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Abstract. A series of experiments was conducted to investigate the combined utilization of 
HHFW and NBI auxiliary heating in NSTX plasmas. A modest increase of the total stored 
energy coincident with a near doubling of the neutron production rate is observed when NBI 
heating is added to HHFW in L-mode plasmas. An increase in the core electron temperature is 
also observed. On the other hand, essentially no stored energy augmentation nor neutron 
production rate enhancement is observed when applying HHFW during the “H” phase of NBI 
driven H-mode plasmas. Spectroscopic measurements of the edge carbon line radiation indicate 
an unpredicted ion temperature increase, suggesting that edge effects are reducing the amount of 
HHFW power reaching the plasma core.  

Keywords: NSTX HHFW NBI 
PACS: 52.50 Qt; 52.50 Gj 
  

INTRODUCTION 

High-Harmonic Fast-Wave (HHFW) constitutes an integral component of the 
NSTX auxiliary heating program, where it complements neutral beam injection (NBI).  
With a principal goal of current drive1, HHFW has already demonstrated electron 
heating when applied to ohmic plasmas2 and can also induce H-mode operation3 
Details of the 30-MHz rf system can be found elsewhere4. In the following, we 
describe experimental attempts at combining HHFW and NBI heating, done with the 
goal of expanding NSTX’s operational envelope. The deuterium plasmas discussed 
here have a toroidal field of 0.44 T at the geometric center and a plasma current of 0.8 
MA with a flattop starting at 0.2 s. The outer gap is 3-4 cm and the beam energy has 
been reduced to 70 keV (from typical 80-90 keV) to prevent strong plasma-antenna 
interaction. The antenna phasing creates launch spectra with k//  = 14 m-1 or k//  = 7 m-

1. 
 

HHFW IN NBI L-MODE PLASMAS 
Figure 1 shows temporal overlays of plasma parameters for two discharges: one 

using combined HHFW and NBI heating is displayed with solid lines; the other using 
NBI only is shown with dashed lines. The neutron production rate, Sn, and the heating 
waveforms are shown with arbitrary scaling. The Hα traces are also shown for  
reference.   A power ramp initiates the HHFW pulse, reaching 2.9-MW flattop 
approximately 0.1 s before the NBI onset, which has a flattop power of 1.4 MW; the 



 

reference NBI-only 
discharge has the same 
NBI. Both the central 
electron temperature, 
Te0, and the stored 
energy Wmhd respond to 
HHFW heating prior to 
NBI. Te is obtained 
from Thomson 
scattering5 and Wmhd 
from EFIT6 equilibrium 
calculations. The NBI-
only plasma has a 
similar rate of rise for 

Te0 and Wmhd except for 
being slightly delayed. 
There is a higher 
neutron production 

when HHFW is combined with NBI: Sn increases by a factor ≈ 2 compared to the 
NBI-only case. Keeping in mind that the neutron production is dominated by “beam 
target” nuclear reactions for these “low” temperature plasmas, the near doubling of Sn 
indicates an interaction between the HHFW and the fast ions of NBI origin7. 
Observation of the Hα traces reveals that both discharges dither into H mode at t ≈ 0.2 
s, before entering longer lasting H phases at t ≈ 0.24 s.  

Figure 1.  Plasma parameter Te0, Wmhd, Sn, Hα and heating powers 
HHFW, NBI time evolutions: solid lines, discharge with combined 
HHFW and NBI; dashed lines, reference NBI-only discharge. k//  = 
14 m-1.. 

Figure 2 shows a comparison between the Te profiles for these two discharges at t = 
0.193 s, slightly before the Te0 increase saturation. While the profiles overlay well in 
the edge regions, the core region shows a marked increase for the HHFW heated 
plasma, with Te0 being 0.2 keV above the reference profile. It generates a Te profile 
with internal-transport-barrier like ∇Te as seen at R ≈ 55 cm and R ≈ 135 cm.  
 
 

 
HHFW IN NBI H-MODE 

PLASMAS 
 
Figure 3 shows temporal overlays 

similar to Fig. 1, but for cases where 
HHFW power is applied after an H-
mode transition produced by NBI. k//  
= 7 m-1. The early NBI heating makes 
use of two sources to ensure H-mode 
access.  HHFW starts at 0.24 s after 
the H-mode transition time of ≈ 0.2 s. 
The maximum NBI and HHFW 
FIGURE 2.  Te profile overlay at t = 0.31 s for 

combined HHFW and NBI, solid line; NBI 
heating, dashed line. k//  = 14 m-1.. 



 

powers are ≈ 3.0 MW. 
One can see that, in 
contrast to the previous 
case, parameters of this 
discharge are essentially 
not modified by the 
application of HHFW. 
The Te , Wmhd and Sn 
overlay well, suggesting 
that the HHFW power 
does not reach the main 
plasma column. In 
particular, Sn, which 
appeared to be a 
sensitive indicator of 

HHWF core penetration 
in the previous case, does 
not show significant 
increase, except for times 

0.26-0.35 s, when Sn is higher for the HHFW heated discharge.  

FIGURE 3.  Plasma parameter Te0, Wmhd, Sn, Hα and heating 
powers HHFW, NBI time evolutions: solid lines, discharge with 
HHFW applied to a NBI driven H-mode; dashed lines, reference 
NBI-driven H-mode discharge. k//  = 7m-1. 

We can see in Fig. 4 an overlay of Te profiles taken at t = 0.310 s roughly in the 
middle of the enhanced neutron production interval. No significant electron heating is 
observed. While a small amount of HHFW power appears to briefly reach the plasma 
core causing a modest neutron signal enhancement, no bulk electron heating occurs. 
Comparisons with other discharges suggest that edge effects, e.g. fueling, might be 
responsible for this small neutron production enhancement. 

 
But edge measurements show HHFW does heat ions. One can see in Fig. 5 a time 

evolution of Te and Ti measured at major radius R ≈ 145 cm. Ti is obtained by edge 
spectroscopy on the carbon impurity8. Similarly solid lines correspond to HHFW 

combined with NBI, while dashed lines 
correspond to NBI-only reference 
plasma.  The ion temperature shown 
here corresponds to a “poloidal” 
sightline, and is higher than that from a 
“toroidal” sightline (not shown) during 
HHFW operation. Parametric decay of 
the pump wave into IBW has been 
suggested as a means by which power 
is delivered to the edge ions. More 
details can be found elsewhere9. 
 

CONCLUSIONS 
FIGURE 4.  Te profile overlay at t = 0.31 s: 
solid line, combined HHFW and NBI, heating;  
dashed line, NBI heating. k//  = 7m-1. 

 
The combination of HHFW and NBI 
presents challenges. Depending on 



 

condition, a modest or 
no increase of Wmhd is 
observed although the 
HHFW power is 
greater or equal to that 
of NBI. This result can 
be partly explained by 
edge parasitic rf power 
absorption through 
parametric decay and 
the generation of IBW, 
which deposit power 
into the edge ions. 
Based on helium 
discharges,  a few tens 

of percent of HHFW 
incident power can be  
diverted to the low-
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FIGURE 5.  Te and Ti  time evolutions at R ≈ 145 cm:  solid 
lines,  combined HHFW and NBI heating; dashed lines , NBI
heating.  k//  = 7m-1. 
confinement peripheral 
gion. The presence of NBI generated fast ions creates further hurdles: Fast ions are 
celerated by HHFW which, while increasing the neutron production, reduces the 

ower available for direct HHFW electron heating and potential current drive. 
urthermore the high NBI energy in relation to the magnetic field strength necessitates 
ecial care in order to reduce plasma-antenna interaction. More work is needed 

efore a complete understanding of the physics involved can be obtained, and a 
rategy is developed to improve on the performance of these plasmas. 
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