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Abstract

The damping of Toroidal Alfvén Eigenmodes in JET plasmas is investi-

gated by using a reduced kinetic model. Typically no significant damping

is found to occur near the center of the plasma due to mode conversion to

kinetic Alfvén waves. In contrast, continuum damping from resonance near

the plasma edge may be significant, and when it is, it give rise to damping

rates that are compatible with the experimental observations.
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I. INTRODUCTION

A key issue in determining stability criteria of energetic particle-driven Alfvén modes

in burning plasma experiments, is to properly describe background damping due to kinetic

effects. Since the discovery of a Toroidal Alfvén Eigenmode (TAE) [1], extensive work has

been done on its damping mechanisms. In the limit of ideal MHD theory, the TAEs have

discrete real frequencies located within the toroidicity-induced continuum gaps. However,

when the kinetic effects of thermal electrons and ions are taken into account, the TAEs

will damp due to various dissipative processes such as electron Landau damping [2], ion

Landau damping [3], collisional damping [4,5] and continuum damping [6]. The damping

rates can usually be calculated perturbatively using the MHD mode structure obtained in

an ideal MHD code. TAEs are also affected from non-perturbative ”radiative” damping due

to coupling (or mode conversion) to kinetic Alfvén waves (KAW) [7,8]. Despite substantial

work over many years on this topic, a complete understanding of this damping mechanism

is still lacking. This is highlighted by a recent comparison of TAE damping models with

measured TAE damping rates in JET plasmas [9]. It was found that the measured damping

rates of an n=1 TAE mode in JET are much larger than the radiative damping rate as

calculated locally by the NOVA-K code [10] (all other damping mechanisms such as electron

and ion Landau damping, collisional damping, are also much smaller than the measured

damping rates in this case). On the other hand, global gyrokinetic calculations from the

PENN code yielded damping rates comparable to experimental values for similar plasmas

[11]. The results of the PENN code showed that the main damping is due to mode conversion

to kinetic Alfvén wave near the center of plasma. In this work, we have developed a global

reduced kinetic model in order to elucidate the key physics and to assess whether mode

conversion can occur near the center of plasma when this region is not close to the main

continuum gap. We will show that our global kinetic calculations, when the edge density

is not particularly low, yield smaller damping rates than is observed experimentally. The

low damping rate is consistent with the predictions of a local ”radiative” damping model.
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However, we observe that with a low edge density, continuum damping due to resonance

near the edge is likely to be excited, and this mechanism gives damping rates comparable

to what is observed experimentally. We conjecture that it is the wave physics in the edge,

which is quite complex and only roughly treated in this work, that is responsible for the

damping rates in the JET plasmas.

The paper is organized as follows. Sec. II describes a reduced kinetic model used

for our analysis of kinetic damping of TAE’s. Sec. III briefly describes the cubic finite

element method that is used to obtain the solutions of the fourth-order equations that couple

the TAE’s to the KAW’s. Section IV presents our numerical results of kinetic damping

calculations for a model tokamak equilibrium and for an experimental JET plasma where

the damping rate of an n=1 TAE was measured. In Sec. V, we discuss the relationship

between this work and previous work. Finally, conclusions are given in Sec. VI.

II. REDUCED KINETIC MODEL

We start from coupled reduced kinetic equations for shear Alfvén waves in toroidal

geometry in the limit of large aspect ratio and low beta:
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where Φm is the electric potential with the subscript m being the poloidal model number.

Here the operator Lm corresponds to the ideal MHD equation for shear Alfvén waves in
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a cylinder with m being the poloidal mode number, ω the mode frequency, VA the Alfvén

phase velocity, and k‖m = (n − m/q)/R. The operator Lm±1 comes from toroidicity with

ε̂ = 2(r/R+∆′), and ∆ being the Shafranov shift. Finally the fourth order term comes from

finite ion gyroradius effects, and the parallel electric field due to kinetic electron response

where ρ is the mass density, ρi is the ion gyroradius, ρs is the sound gyroradius, and Z(ξ)

is the plasma dispersion function defined as

Z(ξ) =
1√
π

∫ ∞

−∞
dy

e−y2

y − ξ
(3)

with ξ = (ω + iν)/(k‖ve), ν̂ = ν/(k‖ve), and ν the electron collisional frequency.

The coupled equations can be derived from quasi-neutrality equation by neglecting the

compressional Alfvén waves. The second order terms, which are of MHD origin, have been

derived by others. The derivation of the fourth order term is given in the Appendix.

The coupled equations describe shear Alfvén waves in the low-beta large aspect ratio,

circular tokamak limit. The fourth order term describes the kinetic effects of finite ion

Larmor radius and the perturbed parallel electric field response that arises from the kinetic

parallel electron dynamics which includes such effects as Landau damping, and collisions.

The equations reduce to previous reduced MHD equations without the kinetic term. The

model also reproduces the standard dispersion relation for kinetic Alfvén waves.

There are four boundary conditions for each poloidal component Φm. Two of them come

from the regularization condition at the origin r = 0. They can be expressed as Φm(0) = 0

and Φ′
m(0) = 0 for m 6= 1; and by Φm(0) = 0 and Φ′′

m(0) = 0 for m = 1 with the superscript

′ denotes radial derivative. To obtain the other two we take an ideal conducting wall at the

plasma edge so that at this boundary: Φm = 0 and E‖ = 0. From Eq. A8 in the Appendix,

it is shown that the latter condition reduces to ∇ · ρ∇Φm = 0.

III. Numerical Method

We have built a new code CubicKAE to solve Eq. (1) by using a cubic finite element

method. Using this finite element, Φm can be written as:
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Φm(x) =
∑

i

Am(i)h(x, i) (4)

where x = r/a is the normalized radial variable, h(x, i) is a cubic finite element defined

on a uniform radial grid xi = i/N with N being the total number of radial intervals and i

the radial grid index i varying from −1 to N + 1. Specifically, h(x, i) can be written as

h(x, i) = (
x− xi−2

∆
)3 for xi−2 < x < xi−1 (5)

h(x, i) = 4 − 6(
x− xi

∆
)2 + 3|x− xi

∆
|3 for xi−1 < x < xi+1 (6)

h(x, i) = −(
x− xi+2

∆
)3 for xi+1 < x < xi+1 (7)

h(x, i) = 0 for x < xi−2 or x > xi+2 (8)

where ∆ = 1/N is the distance between neighboring grid points. Figure 1 shows a

typical finite element and its radial derivatives. Note that it is continuous up to the second

derivative.

Using Eq. (3), the coupled equations (1) can be transformed into a matrix equation as

BX = λCX (9)

where B and C are two M by M matrices with M = K(N − 1), K is the number of

poloidal modes, X is the eigenvalue vector, and λ = ω2 is the eigenvalue. Equation (9) can

be obtained by multiplying Eq. (1) by h(x, i) for each i and integrating over the whole radial

domain. Finally it should be noted that our coupled equation cannot be exactly cast into a

linear eigenvalue matrix equation because of complex dependence of the plasma dispersion

function on the eigenvalue λ = ω2. However, all other dependences on λ are linear as written

in Eq. (1). Thus, Eq. (1) can be cast into the matrix form of Eq. (9) where the Matrix B

depends on λ. Fortunately this dependence of B on λ is rather weak and Eq. (9) can be

solved iteratively.

The code CubicKAE has been benchmarked for a uniform cylindrical plasma where an

analytic solution of Eq. (1) can be obtained. We will also show below that the numeri-

cal results of kinetic damping also agree well with the analytic results of TAE’s radiative

damping.
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III. KINETIC DAMPING OF TAE

Here we apply CubicKAE code to study kinetic damping of TAE modes in a tokamak

plasma. We will first consider a model tokamak equilibrium for which the analytic results are

available as a benchmark for our code. Secondly, we will apply our code to a JET discharge

where TAE damping rates were measured.

For the low beta, large aspect ratio (R/a = 12.5) and circular flux surface tokamak case,

we take the q profile as parabolic with q(0) = 1.05 and q(a) = 1.6, the profile of density

and temperature profile as uniform. We consider an even n=2 TAE mode located near the

q=1.25 surface. When we compare the numerical results of this mode with analytic results,

we simplify the kinetic coefficient gKm in Eq(1) to be

gKm = ρ2
i (1 − iν̄)ω2

TAE/v2
A (10)

where ωTAE = VA/(2qgapR)(with qgap = 1.25) is the nominal TAE mode frequency,

and ν̄ is a small normalized dissipation parameter due to electron Landau damping and

collision. In this model calculation, we set ν̄ = 0.1. Figure (2) shows the MHD (i.e., ρi = 0)

eigenfunction for the radial electric field Er = −dΦ/dx with the eigenvalue λ = 0.1475 (which

corresponds to ω/ωTAE = 0.96). Figure (3) shows the corresponding kinetic eigenfunction

at ρi/a = 0.002. It is evident that TAE is coupled to kinetic Alfvén waves and the short

wavelength oscillation decays away from the gap location. This feature is consistent with the

theory of radiative damping of the TAE. Figure (4) plots the normalized kinetic damping

rate γ/ω as function of the gyroradius ρi for both numerical results(solid line) and from an

analytic WKB analysis (dashed line). We observe that numerical values agree quite well

with the analytic results for radiative damping. This agreement further validates our code.

We now apply our model to the experimental JET plasma where damping rates of an

n = 1 were measured. For a specific calculation we choose parameters and profiles of JET

discharge (#38573) at t = 5sec, where: B = 2.56T , ne(0) ∼ ni(0) = 1.75e13cm−3, Te(0) =

2.3kev, Ti(0) = 2.3kev, q(0) = 1.36, and q(a) = 4.6. The plasma density, temperature and
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safety factor profiles are shown in Fig. 5 and 6. Figure 7 shows the corresponding n = 1

continuum spectrum. We note that the continuum gap is open through the entire plasma.

This can arise because the plasma edge density is taken to be finite (ne(a)/ne(0) ∼ 0.07 in

Fig. (5)). As a result, when the fourth order kinetic term is set to zero, a discrete MHD TAE

is found with a real eigenvalue λ = 0.118. Figure 8 shows the eigenfunction of this MHD

mode. Figure 9 plots the corresponding kinetic eigenfunction for ρi/a = ρs/a = 0.006. We

observe that overall structure of the kinetic eigenfunction is similar to the MHD one, but the

kinetic eigenfunction has extra short wavelength oscillations near the q=1.5 gap location due

to coupling to kinetic Alfvén waves. The calculated kinetic damping is shown in Fig. 10 as

a function of the normalized gyroradius ρi/a (We set ρs = ρi in this parameter scan). At the

experimental value of ρi = 0.003, the damping rate is about 0.1% which is much smaller than

the measured damping rate of 1.0%. We remark here that both the calculated damping rates

and kinetic mode structures are consistent with local analytic model of radiative damping.

The damping is small due to small kinetic parameters of ρi and ρs.

Since the kinetic damping can be sensitive to variation of plasma profiles, we have con-

ducted a sensitivity study of the damping rate over a wide range of plasma parameters and

profiles. An example of such a study is given in Fig. 11 which plots damping rate as function

of q(0). We see that within the range of 1.25 < q(0) < 1.45, the damping rate remains very

small (γd/ω ∼ 0.1%. It should be pointed out that in all cases studied, the short wave length

oscillations always appear near the main gap location (at q = 1.5). There is no apparent

mode conversion to kinetic Alfvén waves near the center of plasma away from the main gap

location as found in Ref. 11. Furthermore, there is no apparent mode conversion to KAW

near the edge.

We now consider the sensitivity of the damping rate to the edge density. Specifically we

have modified the density profile so that the plasma density can be zero at the edge. Figure

12 plots the modified density profile (dashed line) as well as the original density profile (solid

line). Note that the new density profile goes smoothly to zero near the edge. We note that a

zero edge density has a physical basis because the plasma density will fall to zero beyond the
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last closed flux surface. This use of a zero edge density is a rough but simple way to model

the scrape of layer region of the plasma. As a result of zero edge density, the continuum

gaps cannot remain open throughout the entire plasma as can be observed in Fig. 13 and

thus continuum resonances arise near the edge. Figure 14 shows the corresponding kinetic

eigenfunction (at q(0) = 1.35). Indeed the eigenfunction exhibits sharp oscillations near

the continuum resonance especially for the m=4 component. The calculated eigenvalue is

λ = 0.119 − 0.0012i which corresponds to a damping rate of γd/ω = 0.5%. We note that

this damping rate is significantly higher than found in the previous calculation and is about

half the measured damping rate of 1.0%.

In addition to the sensitivity of the damping to the edge density profile, other edge

effects should be important. These include,, the edge q-variation and open field line effects

of the scrape-off plasma. These ”small” edge effects will be a challenge to calculate in a

quantitatively accurate manner and we will need a more realistic code than we are presently

using to achieve precision in the damping rate prediction. For now, we have limited ourselves

to the observation that the sensitivity of damping to the edge density can lead to damping

rates comparable to what is observed experimentally.

A word on numerical resolution is in order here. In above calculations, we typically use

five poloidal modes (m = 1 ∼ 5) and 600 radial grid points. We find that the calculated

damping rate is well converged at this resolution. Up to 9 poloidal modes and 1000 radial

grid points were used in our convergence study.

IV. COMPARISON WITH OTHER WORK

To summarize our results, our global kinetic model recovers the analytic ”radiative”

damping results of TAE for a model large aspect ratio tokamak equilibrium. We have

calculated damping rates of an n=1 TAE for an experimental JET plasma with two density

profiles: one with finite edge density and one with zero edge density. For the former case,

the continuum gaps are open throughout the entire plasma and the calculated damping
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rates are much smaller than the measured value. For the latter case with zero edge density,

the calculated damping rate increases substantially due to continuum resonances that then

appears near the plasma edge.

A. Jaun et al. [11] has previously calculated, using waves driven by an external antenna,

the kinetic damping for the JET discharge with the same parameters and profiles, including

a finite edge density, as studied in this work. The calculated kinetic damping rates in their

work are substantially larger than what has been reported here. In Ref. [11], it is claimed

that the dominant damping mechanism arises from mode conversion to kinetic Alfvén waves

that occurs near the center of plasma. This claim is supported with numerical which exhibit

short wavelength oscillations near the center of the plasma (see Fig. 4 of Ref. 11). In

contrast, we did not find any such nonlocal mode conversion away from the main continuum

gap (i.e., at q=1.5) in all cases studied. We only find mode conversion to KAW arises near

the main gap location where the mode peaks and has its shortest MHD spatial structure and

this conversion is consistent with the predictions of analytic theory. As a result, when we use

a finite edge density, the damping rate we find is much smaller than that found in Ref.( [11]

). We can only conjecture about what causes the discrepancy between the two results. Both

our models appear to address the same key physics issues. Jaun et al. used a gyrokinetic-

MHD model based on expansion of ion gyroradius up to second order. The model includes

both shear Alfvén waves and compressional Alfvén waves and is valid for finite aspect ratio

numerical equilibria. Our model includes the similar kinetic physics, although only shear

Alfvén waves are included and toroidicity is retained only up to first order of r/R. We

believe that these differences between our models should not lead to significant differences

in the mode conversion process associated with the plasma core.

One possibility for the discrepancy is that the mode found by Jaun et al. is mainly

a kinetic Alfvén mode rather than a kinetically modified TAE found by us. He uses an

antenna code to excite oscillations and it is conceivably that the excitations he finds are

not dominated by a single TAE mode as is commonly assumed. It should be noted that

we have also found many other kinetic eigenmodes besides the least damped kinetic TAE
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mode. These kinetic modes have mode structures dominated by short wavelength kinetic

Alfvén waves and consequentially their damping rates are much larger.

In addition there is a technical difference in the treatment of boundary conditions at

the magnetic axis that can conceivable cause for the discrepancy of our result with that

found in Ref. [11]. In our technique we use a modal expansion in poloidal angle, which

produces singular operator for each harmonic at the magnetic axis which enforces the choice

of regularity for the boundary condition. In Juan’s work a finite element method is used to

represent the plasma wave operator without any poloidal angle decomposition. It is unclear

whether the resolution used in Jauns work is adequate for resolving the poloidal and radial

mode structure near the center.

The TAE damping in JET plasmas has also been considered by Borba et al. [12] where

the CASTOR [13] code was used to evaluate the damping rates as determined from the re-

sponse to an antenna situated in the vacuum. CASTOR is a full geometry MHD code that

has been generalized to include ”complex resistivity ” that describes conventional resistivity

plus the kinetic effects from the parallel electron dynamics and and finite ion gyro-radius. As

in our work, no obvious mode conversion was observed near the magnetic axis. Nonetheless,

they found for a JET ohmic discharge(slightly different from our case), that the calculated

damping rates were γd/ω ∼ 1.0% which is comparable to the experimental measurement.

Such a large damping rate was at first somewhat surprising to us because the continuum

gaps are wide open throughout the entire plasma and in the published eigenmode structure

(See Fig. 8 of Ref. 13) there are no obvious short wavelength oscillations indicating mode

conversion to kinetic Alfvén waves. However, upon close examination of the mode struc-

ture near the edge, short wavelength oscillations can be found (they were clearer when the

derivative of the eigenfunction was shown to us) and it was claimed that the oscillations lead

to mode conversion to KAW near the edge of the plasma which is the main contribution

to the damping rate that was reported. Thus, our results correlate with Borba et al. in

that both of our studies do not produce significant KAE mode conversion near the center

of plasma. However, as we have found insignificant mode conversion arising from the edge
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of the plasma when the TAE gaps were open, we need to determine what is the essential

difference of our results of our model from the work of Borba, et. al. who find that the

dominant damping mechanisms come from this region. In Borba’s work there was a need

to couple the response inside the plasma to the vacuum response where the antenna was

located. To do this the boundary condition for an resistive MHD plasma was used between

the plasma and vacuum interface. It is conceivable that this boundary condition together

with compressional Alfvén wave coupling, that is in both Jaun’s and Borba’s codes, causes

mode conversion to Kinetic Alfvén waves near the edge. Furthermore, Borba’s work includes

full toroidal effects which are not included in our study, and perhaps this difference is a cause

for significant discrepancy. To obtain a consistent edge boundary condition we have taken

the plasma to be in contact with a physical conducting wall at the edge where the density

can be finite. Surprisingly, only insignificant, if any, mode conversion arises with such a

boundary condition and this is apparently due to the imposition of the zero parallel electric

field at the wall We have shown in calculations not included here that for some other type

of boundary conditions, both analytically and numerically, that mode conversion can occur

near the edge and this results in larger damping rates

V. CONCLUSIONS

In conclusion, we find that in our model set of equations there is negligible mode conver-

sion from TAE to KAW near the center of plasma for the parameters and profiles of a JET

plasma. When a small but finite plasma edge density is taken the calculated kinetic damping

rates are much smaller than the measured values when there are no continuum resonances.

However, when the edge density is taken small enough, our model set of equations produce

a damping of about half of the experimental damping rate due to the continuum damping

that arises. We believe that in the JET experiment the main damping mechanisms are likely

to arise from the wave interactions with the plasma in the edge region.

Our results show significantly less mode conversion near the magnetic axis or near the
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edge than other studies [11,12]. Clearly more work is needed to better understand the root

cause of these discrepancies and how to describe the wave properties at the plasma edge in

a more realistic manner.

The authors gratefully acknowledge useful discussions with D. Borba, A. Jaun and S.

Sharapov. This work is supported by the U.S. Department of Energy under Contract No.

DE-AC02-76-CHO-3073.

APPENDIX A: DERIVATION OF KINETIC MODEL

Our aim is to obtain the higher order derivative terms (KAE terms) that need to be

added to the reduced MHD equations in the limit of a small inverse aspect ratio tokamak

when the plasma beta is insignificant. We will write the response in the shear slab limit and

then replace the MHD terms by the standard forms that include the geometrical effects (e.g.,

see Ref. 6). The ion FLR correction to the KAE term is well known [14] and our principal

goal is to obtain the form appropriate to the treatment of electrons, where the physics needs

to include collisions and electron Landau damping as well as the electron response when they

have thermal velocities greater or less than the wave phase velocity along the magnetic field

(the former limit is generally appropriate in most of the core of the plasma while the latter

limit can become appropriate near the edge and in small regions where k‖ is small). We

also assume that ω? << ω so that the diamagnetic drift terms of ions and electrons can be

neglected. In addition we neglect the magnetic compressional term, which is insignificant for

the waves considered here when the plasma is of negligible beta and when the wave-number

vector is nearly perpendicular to the magnetic field.

Let us take the perturbed electric field of the form E = E‖b − ∇⊥φ, where ∇⊥ =

∇− bb · ∇. The field amplitudes, E‖ and φ are taken to satisfy Poisson’s equation and

the parallel current equations. The parallel current, j‖, is assumed to be dominated by the

electron current, j‖e. In terms of the perturbed distribution, f , the two equations are given

by
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∑
j

ej

∫
d3vfj = −∇2

⊥φ + ik‖E‖ (A1)

∇2
⊥(E‖ + b · ∇φ) = −4πiω

c2
j‖ (A2)

and fe is taken to satisfy the Vlasov equation with collisions

−i(ω − k‖v)f − e
E‖v‖
Te

fM = −ν(f − δne

ne
fM ) (A3)

where e is the electron charge, fM is an equilibrium Maxwellian distribution,

fe =
ne

(πv2
e)

3/2
exp(−v2

v2
e

) (A4)

where Te = mev
2
e/2 and ν is the electron collision frequency, and δne is the perturbed

electron density. For simplicity we have neglected cross field derivatives in the Vlasov equa-

tion because cross field drifts from electrons and ions cancel to the leading order.

To solve for j‖e, we use that Eq. (A3) leads to the continuity relation, j‖e = eωδne/k‖,

so that we can solve Eq. (A3) for δne =
∫

d3vfe and then construct j‖e. After some algebra

we find,

4πj‖e = −2iω2
peω

k2
‖v

2
e

1 + ξZ(ξ)

1 + iν̂Z(ξ)
E‖ (A5)

where

Z(ξ) =
1√
π

∫ ∞

−∞
dy

e−y2

y − ξ
(A6)

with ξ = ω/(k‖ve) + iν̂ and ν̂ = ν/(k‖ve). Substituting Eq. (A5) into Eq. (A2) yields

the relation,

[
c2∇2

⊥ + 2ω2
pe(

ω

k‖ve
)2 1 + ξZ(ξ)

1 + iν̂Z(ξ)

]
E‖ = −ic2∇2

⊥(k‖φ) (A7)

We will discard the first term in the bracket on the left hand side of the equation as we

assume that E‖ << −ik‖φ, in accord with the usual MHD conditions.

The evaluation of the charge density in the Poisson equation is standard and it yields,
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4π
∑
j

ejfj = ∇⊥ ·
ω2

pi

ω2
ci

· ∇φ− i
2ω2

pi

k‖v2
e

1 + ξZ(ξ)

1 + iν̂Z(ξ)
E‖ = −∇2

⊥φ + ik‖E‖ (A8)

Discarding the last term on the right hand side, we then find by eliminating E‖ in the

substitution of Eq.(A7) into (A8),

k‖∇2
⊥

k‖v2
e

2ω2
pe

1 + iν̂Z(ξ)

1 + ξZ(ξ)
∇ · ω2

pi

ω2
ci

∇φ +∇⊥ · ω2

v2
A

∇⊥φ− k‖∇2
⊥(k‖φ) = 0 (A9)

If we now match this form of the equation to one where the MHD equations are derived

with a serious consideration to geometry we arrive at the equations presented in the text.

We note that Eq. (A9) together with finite ion Larmor radius effects gives the following

local dispersion relation for kinetic Alfvén waves:

ω2 = k2
‖v

2
A(1 +

3

8
k2
⊥ρ2

i +
1

2
k2
⊥ρ2

s

1 + iν̂Z(ξ)

1 + ξZ(ξ)
) (A10)

In the limit of zero collision and ξ << 1, Eq. (A10) reduces to the well known dispersion

relation for kinetic Alfvén waves:

ω2 = k2
‖v

2
A(1 +

3

8
k2
⊥ρ2

i +
1

2
k2
⊥ρ2

s) (A11)

Furthermore, in the limit of strong collision, ν >> ω and ν >> k‖ve, Eq. (A9) reduces to

resistive MHD model.

Finally, it should be pointed out our kinetic model gives a finite perpendicular wavelength

at k‖ = 0 instead of infinity wavelength from the standard kinetic Alfvén wave dispersion

relation (Eq. A11).
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FIGURES

FIG. 1. A typical cubic finite element h(x, i) and its first and second derivative as function of x.

FIG. 2. Radial electric field of an n = 2 MHD TAE as function of radius for poloidal component

m = 2(solid line) and m = 3(dashed line).

FIG. 3. Radial electric field of an n = 2 kinetic TAE as function of radius for poloidal compo-

nent m = 2(solid line) and m = 3(dashed line).

FIG. 4. Kinetic Damping of the n=2 TAE as function of normalized gyroradius ρi/a obtained

from numerical calculations(solid line) and an analytic radiative damping model(dashed line).

FIG. 5. the normalized plasma mass density (ρ(x)/ρ(0), solid line) and temperature

(T (x)/T (0), dashed line) profiles of a JET discharge(#38573) at t = 5sec.

FIG. 6. Safety factor profile q(x) of a JET discharge(#38573) at t = 5sec.

FIG. 7. The n=1 shear Alfvén continuum frequency λ = ω2/ω2
A as function of plasma radius

(ωA = vA(0)/R0) correponding to plasma profiles given in Fig. 5 and 6.

FIG. 8. Radial electric field of an n = 1 MHD TAE as function of radius for poloidal component

m = 1(solid line), m = 2(dashed line), m = 3(dashed-dot line), m = 4(solid line), and m = 5

(dashed line) obtained with profiles given in Fig. 5 and 6. The lines are also marked with poloidal

mode numbers.

FIG. 9. Radial electric field of an n = 1 kinetic TAE as function of radius for poloidal compo-

nent m = 1(solid line), m = 2(dashed line), m = 3(dashed-dot line), m = 4(solid line), and m = 5

(dashed line) obtained with profiles given in Fig. 5 and 6. The lines are also marked with poloidal

mode numbers.
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FIG. 10. Kinetic Damping rate of the n=1 TAE as function of normalized gyroradius rhoi for

profiles in Fig. 5 and 6.

FIG. 11. Kinetic Damping rate of the n=1 TAE as function of q(0) for profiles in Fig. 5 and 6.

FIG. 12. Comparison of density profiles with finite(solid line) and zero(dashed line) edge density.

FIG. 13. The n=1 shear Alfvén continuum frequency λ = ω2/ω2
A as function of plasma radius

correponding to zero edge density.

FIG. 14. Radial electric field of an n = 1 kinetic TAE as function of radius for poloidal compo-

nent m = 1(solid line), m = 2(dashed line), m = 3(dashed-dot line), m = 4(solid line), and m = 5

(dashed line) for zero edge density. The lines are also marked with poloidal mode numbers.
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Fig.2, Fu, PoP

0 0.2 0.4 0.6 0.8 1
−15

−10

−5

0

5

x

E
r

19



Fig.3, Fu, PoP
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Fig.4, Fu,
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Fig.5, Fu, PoP
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Fig.6, Fu, PoP
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Fig.7, Fu, PoP
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Fig.8, Fu, PoP
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Fig.9, Fu, PoP
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Fig.10, Fu, PoP
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Fig.11, Fu, PoP
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Fig.12, Fu, PoP
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Fig.13, Fu, PoP
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Fig.14, Fu, PoP
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