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Transport optimization in stellarators

H.E. Mynick

Plasma Physics Laboratory,

Princeton University

P.O. Box 451

Princeton, New Jersey 08543–0451, U.S.A.

A survey of the approaches which have been developed for mitigating transport in stel-

larators is presented. A primary deficiency of stellarators has been elevated transport levels

due to their nonaxisymmetry. Since the early 1980s, stellarator research has addressed this

difficulty, developing a range of techniques for reducing transport, both neoclassical and,

more recently, also anomalous. Several of these approaches are now being implemented in a

new generation of experiments in the US and abroad. This paper describes the fundamental

physics of these methods for transport reduction.

PACS #s: 52.55.Hc, 52.25.Fi
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I. INTRODUCTION

Stellarators have much in common with tokamaks, and some attractive features rel-

ative to them – disruption-free performance, and no requirement for current drive to

produce a rotational transform. However, a major drawback has been elevated levels

of neoclassical transport due to their nonaxisymmetry. Beginning in the early 1980s,

stellarator research has addressed this deficiency, developing a range of approaches

for stellarator “transport–optimization”, i.e., for mitigating stellarator transport, both

neoclassical and, more recently, also anomalous transport. Several of these techniques

for transport–optimization are now being implemented in a new generation of exper-

iments in the US and abroad.1–5 In this paper, we review the basic physics of these

transport optimization approaches.

In Sec. II we begin by introducing some useful notation, and discuss the range of

stellarators which exist, both in theory, and increasingly, in experimental implemen-

tation. These devices share features of their particle orbits and neoclassical transport,

and in Sec. III, we present an overview of these, to clarify the mechanisms producing

the undesirable enhanced transport levels. In Sec. IV, we then address the various

approaches which have been developed to mitigate this transport, and in Sec. V dis-

cuss methods more recently being uncovered to also reduce turbulent transport. A

summarizing discussion is given in Sec. VI.

II. PRELIMINARIES

Like a tokamak, a stellarator is a toroidal confinement device, with nested flux

surfaces and rotational transform � � ���. It is convenient to parametrize these toroidal
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devices with a coordinate system natural to the magnetic geometry, viz., with flux (or

magnetic) coordinates ��� �� ��. Here, ��� is the toroidal flux within a flux surface,

and with the pair of poloidal and toroidal angles ��� �� chosen so that the magnetic

field can be written in the Clebsch (contravariant) form

� � �� � �� � �� � ��� � �� � ���, with ���� the poloidal flux, Clebsch

angle �� � � � �� , constant along a field line, and � � ���	��. It is also useful to

define an average minor radius 
��� with units of length by � � ���

�	�, with �����

the magnetic field strength on axis (denoted by the subscript �), and ��� its average.

An important property of the guiding–center equations of motion in flux coordi-

nates is that they depend only on the magnitude � � ��� of the magnetic field,

and not on its individual components,6 giving it a central role in determining the

particle orbits in these coordinates. � may be written as a Fourier decomposition

���� �
�

�������
� ����
� ����, and for purposes of analysis modeled by

���� � ���
�	
� Æ��
� ��� Æ���� ��� ��� (1)

with ���
� � ������ � ����
� the flux-surface average of �. The axisymmet-

ric (
 � �) portion of this is given by the 
 � Æ� terms, with Æ� � ���
����� ��
��������	 ��� �����, toroidal amplitude ���
�, and ���� generalizing the ������-

dependence in a circular tokamak, in which case �� is the inverse aspect ratio 
	��.

One notes from this that �Æ�� � � � ������. Further requiring that, as for ��� �,

��� � �� � 
 fully specifies these quantities, with �� �
�

��������	 ���. The

nonaxisymmetric portion is represented by the term Æ� ��� �, with ripple amplitude

Æ� � ���
����� having flux-surface average ���
�, and modulating factor ����, al-

lowed to vary slowly over a flux surface. � � 
� � �� is the single ripple phase.

While this nonaxisymmetric term is not fully general, it captures the features of most
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stellarators of interest, including those discussed here. In fact, most of analytic stellara-

tor neoclassical (nc) theory was developed using the more specialized case ���� � 


of no ripple modulation, i.e., Æ� � �Æ�� � ���
�.

Because of their 3D character, there are many more different types of stellarators

than tokamaks. The essential features of the shape of existing tokamaks may be de-

scribed by a handful (� 
) of shape parameters, including the aspect ratio � � ��	��,

the ellipticity, and triangularity. (Here, �� is the major radius of the magnetic axis,

and �� the minor radius on the midplane.) For stellarators, numerical optimizers which

have been used to design recent experiments have typically used several tens of shape

parameters. In Fig. 1 a small illustrative sample of 6 configurations of interest is

shown, plotting field strength ���� along a field line for one poloidal transit. These

are shown in order of increasing value of � � ��	��, a measure of the distance of the

configuration from the 2 symmetric limits �� � � (axisymmetry) and �� � � (helical

symmetry). Thus, in Fig. 1(a) is shown a tokamak, having � � �. Fig. 1(b) shows

the ���� profile for the National Compact Stellarator Experiment (NCSX),4 a quasi-

axisymmetric (QA) stellarator now under construction, which has � � 
. Removing

from this all ��� for 
 	� � results in the “equivalent tokamak” for NCSX shown in

(a). In (c) is ���� for the Large Helical Device (LHD)1 in its “standard” configua-

tion (�� � ���
m), having �� � �� and Æ� nearly constant on a flux surface. Most

of stellarator nc theory was developed assuming a ���� profile of this “conventional

stellarator” form. In (d) is the profile for the Columbia Non–neutral Torus (CNT)

experiment.7 This configuration is not transport-optimized, but is the first in this se-

quence manifesting an appreciable modulation of Æ� with �. Still greater modulation is

apparent in (e), the profile for LHD in an inward-shifted configuration8 (�� � ��
�m),

an example of a “quasi-omnigenous” (QO) or “quasi-isodynamic” (QI) configuration,
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where (as will be discussed) the modulation is central to its good confinement charac-

teristics. The Wendelstein-7X (W7X) experiment2, now under construction, and the

Quasi-Poloidal Experiment (QPS)5, now in its final design phase, will be 2 additional

representatives of this class of stellarators. Finally, in (f) is a profile approximating that

in the quasi-helical (QH) Helically Symmetric Experiment (HSX)3, which has �
 
.

III. NEOCLASSICAL TRANSPORT

While there is a wide spectrum of stellarator types, they have in common many

features of their particle motion, and of the resultant nc transport. There is a large

literature developing the theory of nc transport in toroidal systems. The reader inter-

ested in the detailed analytic development of this theory is referred to reviews9–13 of

the subject. Our purpose here is to provide a summary of those results relevant to the

issues in the optimization of stellarator transport.

In Fig. 2 is an overview of stellarator nc theory, showing the 4 basic “branches”

which contribute to the transport in a stellarator. There are 2 symmetric branches

(blue and green curves), and 2 nonsymmetric branches (red and black curves). Plotted

is radial diffusion coefficient � versus central electron density 
��, proportional to

collision frequency �. The branch to which the coefficient belongs is indicated by a

superscript, and the particular collisionality regime within that branch is indicated by

a subscript.

For an axisymmetric (AS) system (�� � �), such as that in Fig. 1(a), only the blue

curve (superscript ��) is nonvanishing. This is the familiar profile for a tokamak,9,10

with the banana regime (��	

�) at lowest collisionality, turning over into the plateau

regime (��	
�� ), and the Pfirsch-Schlüter regime (��	

�	) at still higher �. At low �, the
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dominant contributors to transport here are toroidally–trapped “bananas”, which make

a radial drift excursion (“banana-width”) �
� in the course of a bounce.

The green curve (superscript ��) is the only nonvanishing branch for helically sym-

metric (HS) systems (�� � �), such as that approximated by Fig. 1(f). The dominant

low-� contributors to transport here are ripple–trapped bananas, making drift excur-

sion �
�. One notes it has the same form as that for the AS branch, with its own banana,

plateau, and Pfirsch-Schlüter regimes.14 A difference between the 2 curves, however,

is that the HS branch is typically much smaller than the AS one, essentially because

�
� in a tokamak is large compared with �
� in a HS system. This has the notable con-

sequence that transport-optimized stellarators can have nc transport levels much lower

than those for a tokamak of the same aspect ratio and rotational transform.

The red curve, dominant at low �, is the “superbanana” branch (superscript ��).

This branch is due to ripple-trapped particles which acquire nonzero bounce-averaged

radial drifts ��
 when �� is turned on from a HS system, e.g., when a “straight” stellarator

is bent into a torus. (The superbananas are the trajectories traced out by particles which

are ripple-trapped over at least some portion of their orbits.)

Finally, the black curve is the “banana-drift” branch (superscript ��).15–17 In a

manner complementary to the �� branch, the principal contributors to this branch

are toroidally-trapped particles which acquire nonzero bounce-averaged radial drifts

��
 when an AS system is perturbed, i.e., when �� is turned on.

The dominance of the �� branch at low � is typical for most stellarator parameters,

and is thus the principal mechanism which has been addressed by efforts at transport-

optimization. The �� branch is typically smaller, as in Fig. 2, but can be significant

for energetic particles. The �� branch is comprised of 2 main collisionality regimes,

one at very low collisionality (��	�� � 
), in which � increases as a positive power
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of �,18,19 and the other valid for ��	�� � 
, in which � declines as 
	� (the well-

known “
	�-regime”20–23), the two meeting at the peak seen in Fig. 2. Here �� �
�	����� is the frequency (inverse time) for a particle to collisionally detrap from a

ripple well, and �� �
��� is the poloidal precession frequency, produced by the  � �

and grad-� drifts,�� � ��
���� , in which��
 � �� �	 ��
 typically dominates for

thermal particles. In order of increasing �, the �� regimes in Fig. 2 are given by�	

�
�

!��������
����"���	�

�

�, �
	

��� � !����

���"���	�
���
� , and �	


�� � !�������
���"���	�. with

!� numerical coefficients obtained from a full kinetic treatment, and � � 
� 
	���

the power of � appearing in the specified �	


� .

A superbanana’s radial drift has the form ��
 � "�� ��� �, and its poloidal precession
��� � ��
 is roughly constant. This results in a collisionless superbanana orbit which is

circular in flux coordinates, displaced from a flux surface 
 �const by a “superbanana

width” �� � "��	��. Here "�� � ��"��, with "�� � # ��	�$��
�, magnetic moment

#, particle mass $ , and gyrofrequency ��.

For ��	�� � 
, the rough form of the collisionless superbanana persists, but colli-

sions perturb the orbit, causing its radial position to wander, analogous to the wander-

ing of bananas for the banana regime. At higher � (��	�� � 
), a particle collisionally

detraps after tracing out only a fraction of a full poloidal drift period, making a radial

step �� � "��	��, resulting in the 
	� regime.

As described more fully elsewhere,12,24 the transport coefficients for the �	

� given

above may be obtained by making use of the heuristic formula � � % ���� for dif-

fusion coefficient �, where % is the fraction of particles participating in the random

walk process in question, the particles taking radial steps � at stepping frequency ��.

For example, for the 
	� regime, % is the fraction %� � �����
��� of ripple-trapped

particles, � � �� , and �� � ��. Putting these in the heuristic expression for � yields
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�	

��, up to a numerical factor.

The �	

� above hold for velocity-space shells of particles with constant kinetic en-

ergy & �  � '�, with � the electrostatic potential. To compute the radial particle

(heat) flux �	 ((	) for species �, one integrates over& ,
�
� �	

(	

�
� � ��
	�

�

�
������'��

�
� 


)	�

�
������

�

�	

	
� '	 �

)	
� ��� �

�

) �
	

)	
�

�
� (2)

where � � &	)	. We shall have use for these expressions in Sec. IV IV B.

IV. OPTIMIZATION OF NEOCLASSICAL TRANSPORT

A list of the approaches which have been developed is given in Table I. Experi-

mental realizations of the concept, either operating or planned, are noted in the right

column, in parentheses when the realization was not a fundamental part of the ma-

chine design. In this section, we discuss the nc methods, and the turbulent methods in

Sec. V. The former list is much more developed, largely because the nc issue has been

addressed for far longer than the turbulent one.

The basic objective of nc optimization is to reduce the radial excursion of problem-

atic particles, of which the most troublesome are superbananas, as discussed. Since

�� width �� scales as ��
	��, one may hope to reduce �� either by decreasing ��
, or by

increasing ��. All of the nc optimization approaches listed in Table I fall into one of

these two categories.

The grad-� and  �� drifts producing ��
 and �� may be written �� � �� ��
 �

���	$�����* , with * ��� � #� � '�. From these, one finds

�� � �� 
 �� � ��	'�+��*� ��� � ��� 
 �� � ���	'�+�*� (3)



9

which manifest a canonically conjugate structure. Making use of the bounce action

,��� ���#� � � ������
�
��$"���� (with � the arc length along a field line), one

obtains bounce-averaged expressions for these:

��� � ���	'�+��,	+
, � ��	'�+��-� ���� � ��	'�+�,	+
, � ���	'�+�-� (4)

which also display the conjugate structure. (H is the Hamiltonian.) From these one

may compute

��
 � ��
	������ � ��
	�����	'�+�* �
��� � ���� � ���
	�����	'�+�* � (5)

A. Optimization by reduction of ���

In 1968 Palumbo pointed out25 that if one could create a configuration having �

a function of � only, � � ����, then [neglecting � in Eqs.(3)] �� � �. Such con-

figurations he termed “isodynamic”. However, toroidal isodynamic configurations do

not exist, since these must have nonzero curvature ���� � .�� at some points along

their magnetic axes, and at those places, � must have a cosinusoidal �-dependence,26

� � ���
 � .� �������, with � � ��������� the distance from the axis to a point �

on flux surface � in the local major radial direction �� � ���.

A weaker version of this notion was advanced by Hall and McNamara27, inves-

tigating mirror equilibria. They found configurations for which , � ,���, so that

from Eq.(4a), ��� � �. Such configurations they termed “omnigenous”. In contrast

to isodynamic configurations, examples of toroidal omnigenous configurations do ex-

ist. Indeed, for any symmetric system, where � depends on only one of the 2 angles

parametrizing a flux surface, , will be a function of � alone, and thus have ��� � �.

Thus, tokamaks and straight stellarators are omnigenous.
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In 1983 Boozer noted28 that if a system has a symmetry in flux coordinates, its

particle orbits and transport are “isomorphic to” those of any other symmetric sys-

tem, regardless of their appearance in real space. That is, the orbits and transport

coefficients in one system may be gotten from those of the other by a simple param-

eter mapping between the two. This general observation set the stage for the discov-

ery by Nührenberg and Zille29 of the first QH configuration, a toroidal configuration

approximately possessing the symmetry � � ���� �� in flux coordinates of a gen-

uinely straight stellarator. This was followed some years later by the discovery by

Nührenberg, et al.30 and Garabedian31 of QA configurations, approximately possess-

ing the symmetry � � ���� �� of a tokamak, while being fully 3D in real space.

We sketch the means by which shaping can produce QA symmetry in a 3D stellara-

tor. Consider an� � � stellarator. At lowest order in an expansion about the magnetic

axis, such a device has an elliptical cross section, which deforms as one moves in �

(while keeping the same area, for flux conservation and �-independence of ��), and

thus, the minor radial scale factor �� has a � dependence. If .��� is varied so that

.�������� � const, the above expression for � will also be independent of � , as de-

sired. The maintenance of this �-independence at higher order is complicated, but can

be approximately achieved numerically in the automated optimization codes used to

develop modern stellarator designs.

Another quasisymmetric (QS) system one might seek is one with QP symmetry,

for which � � ���� ��, and with this as a goal, the QPS design has achieved excel-

lent neoclassical confinement properties. However, due to the same ��� �-dependence

noted above for � in regions of nonzero .���, configurations having QP symmetry

everywhere do not exist. Instead, in common with the W7X QO/QI design, the QPS

device achieves good QP symmetry in low-field straight segments (. � �), connected
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by higher-field, large-. bends, where the �-dependence is appreciable. Thus, QPs are

actually members of the QO/QI family of stellarators, to which we now turn.

In contrast to the concepts discussed to this point, a quasi-omnigenous (QO) or

quasi-isodynamic (QI) device is non-symmetric, even in flux coordinates. (The terms

QO and QI are equivalent, though the terms omnigenous and isodynamic are not,

as discussed earlier.) Instead, it reduces ��
 by the near-cancellation of the usual Æ�

term in Eq.(1) which yields ��
 by a second term, arising from the modulation ����

over a flux surface of ripple strength Æ�. The original QOs32 were members of the

“!-configuration” family of model fields, for which � was approximately given by

����!� � �
 � ! ��� ��, and ���� � ��� �. For ! � �, Æ� � �� has the unmodu-

lated form of a conventional stellarator (Fig. 1c), while for ! � �, the ripple is lo-

calized toward the inboard side of the torus, characteristic of QOs, such as in Fig. 1e,

and of “Meyer-Schmidt” (MS) configurations.33 Those earlier non-transport-optimized

configurations sought to minimize the equilibrium shift at higher / by reducing the

Pfirsch-Schlüter currents. This was achieved by localizing Æ� toward � � � in such

a way that the Æ� term in Eq.(1) was approximately eliminated. For QOs, the Æ� term

must not be eliminated – it is the balance between it and the Æ� contribution which

reduces ��
. A first concrete realization of the QO/QI approach was given in the first

“helias” configuation,34 a forerunner of the W7X design.

Using Eq.(1) in (5a), one finds ��
 � �"��	+�Æ� � �+�Æ����� �� � "�� ��� ���� �
!����� ��, where the second form specializes the first to the !–model. Here, ��� � is

the bounce average of ��� �, and we have used the fact that ��� � � �. The 2 terms

contributing are apparent in both forms. For !���� � � 
, one sees that the new,

second term in the second form cancels the conventional first term (� ��). However,

��� � depends upon the well-depth parameter 0 � 	&	# �� � 
 � ������ � Æ��	��Æ��,
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equal to 0 for particles most deeply ripple-trapped and 1 for those marginally trapped.

Thus, this cancellation will only hold for particles with a single 0. This is the “quasi”

aspect of “quasi-omnigenous”. One chooses !� so that ��
 � � for particles with 0 in

the most troublesome range, namely deeply-trapped particles, for which ��� ��0� �

� �0����	1�0����� 
 � 
. (Here, 1 and  are the complete elliptic integrals.) Near

that 0, while not precisely 0, ��
 is still small, which is adequate to reduce the overall

� � ���
�� by a factor of 10–30.32

We note that QO configurations can continuously approach QH ones, which are

genuinely omnigenous, by having ! � � while � � � in such a way that !� �

const. Thus, the QO subspace extends the QH subspace of transport-optimized con-

figurations, by relaxing the requirement of full omnigenity.

Other interesting extensions of the transport optimized concepts discussed thus far

have also been discovered. One is the “isometric”,35 or “approximately omnigenous”36

concept. For these, requiring that , � ,��� for almost all particles results in the

“isometry condition”, that the length along � between any 2 contours with constant

� � ��� is a constant (i.e., independent of ��). This is trivially satisfied for sym-

metric configurations, but remarkably, nonsymmetric configurations exist which also

approximately satisfy it. Interestingly, while particles accordingly have ��� � �, their

banana widths and shapes vary with ��. Another extension is the “pseudosymmetric”

family of configurations.37 For these, only sufficient closeness to a quasisymmetry is

required that the ripple wells along field lines are eliminated. In achieving this, the

�� mechanism, usually dominant, is eliminated, leaving only the less problematic ��

mechanism. To our knowledge, no experimental implementations of these extensions

have yet been designed, presumably because the transport reductions achieved with

the other concepts already appears adequate.
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B. Optimization by enhancement of ��

In steady-state, a toroidal magnetic confinement system must satisfy the “ambipo-

larity constraint”

� �
	
	

'	�	� (6)

so that the system does not continue to charge, changing ��
�. The symmetric-branch

contributions to these fluxes are “intrinsically ambipolar”, i.e., satisy Eq.(6) indepen-

dent of  ��
�, a property stemming from conservation under collisions of the mo-

mentum conjugate to the symmetry direction. The nonsymmetric transport channels

derive instead from momentum exchange between particles and the magnetic field of

the system itself, and so are not intrinsically ambipolar. Thus, if the ion and electron

fluxes initially differ,  � will change until condition (6) is satisfied. Neglecting in ad-

dition the �� contribution, the full fluxes in Eq.(6) may be replaced by the �� fluxes,

expressions for which were given in Sec. III. One notes that  � enters Eq.(2) there

in 2 places, through the thermal–force term 	
�		
	 � ����, and through the diffusion

coefficients ��.

If the plasma initially has  � � �, both ions and electrons will be in the 
	�

regime, so that, since ����	���� � $
���
� 	$

���
� 
 
 for )� � )�, the ions will

leave the system more quickly, producing a negative  �, increasing in size until (6) is

satisfied, with the ions in the �� or ���� regime. This root, called the “ion root” ��, was

the first solution of Eq.(6) discovered.18 Subsequently, it was recognized that multiple

roots of this condition exist.38 Keeping only the �� branch contributions, it was found

that there are 2 additional roots to Eq.(6). (See Ref. 38 for a diagrammatic means

of understanding this.) When parameters are such that all 3 roots are real, the 2 new

roots are an intermediate one,  ��, unstable to fluctuations in  �, and a second stable
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root, called the “electron root”  ��, positive and typically large compared with � ���,
in which the ions hold in the electrons. For )� � )�, both �	 and(	 are typically much

smaller than at  ��, thereby reducing transport via electrostatically enhancing ��.

The electron root has been observed experimentally on several machines39–41 using

electron cyclotron heating (ECH), and on LHD42 using neutral beam injection NBI

heating. The ECH experiments achieved  �� by producing elevated electron transport,

thereby removing the potential advantage of the root. The NBI experiment accessed

 �� with )� � )�, and improved confinement of both species was observed.

The values of the roots ��������� of (6) depend upon plasma profiles such as density

and temperature, which vary with radius 
 and time 2. These profiles in 3D systems

thus provide extra “knobs” not present in AS systems, giving one control over the

 ��
� profile, and the resultant plasma flows. Note that controlling  � in this way

does not require strong ripple – the nonsymmetric fluxes may be small compared with

the symmetric nc or the turbulent ones.

Condition (6) is radially local, providing a set of roots  �� at each 
 and time 2,

but is insufficient to describe what happens when there is a jump between roots at 2

neighboring radii, or when  � is not at one of the roots, so that the system is evolving

in time. A partial differential equation for  �
� 2� is required for this. Such a p.d.e.

was developed in Refs. 43,44, of the form

+�	3
 �� � �* ����+��*
��
+� �� �

�
	 '	�	,

with 3
 a constant, and �
 the “electric diffusion coefficient”, which determines the

scale over which root jumps take place. In steady state and away from radii where

root-jumping occurs, only the final term survives, recovering Eq.(6). We return to

root-jumping in Sec. V.

The discussion thus far has been concerned mainly with the transport of thermal
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particles, but the confinement of energetic ions, such as neutral beam or � particles,

is of course another important confinement constraint. Some design features which

improve thermal confinement, notably the reduction of ��
, will also tend to improve

energetic particle confinement. However, there are some important differences be-

tween thermal and energetic confinement so that, for example, NCSX has much lower


	� transport than W7X, but a reactor-size W7X has much better � confinement than

NCSX. (This is not a generic difference between QAs and QOs. For example, in the

ARIES-CS QA reactor design, a descendant of NCSX, the � confinement approaches

that of W7X.45 The properties of these systems are still evolving.) One difference is

that energetic particles are highly insensitive to the electrostatic potential �. Thus,

the form of their orbits is determined entirely by the structure of ����. Also, ener-

getic ions are almost collisionless, so the full form of their collisionless trajectories

are essential to their confinement characteristics. Thus, enhancement of ��
 is of no

use for energetic confinement, and devices must be designed to provide a magnetic

counterpart ��� � +�� in its place. Thus, for example, the alpha loss fraction in a

reactor-size W7X improves dramatically46 as / is raised from 0 to 4%, as the plasma

digs a magnetic well, enhancing ��� .

V. OPTIMIZATION OF TURBULENT TRANSPORT

The approaches discussed up to now can reduce nc transport to levels below that of

turbulent transport, so in recent years, reducing turbulent transport has also become of

interest.

In tokamaks, internal transport barriers (ITBs) have been produced, in which a

strong flow shear47 suppresses the microturbulence, and stellarators with adequate qua-
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sisymmetry may be able to induce ITBs in similar fashion. Additionally, however, the

nonsymmetric transport channels in stellarators provide a means for producing the

requisite shear in  � and resultant flow-shear not available to tokamaks, e.g., from

jumps between the ion and electron roots. Such root-jump-induced ITBs have been

experimentally observed on W7AS48, LHD49, and on CHS50.

A second, more general strategy for mitigating turbulent transport is by controlling

the shaping of the device. While tokamaks and stellarators conform to quite simi-

lar empirical transport scaling laws51, the normalization factor multiplying the energy

confinement time 4
 is device-dependent.52 This may be expected, since a stellara-

tor’s shape determines factors which strongly influence the microstability of the de-

vice, such as global and local shear, locations of good and bad curvature, locations of

trapped particles, as well as its equilibrium flows, and these will affect the character

of the turbulence the device supports. Interestingly, those devices which have some

neoclassical optimization, such as W7AS and the inward-shifted LHD, also tend to

have lower anomalous transport.52 Recent work on this53,54 suggests this correlation is

not coincidental, arguing that lower nc transport implies smaller in-surface viscosities,

implying less damping of zonal flows, and thus stronger suppression by them of the

turbulence.

Another mechanism by which shaping may be able to reduce anomalous trans-

port is described in Ref. 55. There, it is shown that a turbulent spectrum can pro-

vide an anomalous increment ��� to the collisional particle pitch–angle scattering,

��� � � � ���. As confirmed by guiding-center simulations, for particles in a neo-

classical regime (such the 
	� regime) where diffusion falls with increasing �, this

increment can reduce, rather than enhance, overall radial transport, contrary to our

usual tokamak-based intuitions. The size of this effect depends upon the structure of



17

the modes comprising the spectrum, which in turn depends upon the plasma shape.

VI. DISCUSSION

The evolution of many of the nc concepts described here may be seen as an effort to

enlarge the space of earlier optimized configurations, by relaxing an optimization prin-

ciple while not sacrificing too much in transport. For example, the space of toroidal

isodynamic configurations is null, properly contained within the non-null space of

toroidal omnigenous configurations. Weakening the real-space symmetry required for

omnigenous configurations to only approximate symmetry in flux coordinates further

enlarges the space to QS configurations. And requiring ��
 � � for only the most trou-

blesome particles further extends the QS space to that of QOs. For each of the 3 general

nc mitigation approaches, viz., QS, QO/QI, and �� enhancement, experiment already

indicates that the technique is helpful – for the QS approach, on the HSX stellarator,

for the QO approach, on LHD and CHS in their inward–shifted configurations, and for

�� enhancement, on a range of stellarators, both optimized and not. Further test and

refinement of these methods will be possible as new experiments implementing them

become operational. The set of nc mitigation approaches which have been discussed

permit reducing stellarator thermal nc transport to levels where it is subdominant to

turbulent transport over the full plasma column for typical operating temperatures. At

the same time, the non-intrinsic ambipolarity of the nonsymmetric fluxes, even when

small compared with the turbulent ones, gives stellarators added control over the  �

profile, helpful for control of the plasma flow and turbulent transport.

The development of turbulent mitigation methods is now in its early stages, perhaps

analogous to the situation for nc mitigation in the early 1980s. As then, the numerical
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tools needed to effectively study the effects on transport of different stellarator designs

are now becoming available, currently including linear stability, nonlinear simulation,

and optimizer codes valid for stellarators. Explorations using these tools should pro-

vide a growing list of techniques for turbulent optimization.
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Optimization method Realization

Neoclassical optimization

Reduction of ���

Quasi-helical (QH) HSX

Quasi-axisymmetric (QA) NCSX

Quasi-poloidal (QP) QPS

Quasi-omnigenous (QO) / W7X, (inward–

Quasi-isodynamic (QI) shifted LHD, CHS)

Isometric/Approx. Omnigenous —

Pseudo-symmetric (PS) —

Enhancement of ��, via ambipolar roots (CHS, W7AS, LHD, TJ-II)

Enhancement of ��, magnetic (W7X at � � ���, heliotrons)

Turbulent optimization

ITBs via root-jumping (W7AS, LHD, CHS)

Turbulence modification from shaping —

TABLE I: Transport Optimization Methods
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FIG. 1: Profiles of ���� along a field line for one poloidal transit, for 6 toroidal configurations

of interest: (a)tokamak, (b)NCSX, a quasi-axisymmetric stellarator, (c)LHD in “standard”

configuation (�� � ��	
m), (d)CNT, (e)LHD in an “inward-shifted” configuation (�� �

��
�m), (f)HSX, a quasi-helical stellarator.
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