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Double Gap Alfvén Eigenmodes: revisiting eigenmodes interaction with the

Alfvén continuum

N. N. Gorelenkov

Princeton Plasma Physics Laboratory

P.O. Box 451, Princeton, NJ 08543-0451.

A new type of global shear Alfvén Eigenmode is found in tokamak plasmas where the

mode localization is in the region intersecting the Alfvén continuum. The eigenmode is

formed by the coupling of two solutions from two adjacent gaps (akin to potential wells) in

the shear Alfvén continuum. For tokamak plasmas with reversed magnetic shear it is shown

that the toroidiciy-induced solution tunnels through the continuum to match the ellipticity-

induced Alfvén eigenmode (TAE and EAE, respectively) so that the resulting solution is

continuous at the point of resonance with the continuum. The existence of these Double Gap

Alfven Eigenmodes (DGAEs) allows for potentially new ways of coupling edge fields to the

plasma core in conditions where the core region is conventionally considered inaccessible.

Implications include new approaches to heating and current drive in fusion plasmas as well

as its possible use as core diagnostic in burning plasmas.

I. INTRODUCTION

It is known that in toroidal plasmas, ideal magnetohydrodynamic (MHD) equations possess

global solutions associated with gaps in the shear Alfvén continuum [1–4]. Each gap plays the

role of an effective potential well for the global eigenmode solution that is produced by the cou-

pling of poloidal harmonics due to either toroidal tokamak geometry or the noncircularity of its

cross section. Normally global solutions are localized within one gap and it is generally believed

that if the mode is propagating from the gap to the continuum it is strongly damped due to the in-

teraction with the absorbing layers at the resonances with the continuum [3–5]. This assumption is

fundamental to the current understanding of global Alfven eigenmode solutions in fusion plasmas.

In this paper we show that this commonly held view is incorrect in certain plasma regimes with

important implications for fusion scale experiments. A new type of global shear Alfvén Eigen-

mode (called Double Gap Alfvén Eigenmode or DGAE) is found when two gaps are separated by
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a continuum associated with only one poloidal m ≡ ms harmonic, where it has a singular point.

This situation is particularly important for stellarator configurations where it is assumed that global

mode solutions are suppressed due to coupling between modes with different toroidal mode num-

bers [6]. In tokamak plasmas it is also common to have radial continuum patterns that would

conventionally be considered to prevent the establishment of global eigenmodes [3, 4]. Damping

on the continuum may affect the stability of shear Alfvén eigenmodes in a tokamak reactor, which,

in turn, affects the confinement of energetic fusion products, α-particles. Also the absorbtion by

the continuum prevents externally excited low frequency Alfvén waves from being used for plasma

heating and current drive as only the plasma periphery is affected [7, 8]. By contrast DGAEs can

potentially couple the plasma edge to the core with implications for fast ion transport, heating and

current drive, and the use of external antennas as a diagnostic of the plasma core.

The DGAE can be understood by analogy to the Shrödinger equation with two adjacent poten-

tial wells [9]. The only difference is that in our case two solutions are separated by a potential

barrier with an absorbing layer where if any combination of the single well solutions has finite

amplitude at that layer then the mode is damped. Qualitatively a nondamped eigenmode solution

can be constructed since we require that the continuum is described by the singularity of only one

harmonic at a given radial location. If the singular harmonic has a node at the point of its singular-

ity then an undamped global eigenmode can exist. This will be confirmed by detailed numerical

analysis hereafter.

In a tokamas plasma one well known example of the gap eigenmode is the toroidicity-

induced Alfvén eigenmoded due to coupling between m and m + 1 poloidal harmonics. This

coupling produces localized solution (Toroidicity-induced Alfvén Eigenmodes - TAE [1]) at the

q = (2m+1)/2n surface, where q is the safety factor and n is the toroidal mode number. Another

kind of gap in the Alfvén continuum is due to the ellipticity-induced coupling, which results in

the Ellipticity-induced Alfvén Eigenmodes (EAEs)[2] (see also Noncircular Alfvén Eigenmodes

- NAEs[10]). Within the ideal MHD framework the interaction with the continuum and thus its

contribution to the damping rate can be calculated by making use of the perturbation technique,

which requires that the damping rate is smaller than the mode frequency [4]. A kinetic treatment

of this problem is possible by including finite Larmor radius effects in order to resolve the nonideal

resonant layer in which the kinetic shear Alfvén wave absorbs energy propagating from the ideal

region [5]. For weakly damped EAE/TAE solutions to exist, the mode radial structure should be

in the evanescent (low amplitude) region where it resonates with the continuum in order for the
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Figure 1: Shear Alfvén continuum for n = 8 in the reversed shear plasma with the safety factor profile

shown in Figure 2. EAE, TAE and BAE gaps are indicated. The DGAE solution radial extension is shown

for the mode frequency Ω2 = 4.8.

damping rate to be weak.

The particular case considered in this letter corresponds to a tokamak plasma with reversed

magnetic safety factor profile. The shear Alfvén continuum for this case is shown in Figure 1

where TAE, EAE and BAE (beta-induced AE [11]) gaps are indicated as functions of the radial

variable, chosen as the square root of the normalized poloidal field flux ρ ≡ (ψ/ψ0)
1/2 , ψ0 is the

flux value at the plasma edge. The frequency on this figure is normalized to the Alfvén frequency,

ωA = vA (0)/qaR0, where vA (0) is the central Alfvén velocity, qa is the edge safety factor, and R0

is the major radius of the plasma cross section geometrical axis. This gap and the new solution

are obtained and will be analyzed numericaly using the ideal MHD code NOVA [1, 12]. When

the EAE and TAE gap solutions interact with each other a new solution, DGAE, is formed. We

elaborate on the formalism in order to understand why a singularity is not developed in the radial

mode structure. In this case the energy between EAE and TAE parts of the DGAE solution is

exchanged via the sideband ms ± 1,±2 poloidal harmonics. In some sense the situation is also

analagous to holding the string at the node of its oscillations so that the energy does not dissipate

at the zero amplitude point of the node.
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Figure 2: The plasma safety factor, beta and density profiles used in NOVA simulations.

II. NUMERICAL SOLUTION

For efficient interaction of solutions corresponding to different gaps, we choose plasma param-

eters in such a way that parts of EAE and TAE gaps are aligned radially. The chosen safety factor

profile is shown in Figure 2 along with the plasma beta and density. Other plasma parameters used

in the simulations are: a major radius of the geometrical center of R0 = 3m, a minor radius of

a = 1m, a plasma central beta of βp (0) = 5%, last closed magnetic surface ellipticity of 1.8, and a

triangularity of 0.3. The numerical method of the ideal MHD code NOVA is based on the poloidal

harmonic representation for the poloidal dependence of the solution and third order polynomial fi-

nite elements in the radial direction [12]. DGAE poloidal harmonic radial structure of the quantity

ρξn, where ξn is the plasma displacement component normal to the magnetic surface, is shown in

Figure 3. The eigenmode has the resonance with the continuum at ρ = 0.67. As one can see from

Figures 3(a) and 3(b), where the radial structures of three dominant (near resonance) harmonics

are magnified, the solution is regular everywhere despite this resonance. Other solutions obtained

numerically, such as TAEs, typically show jumps at the resonances. The convergence study was

performed by gradually changing the number of radial grid points from 150 to 250 and showed

that the solution is not sensitive to the grid size. To understand why there are no singularities at the

continuum, i.e., where coefficients in front of the second derivative vanishes and how this affects

DGAE damping, we perform the analysis of the solution in the next section.
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Figure 3: DGAE poloidal harmonic radial structures for n = 8 (Figure a). Figure b represents the magnified

radial structure of m = 20−22 harmonics near the resonance with the continuum, ρ = 0.67. Also shown in

Figure b is
(

A−1C
)

ms
= dξm/dρ, ms = 21.

III. ANALYSIS

In this section we study the interaction of the DGAE with the continuum by making use of

a flux function [4] that is continuous through the resonance. It was shown in Ref. [4] that the

interaction with the continuum results in jumps of the perturbed amplitudes and it was proven that

such interaction leads to the damping. In other words, jumps in the mode structure depend on

how strong the interaction with the continuum is. As we can see in our case, there are no jumps

in the real mode structure that suggest the interaction with the continuum is weak. Examine the

continuation of the solution into the complex plane.

Ideal MHD equations can be reduced to a system of second order differential equations, which

in the matrix form [12] serve as a basis for the numerical procedure of the NOVA code:

d
dρ

(

A
d

dρ
ξ
)

+B
d

dρ
ξ+Cξ+

d
dρ

(Dξ) = 0, (1)

where A(ρ),B(ρ),C(ρ),D(ρ) are matrixes dependent on the equilibrium plasma parameters and

ξ(ρ) is the vector of the amplitudes of the poloidal harmonics of the normal to the magnetic

surface radial displacement of the plasma. Exact expressions of the matrixes from Eq.(1) are

complicated [1, 12] and are not required for the purpose of our analysis. One important property
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Figure 4: Diagonal elements of the matrix of the coefficients at the second derivatives in the eigenmode

equation, Amm, m = 20− 22, Figure a. Figure b represents flux vector-function elements, Ĉm, for poloidal

harmonics m = 20,21,22.

of matrix A is that the surface at which its determinant is vanishing (||A(ρs) || = 0) defines the

location of the Alfvén continuum, ρs = ρs (Ω). We also note that ||B + D|| = 0 at ρs [1, 12].

At this location the solution to Eq.(1) is also expected to be singular [5] and therefore to damp

on the continuum. Figure 4 shows radial dependencies of three diagonal elements of matrix A,

Amm, m = ms,ms ± 1, ms = 21 in the vicinity of the resonant point. Calculations show that ρs in

this case almost coincides with the solution of the equation Ams,ms (ρ) = 0, which is ρ = 0.67' ρs.

Consider the introduction of a flux vector-function similar to the one in Ref. [4], which, as we

will see, is continuous across the resonance, ρ = ρs:

Ĉ ≡ A
d

dρ
ξ. (2)

This equation should be complemented by the equation for the flux following from Eq.(1):

d
dρ

Ĉ = −B
d

dρ
ξ−Cξ−

d
dρ

(Dξ) . (3)

If we assume that d||A||/dρ 6= 0 at ρs, then Eq.(2) can be formally inverted and by integrating it

in the vicinity of ρs, one can conclude that ξ has a logariphmic singularity. From Eq.(3) it follows

that Ĉ is indeed continuous at the resonance. This is confirmed in Figure 4 b, which shows three

elements, ms,ms ±1, of the flux vector having regular radial dependencies at the resonance. Note
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that the inversion of Eq.(2) gives a continuous radial derivative of ξ (despite vanishing ||A||) shown

in Figure 3 b.

Nevertheless, regardless of the fact that the solution is continuous at the resonance, it is not

clear whether the mode does not damp on the continuum. This is because the procedure of finding

such damping requires an analytic continuation of the solution and its frequency onto the complex

plane, whereas the code only finds the real solution and frequency.

Vector Ĉ can be used to show that in this case there is no continuum damping of the DGAE

mode, i.e., the interaction with the continuum is weak. We invert Eq.(2) under the assumption of

finite first derivative of the determinant of the matrix A at the resonance. The solution of Eq.(1)

is found by the perturbative technique. Consider ξ0 and ω0 being the unperturbed solution and

eigenfrequency and ξ1 and ω1 being their complex corrections, which take into account the jump

in the solution at the continuum. Multiplying Eq.(1) by ξ from left, integrating it over the minor

radius and requiring zero boundary condition, we obtain

ω1 =

[

∂G(ω0)

∂ω

]−1

[ξ1 (ρs + ε)−ξ1 (ρs− ε)]T Ĉ0, (4)

where G(ω0) =
R

dρ
[

−(dξ0/dρ)T Adξ0/dρ+(ξ0)
T Bdξ0/dρ+(ξ0)

T Cξ0 − (dξ0/dρ)T Dξ0

]

,

ε � ρs is small and is introduced to define the possible jump of the imaginary part of the solution

at the resonance. To find it we integrate inverted Eq.(2) and make use of the causality condition,

which for the imaginary part of the jump gives:

ℑ [ξ1 (ρs + ε)−ξ1 (ρs − ε)] = −π
||A||ρsA

−1Ĉ0

|∂||A||/∂ρ|ρs

sign(∂||A||/∂ω)ρs
,

so that Eq.(4) can be written in the form:

ℑω1 = −π
[

∂G(ω0)

∂ω

]−1 ||A||ρsĈ
T
0 A−1Ĉ0

|∂||A||/∂ρ|ρs

sign(∂||A||/∂ω)ρs
. (5)

This allows us to compute the continuum damping. It follows from simulations that the damping

is indeed small ℑω1/ω < 10−5, which also means that the interaction with the continuum is weak.

IV. CONCLUSIONS

We have shown that the ideal MHD set of equations has solutions propagating across the con-

tinuum without interacting with it. The continuous solution at the resonance with the continuum
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results in vanishing continuum damping. This is opposite to the common understanding that the

mode experiences strong interaction with the continuum if it has finite amplitude at the resonance.

The condition for such modes to exist is that they should intersect the continuum only once in the

vicinity of the resonance. Such resonance in the considered example is at the radial node of the

eigenmode solution at the location of the singularity. This can be viewed as an eigenmode solution

for the case of two adjacent potential wells separated by the barrier with localized absorbing layer.

Note that the interaction with the continuum can be avoided even for the global TAE modes near

the plasma edge if the TAE gap is closed in the radial direction.

We note that weakly damped DGAE cavity modes can reach into to the center of the plasma

and hence can potentially be used for current drive and Alfvén wave heating for applications in

laboratory and space plasmas. In addition, being global and weakly damped, DGAEs can be more

unstable and easily excited by the super-Alfvénic fast ions, such as energetic fusion products, α-

particles, which, in turn, affects α-particle confinement. Interaction with the continuum also may

be important for the stability of various Alfvén eigenmodes in stellarator plasma due to its com-

plicated geometry and extra coupling between the modes with different toroidal mode numbers.
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