

)n/2

sin(πν)×
∫ ∞

0

[
2s sinh2(t/2) + sinh t

]ν
e−nt dt. (64)
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Using the reflection formula for the gamma function, this simplifies to,

Pn
ν (s) =

1
Γ(ν + 1)Γ(−ν − n)

(
s− 1
s + 1

)n/2

×
∫ ∞

0

[
2s sinh2(t/2) + sinh t

]ν
e−nt dt. (65)

This constitutes a new integral representation of the associated Legendre function of the first kind
and properly reduces to that found in Eq. (63) whenν = −1/2.
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Figure 1: The integrand ofGn in Eq. (4) withρ̂ = 0.01 andn = 10.
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Figure 2: The regularized integrand of Eq. (5) withρ̂ = 0.01 andn = 10.
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Figure 3: The integrand ofGn showing the effect of the change of variableφ′ = φ− δ sin 2φ.
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Figure 4: The regularized integrand ofGn showing the effect of the change of variableφ′ = φ −
δ sin 2φ
.
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Figure 5: The almost constant amplitude of the integrand ofGn whenρ̂ = 0.7.
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over the range[−π/2, +π/2].
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