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APPLICATION OF MASS LUMPED HIGHER ORDER FINITE
ELEMENTS IN EXTENDED-MHD MODELING *

JIN CHEN #ll, s. C. JARDIN ¥, W. PARK ¥, J. BRESLAU ¥, G. FU ¥, H. R. STRAUSS §
, AND L. E. SUGIYAMA T

Abstract. There are many interesting phenomena in extended-MHD such as anisotropic trans-
port, mhd, 2-fluid effects, stellarator and hot particles. Any one of them challenges numerical
analysts, and researchers are seeking for higher order methods, such as higher order finite difference,
higher order finite elements and hp/spectral elements. It is true that these methods give more accu-
rate solution than their linear counterparts. However, numerically they are prohibitively expensive.
Here we give a successful solution of this conflict by applying mass lumped higher order finite el-
ements. This type of elements not only keep second/third order accuracy but also scale closely to
linear elements by doing mass lumping. This is especially true for second order lump elements. Full
M3D and anisotropic transport models are studied.

Key words. Higher order finite elements, mass lumping, highly anisotropic transport,

AMS subject classifications. 74E10, 65N30

1. Introduction. The extended-MHD [1] [2] is rich in multilevel physics, such
as anisotropic transport, mhd, 2-fluid effects, stellarator and hot particles. Among
them, solving the highly anisotropic transport is difficult but fundamental. For such
phenomena, the higher order methods, such as higher order finite difference [3], higher
order finite elements [4] and hp/spectral elements [5] have become more and more
popular. Compared to linear methods [6] [7], these methods give more accurate
solution, particularly when the grid is not parallel to the transport axis. Among
them, the finite elements are well adapted to represent complex geometry. However,
in the use of finite elements, continuously inverting the mass matrix presents a major
drawback, and this is a fundamental factor to affect the numerical efficiency. For
linear elements, mass lumping gives a good solution to the numerical performance.
Nevertheless, this is much less obvious in the case of higher order finite elements.

In order to have the accuracy of higher order elements as well as keep the reason-
able numerical efficiency of linear ones, the mass lumped higher order elements are
introduced in [8] and implemented here by the authors in toroidal geometry. Com-
pared to the Lagrange higher order elements, extra one bubble node is added in the
second order ones and extra 2 bubble nodes are added in the third order ones, re-
spectively (Figure 1). As a result, the number of collation points increases to be the
same as the number of nodal points. These 2 sets of points are carefully arranged so
that they coincide with each other. An extra third order term or fourth order term
were added to each second or third order bases functions, and in the same time the
integral weight was carefully chosen so that the Lagrange property

(1) Ni(aj, B5) = dij

are kept for the basis functions at the nodal point set as well as on the collation
point set also. Here (aj,[;) are the values of barycentric coordinate (a, () at the
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nodal points n;. Therefore, mathematically these basis behave similarly to spectral
elements with Gauss-Lobatto quadrature points, so that the mass matrix M remains
to be diagonal. Now the mass lumping can be easily and accurately taken.

F1G. 1. Regular second and third order lagrange elements (First Row); Lump second and third
order lagrange elements (Second Row).

For simplicity, the Lagrange higher order elements are called Lagrange ho ele-
ments, while the higher order elements with mass lumping are called lump ho elements
in this work. The Lagrange ho elements have already been installed in M3D [4] and
here the lump ho elements is compatibly integrated into it. The numerical accuracy
and efficiency of operators, such as first order derivative, gradient, Laplacian, inner
product, and cross product, as well as elliptic solvers, such as Poisson equations and
Helmholtz equations, are monitored in the process of solving realistic plasma modeling
in §2.

2. Numerical Accuracy and Efficiency Comparisons in M3D. M3D is
a Multilevel, 3D code performing linear and non-linear calculations of plasmas in
toroidal topologies including tokamaks and stellarators, ideal and resistive MHD mod-
els, two-fluid model, as well as hybrid particle-fluid. The poloidal plane is represented
by unstructured triangular mesh, and 4th order finite difference is taken along toroidal
direction.

In a full M3D run, we need to continuously invert stiffness matrices in the elliptic
solvers and mass matrix in the derivative operators. There are seven type of elliptic
solvers as listed in [9] and six types of derivative operators listed below in Table 1.
There are also other operators not listed here since they are more related to toroidal
derivative, not directly related to higher order elements. At each time step there are
13 ~ 19 elliptic solvers calls as well as hundreds of derivative operator calls involved.

Here in the toroidal geometry, we are using approximately 7000 vertexes per
poloidal plane to monitor the numerical accuracy and cpu time incurred by each
solver /operator for the linear elements, Lagrange ho elements, and lump ho elements
as well. Only 2nd order elements are considered in this comparison. The numerical
accuracy given in Table 1 is measured against the exact solution. The first part
of the table corresponds to the elliptic solvers : pure Poisson, star Poisson, dagger
Poisson, Helmholtz pure Poisson, Helmholtz star Poisson, Helmholtz dagger Poisson,
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TABLE 1
Numerical Accuracy

solvers/operators  linear Lagrange ho lump ho
Alu=ft:u .3133E-04 .1824E-10 .2778E-10
A*y = f*:u .7480E-04 .1741E-07 .9668E-11
Afu=ft:u  .7689E-05 .1368E-07 .1316E-11
(AL +ADu = fh :u  .8375E-04 .5808E-06 5921E-11
(A* + XDy = u  .2019E-03 .1122E-04 .1187E-10
(At + Au = f}!f :u  .3648E-04 .1582E-06 .1542E-10
Aly = fl (Neumann): 2%  .3034E-02 .1049E-03 .1157E-03
: %ﬁ .2290E-02  .7860E-04 .8898E-04
gu  2424E-03 .7718E-11 .4413E-13
5, -9665E-03  .1709E-09 .2709E-13
Du _ u g787E-03 .1705E-09  .5611E-11
Oy Jydx
vi1-vy 4251E-03  .7760E-13 4639E-13
vy X vy .3830E-02 .6218E-09 .9326E-14
Laplacian  .6927E-03  .9690E-10 .1106E-09
TABLE 2
Cpu Time
solvers/operators  linear Lagrange ho  lump ho
Aly=fT 11.505164 17.993580 15.881487
A*y = f* 11.936641  17.842965 15.577935
Aty = ft 11.487363  17.065694 15.590550
(At +ADu = fh 11.593001  17.850698 15.764700
(A% + ADu = 11.827986  17.617935 15.462633
(At + A = l% 11.127486  17.504207 15.329060
Alty=ft (Neumann) 11.800331  17.994744 15.368874
gL 0.325041  2.822974 0.443981
5y  0.467021  2.539099 0.469528
S — Lu 0560459 9.457784 2.098601
vi-va  0.680051  2.715444 0.961536
v1 X v2  0.234130  2.418649 0.544330
Laplacian  0.355726  6.733015 0.554883

respectively. They are subject to Dirichlet b.c., and their definition can be found in
[9]. The second part of the table gives the pure Poisson solver subjected to Neumann
b.c. and the accuracies are given in the first order partial derivative 2 55 and 3 of the
numerical solution due to a constant related to the uniqueness. The last part of the
table gives the operators ranging from first order partial derivative -2 5, and 8 , second

order derivative commute M;y W; related to the computation of V - B where B
is the magnetic field, to vector inner product, cross product, and Laplacian as well.
Obviously, the Lagrange ho elements beat the linear elements and lump ho elements
inherit this property. In fact in most cases, the lump ho elements have more accurate
digits due to extra third and fourth order terms added in the their bases.

The corresponding cpu times to find the solutions from the solvers or form the
operators, measured in seconds, are given in Table 2 in the same order. From the table
it can immediately tell that the cpu time for the solvers has increased é when switching
from linear elements to Lagrange 2nd order elements, whereas this number is less than
i for lump 2nd order elements. The most significant and key improvement comes from
operators given in the last part of the table. The Lagrange 2nd order elements take
longer to run, some cases even 20 times more than the linear ones, while lump 2nd
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order elements scale to linear elements in most cases. This can be explained by the
replacing of the mass matrix inversion in Lagrange ho elements completely by the
vector point-wise division in lump ho elements due to mass lumping.

3. Model Tests. The full M3D run is a very complex system, involving advanc-
ing 7 equations explicitly or coupled implicitly or uncoupled implicitly at each time
step. For simplicity, two highly anisotropic transport examples are taken as snapshots
of M3D to demonstrate the characteristics of higher order elements. Here only lump
ho elements are applied. Same conclusion can be made for Lagrange ho elements.

In both cases, the domains are 2D rectangle: ABCD: [0, L,] x [0, L,] (Figure 2).
[AB] is aligned with the x-coordinate and [AD] is aligned with the y-coordinate. One
has the strong transport direction aligned with the rectangle’s diagonal; the other
one has the magnetic field circular around the rectangle’s center. They are realistic
enough to modeling toroidal plasma. The linear, second, and third order elements are
applied and their numerical behaviors are fully studied.

T=0
D C

T=0

A B
T=1

F1G. 2. Rect ABCD on which Dirichlet boundary condition is specified: T=0 on side [AD-DC],
T=1 on [AB-BC], so that The strong anisotropic direction is aligned with the grid diagonal [AC].
Side [AB] is aligned with x — coordinate, while side [DC] is aligned with y — coordiante.

3.1. Case I. The model problem considered is the steady-state anisotropic heat
conduction equation [3] in 2D:

2) V- (RVT) =0,

where T is the temperature and & is the conductivity tensor. This can be written
in the orthogonal coordinates (£,7n), which are aligned with the transport axes, as
follows:

o 0T o 0T
(3) 6—€ﬂ§6—§ + 6—nlﬂln6—n =0

Without loss of generality we assume k¢ > &y, so that the strong transport direction
is aligned with &.

The solution domain is given in the Cartesian coordinates (x,y), which are not
aligned with the transport axes (£,7). There is an angle ,, between the axis £ and z.
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The Dirichlet boundary condition is shown in Fig. 1: T=0 on side [AD-DC] and T=1
on side [AB-BC], so that the strong transport axis £ is parallel to the diagonal [AC].
For infinite anisotropy, the exact solution is: T' = 0 above the grid diagonal [AC],
T =1 below the grid diagonal [AC], and the width of the transition zone is zero. For
a finite anisotropy, the exact solution introduces an internal layer which has non-zero
transition width (referred as profile width). We will show that the resolution of this
layer depends on higher order elements when x| is large.

3.2. Case II. The second example is a demonstration of the accurate calculation
of anisotropic thermal conduction governed by equation:

4) V-xBB-V®+V: kV®+ S(z,y) =0

in the existence of magnetic field B [10]. B is the 2D field written in terms of a given
flux function ¥(z,y), i.e., B = 2 x V¢, and ¢(z,y) = sin 1o sin Z—Z Therefore, B has
a structure given in figure 3.
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Fic. 3. Magnetic field B circule around the center of rectangle ABCD. The arrow indicate the
direction of Homongeneous Dirichlet boundary condition is specified on the boundary.

In this application we let & = 1, S(z,y) = ¥(z,y), and
sin 7% sin 2—3

= G T /L)

so that the solution should be independent of the value of the parallel conductivity
k|- But It will be found that this can only be approximately achieved by higher order
elements when &) is large.
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4. Mesh Setup. The unstructured triangular mesh is formed by first dividing
the rectangular domain ABCD into uniform rectangular cells: [0, N, —1] x [0, Ny —1].
Then each of the rectangle grids is subdivided into two triangles in the following 3
ways:

/| 4
’ // s /’ Y // , \ \ \ ’ // s \ \
N N N N N
N, s, s, , s, ’
/] / N N N N
’ 71, 71, 4 , \ N N ’ 4 ’ N N
s ’ 7|, 4 \ s 4 ’ N
4 / / 4 N N s \
7
’ 7 s 4 s 4 ’ \ N N s 4 4 N N
, 7, 7|, 4 / NI N 4 4 NI
7 / / / N 7 /7 N
7 7 7
s /’ ya ’ y s , \ \\ N ’ s ’ N \\ N
N\ AY
s, s, , , , N N 7z ’ 7z N R
7]
N
’ /’ , L0, /’ 2 \ \ \ \ \\ \
’ ’ \ N N \ N
/ 4 7 / / / 7/ 4 N
/| /| /] /]
N N N ~
7 ’ , / ’ ’ 2 RS N N \ oy
AN
7 Y 7/ 7/ 7/ 7/ 7/ 7 y 7/ N N N AN N N
N
Y 7 7 7/ 7/ 7/ // Y 7/ 7/ N \\ N N AN N
, ’ ’ ’ ’ , s ’ N N N N
/ s / / / / / s N J N N
N\ N\ A
’ ’ ’ ’ ’ ’ G ’ ’ /N N \ N
s ’ s s s s 2 s 7z 7z N NEB \ N
N N

F1G. 4. Meshes on which the anisotropic transport equation is solved. t1 : 100% alignment;
t0 : 50% alignment; t2 : 0% alignment. t1: one edge of triangles is aligned with the strong transport
direction &, which is parallel to the diagonal [AC]. t2: one edge of triangles is aligned with the
diagonal [BD]; Therefore, no alignment exists between the strong anisotropy direction & and the
element edges. t0: a combination of t1 and t2. Alignment is localized in the upper-right and lower-
left blocks.

1. Mesh t1 in Figure 4.
The strong transport direction £ has full alignment with the element edge which is
parallel to the diagonal [AC].

2. Mesh t2 in Figure 4.
The strong transport direction £ has no alignment with the element edge. The ele-
ments, aligned with £ in Mesh t1, are now aligned with the other diagonal [BD].

3. Mesh t0 in Figure 4.
This combines t1 and t2 in such a way that the alignment is localized in the upper-
right and lower-left blocks of the rectangular domain. In the upper-left and lower-right
blocks, the misalignment is the same as in Mesh t2.

5. Numerical Experiments and Discussions. As our first case, the contours
of T are plotted in Figure 5 to demonstrate the numerical representation of the tran-
sition layer with regard to the grid resolution and the order of finite elements. g
is fixed at 10® and t; mesh is used. A lower conduction number is chosen here so
that the plot contrast is clearer for a better view. Another reason is that when the
anisotropy is relatively low, the transition layer is not sensitive to the type of meshes.
We will discuss more about this later.

Note that there are 7 contour lines drawn in each sub-plot. Counting from color
green to red, they are T = 0.125,7 = 0.25,7 = 0.50,T = 0.625,T = 0.75, and
T = 0.875 contour lines, respectively. The 1st row corresponds to the linear elements
with increasing grid resolution. As the grid gets refined, the layer is narrowed, but
not significant. A dramatic improvement is found at the 2nd row where the second
order elements are applied. At this row, one can see that the layer is much thinner.
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29x 29 39 x 39 49 x 49 59 x 59
1 1
0.8ttt 0.8
0.6 0.6
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F1G. 5. The contour plots of T by different grid resolution, 29 x 29,39 x 39,49 x 49,59 x 59 :
(1) 1st row: linear elements, (2) 2nd row: second order elements, (3) 3rd row: third order elements.
on mesh t1 to study the effect grid resolution and elements order on the numerical accuracy. kg
is fized at 103. Width of the transition layer do get reduced by finer grids to some extent using
linear elements (looking from left-right at 1st row), the higher order schemes bring in fundamental
improvement. (looking from up-down at each columns).

The 3rd row is obtained by the third order elements. Clearly the layer is narrowed
down to another level. From this figure we can conclude that the proper resolution
of the transition layer depends on the higher order elements other than on the grid
refining,.

The transition layer is introduced by the perpendicular conduction k. It’s width
is denoted by wd. The numerical computation of this layer at high anisotropy can
be difficult in the case when the computational grid is not aligned with the strong
transport direction, ke.

wd is plotted against the increasing anisotropy in Figure 6 for all the 3 types
of meshes. The k¢ has the values 10',10% 103,10%,10°,10%,107,10%,10°, while the
grid resolution is fixed at 239 x 239. A large N, and N, is used here so that the
solutions have surely converged with regarding to grid resolution. From the above
conclusion, only the lump third order elements are applied this time. Line RED is
for ¢t; mesh; Line GREEN is for tg mesh; Line YELLOW is for t5 mesh. The plot is
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F1G. 6. Width of the transition layer against ke: 101, 102, 103, 104, 105, 10%, 107, 108, 10°
on: t1 mesh (red); to mesh (green); to mesh (yellow). The width is given by the area under each
line. The grid misalignment shows a strong effect on its convergence when anisotropy goes higher.
Third order elements are used. On t1 mesh, the elements has resolved the layer well up to kg = 109,
while on ty mesh, the elements only works for Ke up to 107. The to mesh lies between t1 and ts.

divided into 2 parts due to the dramatic changes of the scale in wd. The first part
is for 10" < k¢ < 10°. Its scale unit is 206y. The second part is for 105 < ke < 109,
and its scale is éy. Here dy = 0.0014. The area under each line represents the width
calculated on each of the three types of meshes.

At small k¢, < 10%, the misalignment has a negligible effect. All three lines have
the same bandwidth. When the anisotropy increases from ~ 10%, the layer becomes
thinner and the misalignment starts to affect this layer. At k¢ ~ 10* — 10°, the effect
is medium. wd keeps going down on t; mesh; while stays approximately at a level of
0.56y on to mesh, and 60y on ¢, mesh. At large x¢, > 10°, the alignments become
critical. The convergence of this layer toward zero is only observed on ¢; mesh which
has full alignments. On ¢, mesh with no alignments, wd stays as large as 5.8Jy. The
width on ¢y mesh lies between t; and ¢2. In all, wd on t; mesh drops correctly, while
wd on the other 2 types of meshes failed to converge, particularly on ¢5 mesh with no
any alignments.

As our second case, the RMS of the error is plotted in Figure 7 against the
grid resolution at k| = 10%. to mesh is used. Three lines are drawn to show how
accurate the solution is calculated by linear (RED), lump 2nd order(GREEN), lump
3rd order( YELLOW) elements. Obviously the numerical solution is polluted by ;. It
is verified again that the higher order elements are effective and necessary approaches

10
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in the existence of anisotropy.

K;”.

3 K =0
x 10 p

4.5 1

=== Linear elements
2nd order elements
4 — 3rd order elements

3.5 b

1.5 b

0.5 b

50 100 150 200 250 300 350

F1G. 7. The RMS of the error of the numerical solution in Case II. The solution is polluted by
The solution by higher order elements is more accurate than its lower order counterparts

In conclusion, the lump ho elements are proved to be effective approach to solve

highly anisotropic transport problems with regard to timing and accuracy. Also in this
study we found that grid alignment is essential to achieve better numerical accuracy
even higher order method is used, and this is consistent with the conclusion made in

[3]-

(1]

REFERENCES

W. Park et al, Nonlinear simulation studies of Tokamaks and STs, Nucl. Fusion 43, 483 (2003).

L. E. Sugiyama, W. Park, A Nonlinear two-fluid model for toroidal plasmas, Phys. Plasmas 7,
11 (2000).

M. V. Umansky, M. S. Day, and T. D. Rognlien, On Numerical Solution Of Strongly Anisotropic
Diffusion Equation On Misaligned Grids, Numerical Heat Transfer: Part B: Fundamentals
47, 6(2005).

J. Chen, H. Strauss, S. Jardin, Solving Anisotropic Transport Equation on Misaligned Grids,
LNCS 3516, pp. 1076-1079, 2005.

George Em Karniadakis and Spencer J. Sherwin, Spectral/hp Element Methods for CFD,
Oxford University Press,2004.

R. Vesey and D. Steiner, A Two-Dimensional Finite Element Model of the Edge Plasma, J.
Comp. Phys. 116, 300-313 (1994).

R. Zanino, Advanced Finite Element Modeling of the Tokamak Plasmas Edge, J. Comp. Phys.
138, 881-906 (1997).

G. Cohen et al, Higher order triangular finite elements with mass lumping for the wave equation,
Siam J. Numer. Anal. 38, 2047-2078 (2001).

J. Chen et al., Symmetric Solution in M3D, Computer physics communication 164, 468-471
(2003).



10 J. Chen et al

[10] S. C. Jardin, A triangular finite element with first-derivative continuity applied to fusion MHD
applications, J. Comp. Phys. 200, 133-152 (2004).



External Distribution

Plasma Research Laboratory, Australian National University, Australia
Professor I.R. Jones, Flinders University, Australia

Professor Jodo Canalle, Instituto de Fisica DEQ/IF - UERJ, Brazil

Mr. Gerson O. Ludwig, Instituto Nacional de Pesquisas, Brazil

Dr. P.H. Sakanaka, Instituto Fisica, Brazil

The Librarian, Culham Science Center, England

Mrs. S.A. Hutchinson, JET Library, England

Professor M.N. Bussac, Ecole Polytechnique, France

Librarian, Max-Planck-Institut fiir Plasmaphysik, Germany

Jolan Moldvai, Reports Library, Hungarian Academy of Sciences, Central Research
Institute for Physics, Hungary

Dr. P. Kaw, Institute for Plasma Research, India

Ms. P.J. Pathak, Librarian, Institute for Plasma Research, India

Dr. Pandji Triadyaksa, Fakultas MIPA Universitas Diponegoro, Indonesia
Professor Sami Cuperman, Plasma Physics Group, Tel Aviv University, Israel
Ms. Clelia De Palo, Associazione EURATOM-ENEA, Italy

Dr. G. Grosso, Instituto di Fisica del Plasma, Italy

Librarian, Naka Fusion Research Establishment, JAERI, Japan

Library, Laboratory for Complex Energy Processes, Institute for Advanced Study,
Kyoto University, Japan

Research Information Center, National Institute for Fusion Science, Japan

Professor Toshitaka Idehara, Director, Research Center for Development of Far-Infrared Region,
Fukui University, Japan

Dr. O. Mitarai, Kyushu Tokai University, Japan

Mr. Adefila Olumide, Ilorin, Kwara State, Nigeria

Dr. Jiangang Li, Institute of Plasma Physics, Chinese Academy of Sciences, People’s Republic of China
Professor Yuping Huo, School of Physical Science and Technology, People’s Republic of China

Library, Academia Sinica, Institute of Plasma Physics, People’s Republic of China

Librarian, Institute of Physics, Chinese Academy of Sciences, People’s Republic of China

Dr. S. Mirnov, TRINITI, Troitsk, Russian Federation, Russia

Dr. V.S. Strelkov, Kurchatov Institute, Russian Federation, Russia

Kazi Firoz, UPJS, Kosice, Slovakia

Professor Peter Lukac, Katedra Fyziky Plazmy MFF UK, Mlynska dolina F-2, Komenskeho Univerzita,
SK-842 15 Bratislava, Slovakia

Dr. G.S. Lee, Korea Basic Science Institute, South Korea

Dr. Rasulkhozha S. Sharafiddinov, Theoretical Physics Division, Insitute of Nuclear Physics, Uzbekistan
Institute for Plasma Research, University of Maryland, USA

Librarian, Fusion Energy Division, Oak Ridge National Laboratory, USA

Librarian, Institute of Fusion Studies, University of Texas, USA

Librarian, Magnetic Fusion Program, Lawrence Livermore National Laboratory, USA

Library, General Atomics, USA

Plasma Physics Group, Fusion Energy Research Program, University of California at San Diego, USA
Plasma Physics Library, Columbia University, USA

Alkesh Punjabi, Center for Fusion Research and Training, Hampton University, USA

Dr. W.M. Stacey, Fusion Research Center, Georgia Institute of Technology, USA

Director, Research Division, OFES, Washington, D.C. 20585-1290

05/16/05



The Princeton Plasma Physics Laboratory is operated
by Princeton University under contract
with the U.S. Department of Energy.

Information Services
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543

Phone: 609-243-2750
Fax: 609-243-2751
e-mail: pppl_info@pppl.gov
Internet Address: http:/www.pppl.gov





