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Introduction
During neutral beam injection (NBI) in the National Spherical Torus Experiment

(NSTX), a wide variety of fast ion driven instabilities is excited by the large ratio of fast
ion velocity to Alfvén velocity, together with the relatively high fast ion beta, bf.  The fast
ion instabilities have frequencies ranging from a few kilohertz to the ion cyclotron
frequency.  The modes can be divided roughly into three categories, starting with
Energetic Particle Modes (EPM) in the lowest frequency range (0 to 120 kHz), the
Toroidal Alfvén Eigenmodes (TAE) in the intermediate frequency range (50 to 200 kHz)
and the Compressional and Global Alfvén Eigenmodes (CAE and GAE, respectively)
from ≈300 kHz up to the ion cyclotron frequency.  Each of these categories of modes
exhibits a wide range of behavior, including quasi-continuous oscillation, bursting,
chirping and, except for the lower frequency range, turbulence.  Some examples of the
range of EPM and TAE activity can be seen in Figs. 1a – 1c.

Fast ion driven modes are of particular interest because of their potential to cause
transport, or even substantial losses, of fast ions.  In NSTX NBI heated plasmas we see
transient neutron rate drops, correlated with bursts of fast ion driven instabilities, including
modes identified as TAE and fishbone-like EPM [1].  The CAE and GAE may also affect
fast ion confinement, but there is little direct evidence for enhanced transport of fast ions
in the presence of these instabilities, and these modes will not be discussed further.

Fast ion loss events, together with TAE and EPM, are seen in nearly all regimes of
NSTX NBI heated operation, up to the highest b, highest densities and at the highest
plasma current, in contrast to the experience on MAST [2].  Fast-ion driven MHD activity
in NSTX can be reduced by operation at very high densities with low beam power, or with
reduced beam voltage (<60 kV; typical voltage is 80 kV), suggesting that the absence of
TAE at high b on MAST is due to its lower voltage beams.  On NSTX, EPM and TAE
tend to be absent where bf(0)/btot(0) < 0.3 (Fig. 2, green points).
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Fig. 1 Spectrogram of a Mirnov coil for three shots showing ‘low’ frequency fast ion driven
instabilities, including Toroidal Alfvén Eigenmodes and various forms of Energetic Particle
(chirping) Modes.



Energetic Particle Modes
Energetic particle modes exhibit bursting

where the frequency chirps down strongly
during each burst.  The mode frequency can
change rapidly because the frequency is
determined by the fast-ion distribution function,
which the mode itself can change on the mode
growth timescale.  On NSTX the EPM can have
toroidal mode numbers from n = 1 up to at least
n = 5.  The EPM can be roughly divided into
two groups, separated by the frequency range
where they are found.

The high frequency EPM chirps start in the
first shear-Alfvén gap, near the TAE frequency.
These EPMs can have n > 1 and may be related
to the rTAE [3], a TAE-like mode which can
exhibit frequency chirping, or to the Infernal
Fishbone [4].  The connection to the TAE can be seen in Figs. 1a-c where spectrograms of
magnetic fluctuations are shown for three beam heated discharges.  The energetic particle
modes in the first shot (Fig. 1a) are discrete bursts with strong frequency chirping (df ≈ 50
kHz).  The bursts in the second example (Fig. 1b) are starting to overlap, and the
frequency chirp weakens, but clearly starts at the TAE frequency.  In the final example,
the EPM appear as only intermittent chirps during quasi-continuous TAE activity.  The

large Doppler shift makes mode identification
based on frequency ambiguous.

These higher frequency EPMs, as well as
TAE, tend to be suppressed during low frequency
EPM activity (Fig. 1b). The presence of high
frequency EPMs appears to be correlated with
elevated q(0), or shear reversal, although the
number of shots with MSE measurement of the
q-profile is limited at this time.

The fast chirping suggests a non-linear
resonant interaction similar to that for the
conventional-aspect-ratio tokamak fishbone.
However, the precession-drift frequency, the
resonant interaction responsible for the fishbone
chirp, is too low on NSTX to explain the high
frequency of these EPMs.   The resonance
believed responsible for the high frequency
EPMs is with the fast ion bounce frequency [5].
The bounce-resonance drive can be stronger at
low aspect ratio in part because the average
bounce angle is high.  Thus, the hope that high b
could suppress EPM by reducing or reversing the
precession drift [1] has not been realized.

The MSE measurement of the q-profile
indicates q ≈ 2 at the mode location, similar to expectations for cascade modes, however
the rate of the frequency chirp, the direction and the general characteristics of the
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Fig.. 2. Existence plot for TAE/EPM
activity.  EPM/TAE (green)
present for bfast(0)/btot(0) > 30%.
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Fig. 3 Simulation of soft x-ray
emissivity fluctuations for high
frequency EPM.  2a) MSE/EFIT q-
profile, 2b) trial eigenfunctions, 2c)
simulated and measured soft x-ray
chord integrated emissivity
fluctuations, 2d) phase of
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frequency spectra are substantially different
than what has been reported for cascade
modes elsewhere [6].  It is possible that the
energetic particle mode is responsible for
suppression of the cascade modes.

The internal structure of the high
frequency EPM has been studied in L-mode
plasmas with soft x–ray data.  The chord
integrated soft x-ray emission can, in
principle, be inverted with tomographic
techniques.  However, due to the limited
number of chords, a better inversion can be
made by introducing information from the
time domain, as in rotational tomography.  A
further constraint on the inversion is to
impose the equilibrium calculated from EFIT.
The technique used is to assume the local soft
x-ray emissivity is a flux surface quantity and
perform a simple Abel-type inversion.  A trial
eigenfunction for the mode is introduced as a
perturbation, and the soft x-ray chords are re-
integrated and compared to the time behavior
of the original data (Fig. 3).  The simulations
indicate that the peak mode displacement

amplitude is ≈2.5cm and probably localized near the qmin surface.  However, since the x-
ray profile is hollow, sensitivity to mode structure is low in the core.

The low frequency EPM are similar to the fishbone modes on conventional tokamaks.
They are present when q(0) ≈ 1 (as calculated
by EFIT), and have a kink-like structure.  The
soft x-ray camera data are well modeled with
the assumption of an m=1, n=1 kink-like
eigenfunction (Fig. 4), peaked on axis.  The
amplitude of the core displacement, which fits
the soft x-ray data, is about 2.5 cm.  In L-
mode plasmas, with peaked density profiles,
the multi-channel heterodyne reflectometer
can be used to measure the local mode
displacement.  For the mode shown in Fig. 4,
the two reflectometer channels were
fortuitously located near the minor radius of
the inferred q=1 surface.  The measured
displacement agrees well with that inferred
from the soft x-ray camera data.

Toroidal Alfvén Eigenmodes
Toroidal Alfvén Eigenmodes are seen in

most operational regimes on NSTX, including
shots with high btor.  An example is shown in
Fig. 5 from a shot which reached a peak toroidal b of ≈38%.  The spectrum of TAE often
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appears incoherent or turbulent, with modes growing and decaying on a sub-millisecond
timescale.  In this example, the n=3 and n=4 TAE were predominant.  Several bursts of
lower frequency chirping modes are also seen, and the two indicated resulted in substantial
fast ion losses seen as abrupt neutron rate
drops. All chirping events, however, were
followed by a period of weaker TAE
activity, suggesting that even though fast
ions might not have been expelled from the
plasma, there was redistribution in either
real or velocity space.

Transient neutron drops, signifying fast
ion loss events, are correlated with bursts
consisting of multiple TAE.  In Fig. 5 is
shown an example where each burst
includes at least five TAE with toroidal
mode numbers n = 2 through 6.  The strong
drive for TAE, from the high fast ion beta, is
hypothesized to drive TAE to sufficient
amplitude such that there is overlap in phase
space of the resonant interaction of fast ions
with the TAE.  Transport of fast ions in the
presence of multiple, strongly driven TAE
has been predicted for ITER.

Scaling of losses
Fast ion loss events are most often

correlated with chirping modes, either the low
frequency fishbone-like modes, intermediate
frequency EPMs, or what appear to be weakly
chirping, i.e., df/f ≤ 20%, TAE; possibly
resonant-TAE (rTAE).  The neutron production
is predominantly from beam-target interactions,
so the fractional neutron rate drop is
approximately the fast ion loss fraction.  The
fractional neutron rate drop scales loosely with
the normalized amplitude of the energetic
particle modes.  The loss event data has been
divided into those events occurring with btor <
20% and btor > 20%.  It is apparent that fast ion
loss events are common at high and low beta.
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