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An Electromagnetic Drift Instability in the MRX and its

Importance for Magnetic Reconnection

Russell Kulsrud,∗ Hantao Ji, Will Fox, and Masaaki Yamada

Center for Magnetic Self-organization in Laboratory and Astrophysical Plasmas,

Plasma Physics Laboratory, Princeton University, Princeton, New Jersey

(Dated: May 16, 2005)

Abstract

The role which resistivity plays in breaking magnetic field lines, heating the plasma, and plasma-

field slippage during magnetic reconnection is discussed. Magnetic fluctuations are observed in the

MRX (Magnetic Reconnection Experiment) that are believed to provide resistive friction or wave

resistivity. A localized linear theory has been proposed for their origin as an obliquely propagating

Lower Hybrid Drift Instability. In this paper, the linear theory of the instability is summarized, and

the resulting heating and slippage are calculated from quasi linear theory. Making use of measured

amplitudes of the magnetic fluctuations in the MRX the amount of these effects is estimated.

Within the experimental uncertainties they are shown to be quite important for the magnetic

reconnection process.

PACS numbers:
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I. INTRODUCTION

For a long time it has been known that magnetic reconnection in nature proceeds much

faster than given by the Sweet-Parker Model1,2. It is gratifying that this also occurs in the

MRX experiment at Princeton, which is a dedicated experiment to study the fundamental

physics of magnetic reconnection3. Recently, electromagnetic fluctuations have been identi-

fied4 in the MRX, and a theoretical explanation has been found for them5. These fluctuation

have the potential to play a significant role in reconnection physics as they may enhance the

normal plasma resistivity and speed up the reconnection process. Thus, the MRX provides

us with the opportunity to directly unravel the cause of this speed up.

The theory of reconnection has been based on the Sweet-Parker model that intrinsically

involves the resistivity η. Thus it has been generally assumed that resistivity is necessary

to break and reconnect magnetic lines of force. The reason for this belief is most easily

understood from examination of the region around the X line, where the lines are visibly

breaking as in Fig. 1.

Here lines are passing from the unreconnected region A to the reconnected region B. The

reduction of lines in region A generates an electric field along the X line, whose magnitude

is proportional to the rate of transfer of lines from A to B, the reconnection rate. This

electric field tends to accelerate any electron along the X line. Since B = 0 on the X line,

the only MHD force resisting this acceleration is the resistivity, η. If η is small, it would

seem that the reconnection rate must therefore also be small, otherwise the current along

X would be large. However, electrons do not simply sit at rest along X, but move rapidly

along the field lines spending only a short time near the X line. After they reach a region

of appreciable magnetic field strength, say after traveling a distance d, the electric force is

resisted by the magnetic force and acceleration stops. If the distance d is short compared to

the mean free path, λ, then the time of acceleration is short compared to the electron-ion

collision time, and the effective resistance is increased by λ/d. That is, from the point of

view of line breaking, the resistivity appears enhanced by this factor.

This is borne out by numerical simulations of collisionless reconnection. The term in the

generalized Ohm’s law

E +
ve ×B

c
= −∇ ·Pe

ne
+ ηj (1)

that represents the above effect is the pressure tensor ∇ ·Pe term6. [The ratio of ∇ ·Pe ≈
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mnvDvth/d to ηjne ≈ νmnvD is vth/νd ≈ λ/d.]

Clearly the frictional force (∇·Pe or ηj) at the X line where the the two components of the

poloidal field Bp, Bx and By, vanish, is of fundamental importance, since it determines the

toroidal component of E (in terms of vD or j). However, is the resistivity really important

elsewhere, where Bp 6= 0? At such a place, ignoring ∇ ·Pe Ohm’s law can be written

E +
(ve + vη)×B

c
= 0 (2)

where ηj = −(vη × B), so that the line velocity cE/B differs from the plasma velocity by

vη. The direction of vη is such that the magnetic lines move through the reconnection layer

faster than the plasma. At most places the slippage is of order or smaller that ve, so that

the velocity pattern is not appreciably changed.

Thus since in the case when ∇·Pe is greater than ηj at the X line, one might expect the

resistivity to be of little consequence to the reconnection process.

However, resistivity does serve two other functions in the reconnection process. (a) The

first function is in heating the plasma. If there is no guide field parallel to the X line, the

plasma must have an increased pressure in the reconnection layer to balance the decreased

(poloidal) magnetic pressure. This increase can only arise from heating of some sort.

(b) Now without collisions the main heating must come from adiabatic compression asso-

ciated with a rise in density in the layer. But without resistivity there can be no compression

transverse to the magnetic field, since (without parallel compression), B/n is constant for a

constant length fluid element as it passes into the layer and B clearly decreases. This must

be at least true for any electron fluid element and therefore, by charge neutrality, for any

ion fluid element also. Thus, the second function of resistivity is the vη slippage between

field and plasma which break the B/n constraint and allows B to decrease without forcing

n to decrease.

In any normal reconnection occurring in nature there is plasma expansion longitudinally

along the field to get the plasma out of the way of more incoming unreconnected plasma.

This would increase B/n rather than decrease it. (However, this need not be the case for

numerical simulations of collisionless reconnection with periodic boundaries. One expects

longitudinal compression, as plasma accumulates in the reconnection layer. This could be

responsible for the heating7,8.)

These two functions indicate the important role that resistivity plays in reconnection
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processes, and it is difficult to see how reconnection can properly function without it.

If the only non-ideal MHD reconnection process were resistivity, then reconnection of

field lines should proceed at the Sweet-Parker reconnection velocity

vR = vA

√
η

LvA

=
vA√
S

(3)

where vA is the Alfven speed, S = LvA/η is the Lundquist number, vR is the upstream

velocity, of lines coming into the reconnection layer, and L is the length of the layer. Since

in solar and space plasmas L is very large, vR is generally small and too slow to explain the

observations.

A measurement of the effective resistivity, η∗, has been carried out in the MRX by taking

the ratio of E to j at the X line. The effective resistivity is found to increase relative to

the Spitzer resistivity as the back background density was lowered. At the lowest densities

it reach a value ten times the perpendicular Spitzer resistivity. From Equation (1) we see

that this ratio gives the correct value of η at a point where B = 0 only if the ∇ · Pe term

is ignored. This was assumed in the early days and the effective resistivity was substituted

in the Sweet-Parker Equation (3). The measured reconnection rate is then found to be in

reasonable agreement with Equation (3) with an effective Lundquist number based on η∗,

and provided, further, that vA is replaced by the measured downstream velocity vz which is

considerably smaller9.

Moreover, it is also found that when the measured value of j is combined with the

measured value of ne the relative drift velocity of the electrons with respect to the ions is

in the range of a two or three the ion sound velocity. This suggests a plasma instability,

which could excite waves and produce this enhancement in the resistivity, is present. A

primary purpose of this paper is to quantitatively evaluate the amount of enhanced resistivity

generated by electromagnetic fluctuations in the MRX4 and compare it with the collisional

resistivity.

II. FLUCTUATIONS IN THE RECONNECTION LAYER

A search was made for unstable fluctuations and indeed electrostatic fluctuations were

first found by Carter et al.10. However, it turned out that these fluctuations are not present

throughout the layer but only exist on its edge. Further, they do not correlate well in
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time with the reconnection process. The role of these electrostatic fluctuations in MRX is

still not clear, although it was conjectured that they can make the current layer thinner and

trigger fast reconnection11,12. Subsequently, Ji et al. uncovered4 electromagnetic fluctuations

of appreciable amplitude that are indeed present throughout the reconnection layer and

do appear to correlate well in time with the reconnection process. On the basis of these

observations a local linearized electromagnetic instability theory has been developed5 which

shows how these fluctuations could arise.

It is surprising that this instability has not been commented on more frequently in the

many papers devoted to the LHDI (Lower Hybrid Drift Insability13) as discussed in our

previous paper5. We find that such an instability has actually been considered before in

papers on the MTSI (Modified Two-Stream Instability14), but its importance has been

disregarded because the current in the instability are not diamagnetic. We conjecture that

the main reason for this lack of attention to it is due to the fact that, in the cases treated,

the perpendicularly propagating mode is the dominant one, and the obliquely propagating

modes grow more slowly. However, in the central region of the MRX current layer, the

perpendicular mode is stabilized by the large magnetic field gradients, and only the oblique

modes are unstable.

We will now describe this theory, and its quasi linear extension, that gives the force on the

electrons and thus the enhancement in resistivity. We will also show how one can estimate

the amount of heating due to these waves. The amplitudes of the magnetic fluctuations

in these waves are being carefully measured. It should be emphasized that the waves are

really present throughout the reconnection layer. Assuming we have the correct theory we

can determine how much resistivity they produce independent of any reconnection theory.

Alternatively, we can also find out if, within the uncertainties of the measurements and the

crudeness of the theory, the waves could possibly be the main agent of the reconnection

process.

Because of the considerable uncertainty in the measurements and also in the reconnection

theory, it seems advisable to first work with the simplest and most flexible theory of this

instability, rather than to try to reach a high degree of accuracy with a complicated numerical

calculation. This simplification is useful because of the large number of parameters involved

in the instability. In fact, the simple theory does lead to a reasonable assumption that the

instability is important, and it is now appropriate to carry out a more detailed numerical
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solution of it, at least for a limited choice of values of the parameters.

III. LOCAL LINEAR THEORY

In the reconnection layer shown in Fig. 2, let us concentrate on a small volume such as

that shown by the little rectangle. As just mentioned the thrust of the discussion will be to

keep the analysis as simple as possible. This is the main motivation for a localized theory.

However, it turns out that the growth rate of the waves is so large that we do not expect

the waves to propagate very far before they reach a nonlinear state. [For an initial-value

problem, it takes a finite time for the perturbation to settle down to the fastest-growing

(nonlocal) eigenmode. If the local growth rate is so fast that the perturbation saturates

nonlinearly in this time, then one does not expect the perturbation to become an eigenmode

in the linear regime.]

A more complete local theory of this instability has been presented in another paper5.

and here we only give a summary of it sufficient for the quasi linear extension of it.

Therefore, we assume that the equilibrium plasma quantities in this region are uniform

except that there is a radial electric field, E0 and a constant relative electron ion drift U

associated with the equilibrium current. We discuss the instability in the ion rest frame in

which the ions are at rest. Thus, in zero order

∇p0
i = n0eE0

∇p0
e = −n0eE0 − n0e

(
V0 ×B0

c

)
(4)

We assume charge neutrality and also that Te and Ti are uniform, but can be unequal.

Thus, in this frame the ion pressure is confined only by an electric field and the electron

pressure is confined against this electric field by its electric current. We take a local Cartesian

coordinate system with z along B0, y in the direction of increasing plasma pressure, (towards

the central reconnection plane), and x in the negative current direction and in the direction

of electron drift. Thus, E0 = E0ŷ,V0 = V0x̂. From Equation (4) we can show that

E0 =
Ti

Ti + Te

V0B0

c
(5)

Now for the local linearized perturbations we assume that the electric field has the per-

turbation

E = Re
[
Êei(kxx+kzz−iωt)

]
(6)

6



where we take ky = 0. Since the mode is electromagnetic, it is convenient to use an electro-

static component E1 and two electromagnetic components E2 and E3 as the fundamental

variables for the perturbation. (E1 is along k, E2 is along the y axis, and E3 is in the x− z

plane and perpendicular to k, as in Fig. 3.)

To keep the discussion as simple as possible we make the assumptions that for the per-

turbation the ions are unmagnetized and cold, and that the electrons can be treated by

the drift kinetic theory. Namely, we assume to lowest order the perturbed motion of the

electrons is confined to perturbed magnetic field lines and that their current can be obtained

from the first moment of the Vlasov equations i.e. the equation of motion but neglecting the

electron inertia term. Instead of solving the reduced Vlasov equation to obtain the pressure

tensor, we simply assume that their pressure is isothermal and isotropic. (The isothermal

assumption is justified because the parallel heat flow is fast. The isotropic assumption is

reasonable because for most cases the collision rate is comparable to the wave frequency.)

The electron equation of motion is

j1e ×B0 + j0e ×B1 − n1eE0 − n0eE1 −∇(n1Te) = 0 (7)

Here j0e = n0eV0 We find j1e from Maxwell’s equations

−k× (k× E) =
4πiω

c
(j1e + j1i) (8)

where we use the cold ion equations to obtain j1i = in0e
2E/Mω. The cold ion assumption is

rather inaccurate. It is shown5 that including warm ions reduces the growth rate by as much

as a factor of two, but preserves the instability. However, the warm ion mode equations

are complicated. Since there are both experimental uncertainties and other theoretical

uncertainties, we consider it appropriate to treat the instability by the consistent set of

mode equations based on the cold ion approximation. The perturbed magnetic field is

B1 = kc × E/ω2. Only the electromagnetic components of E, E2 and E3, enter into this

equation. From charge neutrality and the cold ion equations we have that the perturbed

electron density is equal to the perturbed ion density, which is given by n1 = in0ek ·E/Mω,

which is obtained from the continuity equation for the ion density with a term proportional

to background density gradient missing. In the companion paper5, we showed that this

term only produces a very small changes in the growth rate. Thus, only the electrostatic

component E1 enters into the expression for the perturbed density.
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The basic equations are gotten by taking x, y and z components of the electron force

Equation (7). After some manipulations we obtain(
Ω sin θ −KV

βi

βe + βi

)
E1

Ω
+ i(Ω−KV sin θ)E2 − (K2 + 1) cos θE3 = 0 (9)

−i sin θ

(
Ω2 − βe

2
K2

)
E1

Ω
+ (K2 + 1)E2 + iΩ cos θE3 = 0 (10)

cos θ

(
Ω2 − βe

2
K2

)
E1

Ω
+ (Ω sin θ −KV )E3 = 0, (11)

where the dimensionless quantities, K, V , and Ω are defined by

k = Kωpi/c, ω = Ωωci, V0 = V VA (12)

where c/ωpi is the local ion skin depth, ωci is the local ion cyclotron frequency and VA is the

local Alfven speed. Also βe = 8πn0Te/B
2
0 and βi = 8πn0Ti/B

2
0 are the electron and ion β’s.

The determinant of these equations is a quartic equation in Ω

Ω4 − 2KV sin θΩ3

−
[
(K2 + 1)(K2 cos2 θ + 1)−K2V 2 sin2 θ +

βe

2
K2

]
Ω2

+ KV sin θ

[
βeK

2 + (K2 + 1)
βe + 2βi

βe + βi

]
Ω

+ K2

[
βe

2

[
(K2 + 1)2 cos2 θ −K2V 2 sin2 θ

]
− (K2 + 1)V 2 βi

βe + βi

]
= 0. (13)

If the equilibrium is homogeneous, V = 0, this quartic equation factors. If θ = 0, it

factors as [
Ω2 − (K2 + 1)2

](
Ω2 − K2βe

2

)
= 0 (14)

whose roots are the two whistlers and the two sound waves15, (as can be seen by returning to

dimensional variables). Thus, the four roots of the quartic are modifications of the familiar

whistlers and the ion acoustic modes. As we shall see, for appropriate combinations of K

and V , the modification can lead to one unstable, one damped, and two propagating modes.

We believe that it is this unstable mode that gives rise to the observed fluctuations in the

MRX.

One can get some insight into the coupling of the modes that leads to instability in the

exact solutions of the quartic by passing to the limit of large K and V . Then keeping the

dominant terms in each of the coefficients of the quartic one can find asymptotic solutions to
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the quartic in the usual way by balancing terms. Two solutions for Ω result from balancing

the quartic, cubic and quadratic terms. Solution of the resulting quadratic, after cancelling

Ω2, are Ω = KxV ±KKz which in dimensional variables is

ω = kV0 sin θ ± k2V 2
A

ωci

cos θ (15)

These are the two whistler modes Doppler shifted in the ion frame by the electron drift

motion V0. The other two solutions come from balancing the quadratic, and constant terms

of the quartic and are

Ω2 = K2 (βe/2)K2 cos2 θ −
[
(βe/2) sin2 θ + βi/(βe + βi)

]
V 2

K2 cos2 θ − V 2 sin2 θ
. (16)

For V = 0 this reduces to the sound mode. But for K in the range[
V tan θ, V

√
tan2 θ + 2/βi sec2 θ/[βe(βe + βi)]

]
the right hand side is negative and there are

two complex conjugate roots, one of which is unstable.

The exact behavior is given in Fig.4 where all four roots are plotted for V = 6, θ = 60◦,

and βe = βi = 1. We see that for some values of K there is one unstable root and for other

values the four roots are all real and the four modes are all stable.

Note that, for fixed V , the lower limit on K for instability correspond to the K at which

the backward propagating Doppler shifted wave just vanishes. Actually in the more general

non asymptotic state this occurs when this whistler has the same frequency as the sound

mode. It seems that there is an interaction between the sound wave and this whistler that

triggers the instability. This may be because at this point this whistler has negative energy

in the ion frame.

For the general quartic let us group the parameters, in one set βi, βe, and V and a second

set θ and K. For any choice of the first set we get one curve for Ω versus K for each choice

of θ. Except near the center of the reconnection layer βe and βi tend to be of order unity.

The parameter V = V0/VA can be expressed in terms of the layer half thickness δ and the

ion skin depth. From j = neV0/c ≈ B0/4πδ, and defining δi = c/ωpi, we get

V =
V0

VA

=
δi

δ

B0

B
(17)

the ratio of the ion skin depth to the half thickness of the layer times B0/B where B is the

local value of B. The latter factor arise from V being defined in terms of the local Alfven

speed. (V is insensitive to the local value of density so we can take the density as the outside
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density.) Experimentally it is found that δ/δi ≈ 0.35 for nearly all cases, so half way to the

center V ≈ 6.

Let us take V = 6, βe = 1 and βi = 1. Then we plot real part of Ω as a function K in

Fig.5(a) for θ = 45◦, 60◦, and 75◦. We plot Γ the imaginary part of Ω in the same way in

Fig.5(b). It is seen that at the larger angle Γ is quite large, and the wave numbers are also

very large corresponding to a very small wave with a very short life. This justifies to some

extent our local approximation.

The value of Ω refers to the ion frame. In the laboratory frame the ions could have an

appreciable drift velocity VD ≈ αVA of order the ion thermal speed so that the observed

frequency may be Doppler shifted from Ω by−Kα. For example, if α = 1 the observed scaled

frequency would be Ωobs = Ω − K. Thus, the observed frequencies could be considerable

lower than the ones calculated for the ion frame. They could be anywhere from zero up to

the solid lines or even greater. The growth rates Γ are of course unaffected. In fact, there is

an indication that, in the laboratory frame, some of the largest intensities are seen at low

frequencies.

The fact that small and large K modes are stable and intermediate ones unstable for

fixed V and θ is clearly seen in Fig.5(b). In spite of the crudeness of our treatment, the

large growth rates calculated by the theory support the fact that the instability discussed

here is actually responsible for the observed fluctuations.

IV. THE WAVE RESISTIVITY

We may use quasi linear theory to calculate the contribution to resistivity due to the

waves. We calculate the force in the x direction due to the waves.

There are three contributions of these waves to the force on the electrons. The one we

consider first is the j1 × B1 Lorentz force. Let us first show that the Lorentz force on the

whole plasma, electron and ions is zero, when averaged over scales larger than the wave

scale.

〈j×B〉 =
1

4π
〈(∇×B)×B〉 =

〈
∇ ·
(

BB

4π
− I

B2

8π

)〉
= 0 (18)

where I is the unit dyadic. Since the spacial gradients of physical quantities always average

out.
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Thus, the force on the electrons is the opposite of the force on ions, and we calculate the

latter force for single mode and take its negative to get the force on the electrons. For cold

ions we have

j1i =
4πin0e

2

ωc
E (19)

and

B1 =
kc× E

ω
(20)

This latter E is the electromagnetic one, and only the E2 and E3 components enter into it.

Now consider the average with j1 = 1
2
(̂jeiφ+ĵ∗e−iφ) and similarly for B1 where φ = k·r−ωt

and ĵ and B̂ are amplitudes of j and B. We then have

〈j1 ×B1〉 =
1

4
ĵ1 × B̂∗

1 + c.c. (21)

where the ĵ1×B̂1 and the ĵ∗1×B̂∗
1 terms average out and where c.c. denotes complex conjgate

as usual. Thus, the x component of the Lorentz force of the wave on the ions is

〈j1 ×B1〉x =
i

4

ω2
pi

4πω

(
Ê× k× Ê∗

3

ω∗

)
· x̂ + c.c.

= − i

4

ω2
pi

4πωω∗ (k · Ê)(Ê∗
3 · x̂) + c.c.

= − i

4

ω2
pi

4πωω∗kÊ1(−Ê∗
3 cos θ) + c.c. (22)

where E3 is the electromagnetic E3 vector.

But from Equation (11)

E3 = − cos θ
Ω2 −K2βe/2

Ω2 sin θ −KV Ω
E1 = − cos θA13E1 (23)

so the x component of the average j×B force on the electrons is the negative of Equation (21)

and can be written

Fxe = k
|Ê1|2

8π

ω2
pi

ωω∗ cos2 θIm(A13) (24)

This quantity is negative and gives the force in the opposite direction to the electron drift

velocity V0 of the electrons. The forces in the other directions average out by symmetry

when summed over the waves.

This force is non zero only when γ is non zero, and the mode is growing. It is only

produced by the unstable mode. One expects that when the wave reaches a certain amplitude

it will saturate and disappear due to nonlinear processes. As the wave disappears, the force
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on the electrons will probably reverse but the decay behavior is of a different nature and it

is unlikely that it will totally cancel the force produced when the wave is growing, so one

expects that the above formula should give a reasonable estimate of the mean Lorentz force

on the electrons. Notice that the formula is dimensionally correct since it is a dimensionless

constant times the gradient of the energy density of the electrostatic field.

The other two contributions to the wave force arise from the x component of the electro-

static force, −n1eEx. In a manner similar to the above calculation of the Lorentz force, we

can reduce this to

〈−n1eEx1〉 = − i

4

ω2
pi

ω2

(
|Ê1|2 sin θ − Ê1Ê

∗
3 cos θ

)
+ c.c. (25)

Note that the two contributions come from the electric vector in the x − z plane, both

the E1 and E3 vectors contributing. Again expressing E3 in terms of E1 we get

〈−n1eEx1〉 = ω2
pik

|Ê1|2

8π

[
Im

(
1

ω2
sin θ

)
+ Im

(
A13

ω∗2

)
cos2 θ

]
(26)

The first term, due to the electrostatic field, is larger than the second and also than the

j1×B1 force by at least an order of magnitude, so that the force on the electrons is basically

due to the |E1|2 contribution alone, and the other contributions can be ignored.

Again, because of charge neutrality, the total electrostatic force on the plasma is zero.

Thus the unstable wave holds no momentum and the force it exerts on the electrons can be

thought to react back immediately on the ions, just as happens in electron-ion collisions.

We still must express |E1|2 in terms of |B1|2 in order to use the value of the measured

magnetic fluctuation amplitudes to evaluate the wave force. Now,

|B1|2 =
k2c2

|ω2|
(
|E2|2 + |E3|2

)
(27)

with no direct contribution from |E1|2. Thus we need to express E2 in terms of E1; E3 is

already so expressed. E2 is found in terms of E1 from Equation (10) using the expression

for E3 in terms of E1. The final result for the total x force in terms of the energy of the

magnetic perturbations, 〈(δB)2〉/8π = |B̂1|2/16π, can be written as

Fx = 2
ΩΩ∗

K2A
Im

[
sin θ

Ω2
+ cos2 θA13

(
1

ΩΩ∗ +
1

Ω∗2

)]
k〈(δB)2〉

8π
(28)

where A is the constant relating |E2|2 + |E3|2 to |E1|2. That is,

A = |A13|2 cos2 θ + |A12|2 (29)
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where

(K2 + 1)A12 = i
sin θ

Ω

(
Ω2 − βe

2
K2

)
+ iΩA13 cos2 θ. (30)

One can finally write

Fx = −kC
〈(δB)2〉

8π
(31)

where, as stated above, 〈(δB)2〉/8π is the average energy of the magnetic fluctuations in a

single mode. The total force is obtained by summing Eq.(31) over all the unstable modes.

However, it turns out that for most choices of the parameters, C is order unit so one can

say that the force is essentially the negative gradient of the magnetic perturbation energy4.

V. THE WAVE RESISTIVITY

One can now express the force on the electrons as a wave resistivity ηw to investigate the

influence of the waves on the reconnection process. If ηw is the resistivity in e.m.u. units,

then the force on the electrons is

neηwj = kC
〈(δB)2〉

8π
(32)

where j = B0/4πδ is in emu’s.

Thus,

ηw =
kC〈(δB)2〉/8π

neB0/4πδ
e.m.u. (33)

or

cηw = 3× 106 δ

δi

KC

n13

〈(δB)2〉
B0

cm2/sec (34)

where n = n131013, δB and B0 are in gauss, δi = c/ωpi is the ion skin depth, and as

defined earlier, K = kδi is our dimensionless wavenumber. This is to be compared with the

perpendicular Spitzer resistivity taken at the measured value of the electron temperature,

Te = 6 eV,

cηSp = 6.4× 106 cm2/sec (35)

The expression for C although complicated can easily be evaluated on the computer

for any choice of the parameters. In Fig. 6 we give KC as a function of K for the same

parameters as we used in Fig. 5, for the same three angles and for the same V = 6.

The measured values for the root mean square amplitude of the magnetic fluctuations,

with frequencies above 250 kHz and summed over all angles, are shown in Fig.7. For our
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estimate of ηw, we take the measured of δB at about half way from the current layer center

to its edge, which is consistent with our assumption of magnetized electrons.

It is not known precisely from which frequencies and propagation angles in the ion rest

frame, the largest contribution to 〈(δB)2〉 come, because, as mentioned above, it is difficult

to compare the frequencies in the ion frame with those in the laboratory frame. Therefore,

we simply choose the value of KC at the largest angle 75◦ and at the K that has the

maximum growth rate. For V = 6 the value of KC is 17. We take the ratio δ/δi ≈ .35, the

usual ratio16, 〈(δB)2〉 = (10 gauss)2 and B0 = 100 gauss. This yields

cηw = 3× 106 × 0.35× 17× 100

100
= 1.7× 107 cm2/sec (36)

a value about 3 times the Spitzer value, and consistent with the measured ratio η∗/ηSp.

There are many uncertainties in this calculation. K and θ are chosen to give the largest

growth rate, and there is no guarantee that they lead to the correct effective frequencies for

the main fluctuations. η∗ measured at the X point could be dominated by the ∇ ·Pe term

so there is no particular reason to compare ηw with it. However, we see in the next section

that if the heating is done by waves, and if the plasma pressure is to be raised by the waves

enough to balance the decreased field pressure, then we actually do need ηSp + ηw ≈ η∗ in

the more general case.

VI. WAVE HEATING

The process by which the waves heat the plasma has not been included in our linear

and nonlinaer theory. However, the wave force on the electrons Fw times their velocity Vde

relative to some basic velocity frame, in which their total energy is unchanged, produces an

amount of heating He, where

He = −Fw ·VDe (37)

This is true because in the basic frame, if there were no reconnection electric field to

maintain VDe the electrons would change their kinetic energy at the rate

d

dt

1

2

(
ρeV

2
De

)
= ρeVDe ·

dVDe

dt
= Fw ·VDe (38)

and since their total energy is fixed in this frame, this loss of energy must go to heating the

electrons at the rate He given by Equation (37)
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Similarly, the ions are heated at the rate

Hi = −Fi ·VDi (39)

so the total heating of the electrons plus ions is

Hi + He = Fe · (VDi −VDe) = −Fe ·V0 (40)

where V0 is the electron-ion relative velocity. Now, the force on the electrons on the electrons

is

Fe = −(ηSp + ηw)nej (41)

so the total heating rate of the plasma is

(ηSp + ηw)cjneV0 = (ηSp + ηw)cj2 (42)

in complete analogy to the Ohmic heating rate by electron-ion collisions.

Now let us compare this with the heating required to bring the plasma pressure into

balance with the reduced magnetic pressure during reconnection.

The incoming plasma has an E×B velocity of

vR =
cEr

B
=

cη∗j

B
(43)

where Er is the reconnecting electric field expressed in term of η∗, and it must be heated in

a time of order

tR =
δ

vR

=
δB

η∗jc
(44)

and the plasma pressure has to be raised by ≈ B2/8π in this time, so the heating rate must

be of order

H ≈ B2

8πtR
=

B2

8π

η∗jc

δB
≈ 1

2
η∗cj2 (45)

so we need η∗ ≈ ηSp + ηw.

Also to avoid the B/n constraint that decreases n as B decreases we need the plasma to

slip a distance δ in the reconnection time or, from (2) we need

vη = j(ηSp + ηw)c/B ≈ jη∗c/B (46)

so again we need ηSp + ηw ≈ η∗.
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VII. CONCLUSION

Significant magnetic fluctuations are observed in the MRX during experiments in which

the reconnection rate is greater than the classical Sweet-Parker rate. In this paper we show

that these waves can produce a wave resistivity sufficiently larger than the perpendicular

Spitzer resistivity to produce the enhanced reconnection rate. We assume that these waves

are generated by a recently discussed instability. We base our calculation on a simplified

linear theory of the instability and derive the effective resistivity from the quasi linear

extension of the theory. The resistive force produced by the waves, is a constant of order

unity times the negative gradient of the magnetic fluctuation energy in the waves.

The actual calculation of the wave resistivity depends on the plasma having a large

perpendicular current density, and is independent of particular choice of the reconnection

model. We show that even if there were no binary collisions or collisions related to wave

resistivity, the plasma is able to break its magnetic lines of force. However, some sort of

collisions are needed to allow the electrons to slip across the lines far enough to break the

approximate (collisionless) constraint of B/n being a fluid constant of the motion. Further,

collisions are needed to raise the pressure of the plasma by B2/8π as it enters the current

layer. (This increase is necessary to balance the outside total pressure by the reduced

magnetic pressure and this enhanced plasma pressure.) For the experiment in which the

fluctuations are observed, ordinary binary collisions are inadequate for these two purposes.

However, when the resistivity due to waves is added to these collisions, the combined effect

is able to accomplish these two goals: the necessary slippage of the plasma to the field lines

and its pressure rise as it moves into the current layer. The interaction of fluctuations with

other processes in collisionles plasmas such as those related to the production of quadrupole

magnetic fields17 out of the plane of reconnection will be consdiered in future work.

Our conclusion is that in these MRX magnetic reconnection experiments, magnetic fluc-

tuations play a significant role.
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List of Figure Captions

Figure 1 The small region around the X line.

Figure 2 The small region in which the local wave is described.

Figure 3 The orientation of the electrostatic component E1 and the electromagnetic com-

ponents E2 and E3.

Figure 4 The four roots of the quartic as a function of the normalized wave number, K =

kδi.

Figure 5 The normalized frequency Ω = ω/ωci (a) and growth rate Γ = γ/ωci (b) versus

the normalized wave number K = kδi.

Figure 6 The parameter CK = Ckδi versus the normalized wave number K = kδi.

Figure 7 The magnetic fluctuation intensity above 250 kHz and summed over angles as a

function of radius at different times during the reconnection.
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FIG. 2: The small region in which the local wave is described.
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FIG. 3: The orientation of the electrostatic component E1 and the electromagnetic components

E2 and E3.

FIG. 4: The four roots of the quartic as a function of the normalized wave number, K = kδi.
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FIG. 5: The normalized frequency Ω = ω/ωci (a) and growth rate Γ = γ/ωci (b) versus the

normalized wave number K = kδi.
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FIG. 6: The parameter CK = Ckδi versus the normalized wave number K = kδi.

FIG. 7: The magnetic fluctuation intensity above 250 kHz and summed over angles as a function

of radius at different times during the reconnection.
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