
Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073.

Princeton Plasma Physics Laboratory

Effect of Ambipolar Plasma Flow
on the Penetration of Resonant Magnetic

Perturbations in a Quasi-axisymmetric Stellarator

A. Reiman, M. Zarnstorff, D. Mikkelsen, L. Owen
H. Mynick, S. Hudson, and D. Monticello

April 2005

PRINCETON PLASMA
PHYSICS LABORATORY

PPPL

PPPL-4064 PPPL-4064



PPPL Report Disclaimers 
 

Full Legal Disclaimer 
 This report was prepared as an account of work sponsored by an agency of the United 
States Government. Neither the United States Government nor any agency thereof, nor any 
of their employees, nor any of their contractors, subcontractors or their employees, makes 
any warranty, express or implied, or assumes any legal liability or responsibility for the 
accuracy, completeness, or any third party’s use or the results of such use of any information, 
apparatus, product, or process disclosed, or represents that its use would not infringe 
privately owned rights. Reference herein to any specific commercial product, process, or 
service by trade name, trademark, manufacturer, or otherwise, does not necessarily 
constitute or imply its endorsement, recommendation, or favoring by the United States 
Government or any agency thereof or its contractors or subcontractors. The views and 
opinions of authors expressed herein do not necessarily state or reflect those of the United 
States Government or any agency thereof. 
 
Trademark Disclaimer 
 Reference herein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its 
endorsement, recommendation, or favoring by the United States Government or any agency 
thereof or its contractors or subcontractors. 
 
 

PPPL Report Availability 
 

 This report is posted on the U.S. Department of Energy’s Princeton Plasma Physics 
Laboratory Publications and Reports web site in Fiscal Year 2005. The home page for PPPL 
Reports and Publications is: http://www.pppl.gov/pub_report/ 
 
Office of Scientific and Technical Information (OSTI): 
 Available electronically at: http://www.osti.gov/bridge. 
 Available for a processing fee to U.S. Department of Energy and its contractors, in paper 
from: 
 U.S. Department of Energy 
 Office of Scientific and Technical Information 
 P.O. Box 62 
 Oak Ridge, TN 37831-0062 

 Telephone: (865) 576-8401 
 Fax: (865) 576-5728 
 E-mail: reports@adonis.osti.gov 
 
National Technical Information Service (NTIS): 
 This report is available for sale to the general public from: 
 U.S. Department of Commerce 
 National Technical Information Service 
 5285 Port Royal Road 
 Springfield, VA 22161 

 Telephone: (800) 553-6847 
 Fax: (703) 605-6900 
 Email: orders@ntis.fedworld.gov 
 Online ordering: http://www.ntis.gov/ordering.htm 



1 
 

Effect of Ambipolar Plasma Flow on the Penetration of Resonant Magnetic 
Perturbations in a Quasi-Axisymmetric Stellarator 

 
A. Reiman1, M. Zarnstorff1, D. Mikkelsen1, L. Owen2, H. Mynick1, S. Hudson1, D. Monticello1 

 
1Princeton Plasma Physics Laboratory, Princeton, NJ 08543 

2Oak Ridge National Laboratory, Oak Ridge, Tennessee 
 

email contact of main author: reiman@pppl.gov 
 

Abstract 
 
A reference equilibrium for the US National Compact Stellarator Experiment is predicted to be 
sufficiently close to quasi-symmetry to allow the plasma to flow in the toroidal direction with little 
viscous damping, yet to have sufficiently large deviations from quasi-symmetry that 
nonambipolarity significantly affects the physics of the shielding of resonant magnetic 
perturbations by plasma flow.  The unperturbed velocity profile is modified by the presence of an 
ambipolar potential, which produces a broad velocity profile.  In the presence of a resonant 
magnetic field perturbation, nonambipolar transport produces a radial current, and the resulting jxB 
force resists departures from the ambipolar velocity and enhances the shielding. 
 
 
1. Introduction 
 
Resonant magnetic perturbations pose a threat to flux surface integrity in toroidal magnetic 
confinement configurations.  The width of the island produced by a resonant perturbation scales as 
the square root of the perturbation amplitude, so that even a relatively small resonant magnetic 
perturbation at a rational surface can produce a substantial magnetic island.  There has therefore 
been great interest in the role that plasma flow can play in shielding out resonant perturbations at 
rational surfaces.[1,2]  This effect is believed to play a major role in reducing the vulnerability of 
present day tokamaks to resonant field errors, and an understanding of the effect will be important 
for setting field-error tolerances for ITER.  The flow shielding effect has been studied 
systematically in tokamak experiments where externally imposed magnetic field perturbations have 
been varied and their penetration threshold determined.[3,4,5]   
 
This paper considers the flow-shielding effect in a quasi-axisymmetric stellarator.  Quasi-
axisymmetric stellarator configurations have drift trajectories that look like those in an 
axisymmetric configuration, and they allow undamped toroidal flow.[6]   In the limit of perfect 
quasi-axisymmetry, the flow shielding effect is predicted to look like that in a tokamak having the 
same parameters.  However, if we allow for the presence of non-quasi-symmetric ripple in the 
field, the radial transport is no longer intrinsically ambipolar, as it is in axisymmetric 
configurations.  This brings in an additional radial current which modifies the physics of the flow 
shielding.  The radial current produces a j x B torque that resists externally induced changes in 
the flow velocity and enhances the effectiveness of the shielding.  It also modifies the 
unperturbed rotation velocity of the plasma in the absence of a resonant perturbation.  Our 
modeling of these effects employs a 1D transport code[7], as well as the DEGAS code for 
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estimating the momentum transfer rate to neutrals, and the PIES code [8] for calculating the 
magnitude of the resonant perturbation. 
 
The work described in this paper focuses on a particularly interesting regime of intermediate ripple 
amplitude, where the deviations from quasi-symmetry are sufficiently large to substantially modify 
the flow-shielding effect, but where the configuration is nonetheless sufficiently close to quasi-
symmetry that the flow damping in the toroidal direction can be considered to be negligibly small 
compared to that in the poloidal direction.  A reference equilibrium for the US National Compact 
Stellarator Experiment (NCSX) is calculated to be in this intermediate regime, and the numerical 
calculations presented in this paper focus on that NCSX reference equilibrium. 
  
The three-dimensional NCSX device will have great flexibility for controlling resonant magnetic 
field components and investigating their interaction with plasma flow.  Comparison of theoretical 
predictions with experimental observations on NCSX, and with tokamak experiments having 
comparable plasma parameters, will contribute towards the goal of being able to reliably predict 
field error penetration thresholds. 
 
The NCSX, under construction at Princeton, is a quasi-axisymmetric stellarator designed to 
combine favorable features of advanced tokamaks with those of drift-optimized stellarators. [9-11] 
The NCSX configuration has been designed to have nested flux surfaces, incorporating several 
layers of defense against excessive magnetic island formation, but flow shielding could nonetheless 
have an impact on flexibility and on vulnerability to field errors.  The choice of the NCSX fixed 
boundary configuration was driven, in part, by calculations with the PIES code indicating that it 
has intrinsically nested flux surfaces.[9,12]  For the design of the NCSX coils to produce this 
configuration, an optimization code built around the PIES three-dimensional equilibrium code was 
used to reduce the magnitude of resonant components of the magnetic field while preserving 
desired engineering and physics properties.[12,13,14,15]  A series of calculations with the PIES 
code showed that this coil design process, which targeted the resonant components of the magnetic 
field in the NCSX reference equilibrium, also greatly reduced the island widths for a range of 
equilibria with varying profiles, betas, and coil currents.[12,16]  The NCSX design also 
incorporates two sets of trim coils to provide further control over resonant magnetic fields.  NCSX 
has also been designed to have a monotonically increasing ι (=1/q) profile to give neoclassical 
suppression of magnetic islands, and this is expected to further protect against magnetic island 
formation.  Nevertheless, to the extent that the plasma flow shields out residual resonant magnetic 
field components at rational surfaces, it will further improve the flexibility of the NCSX device to 
generate a range of configurations with nested flux surfaces, and it will further reduce the 
vulnerability of the NCSX device to field errors produced by finite tolerances in the construction 
and placement of the magnetic field coils. 
 
Section 2 of this paper will provide an introduction to the physics issues in the shielding of 
resonant magnetic perturbations by plasma flow in a quasi-axisymmetric stellarator.  The 
remaining sections will discuss the details.  The calculations described in this paper have been 
done for a reference β = 4% NCSX equilibrium whose properties are extensively discussed in a 
special volume of the journal Fusion Science and Technology devoted to the NCSX physics 
design.[17]  Figure 1 shows the shape of the plasma boundary at several poloidal cross sections 
separated by ∆φ = π/9.  (NCSX is a three period stellarator.)  Figure 2 shows the ι = 1 / q 
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(rotational transform) profile plotted as a function of the toroidal flux normalized to its value at the 
plasma boundary.  (Note that some authors use iota-bar rather than iota to denote 1 / q.) 
 
2. Shielding of Rational Surfaces by Plasma Flow in a Quasi-Axisymmetric Stellarator 
 
In an ideal plasma, reconnection is prohibited and the flux surfaces cannot be broken.  A surface 
current is induced at the rational surface that shields out resonant magnetic perturbations.  In the 
absence of plasma flow, the presence of even a small resistivity causes the surface current to decay, 
and allows the resonant field to penetrate the rational surface.  If flow is present at the rational 
surface, a localized current continues to be induced which partially shields out the resonant 
component of the field.  (The physics of this is perhaps seen more clearly in a reference frame 
moving with the plasma, where the resonant perturbation is time dependent.)  If the flow is 
sufficiently strong, only a very small fraction of the resonant field penetrates the rational surface.  
 
The induced current at the rational surface interacts with the remnant of the resonant field there to 
produce a j x B torque.  This electromagnetic torque opposes the motion of the plasma at the 
rational surface, and acts to slow the flow.  When the resonant perturbation amplitude exceeds a 
threshold value, the torque is large enough to locally suppress the plasma flow, allowing the 
resonant perturbation to fully penetrate the rational surface. 
 
Consider the case where a small perturbation of the magnetic field is turned on in a stellarator 
plasma that initially has nested flux surfaces.  Express the unperturbed magnetic field in magnetic 
coordinates: B0 = ∇Ψ0 x ∇θ + ι∇Ψ0 x ∇ϕ, where B0 is the unperturbed field, and Ψ0 is an 
unperturbed flux function satisfying B0·∇Ψ0 = 0.  Write B = B0 + δB, Ψ = Ψ0 + δΨ.  To first order 
B0·∇(δΨ) = -δB·∇Ψ0 .  In magnetic coordinates this can be expressed 
 
 B0·∇ϕ ( ∂ δΨ / ∂ϕ + ι ∂ δΨ / ∂θ )  =  -δB·∇Ψ0 . (1) 
 
Dividing by B0·∇ϕ and Fourier transforming, we get 

 
 (n - ι m) δΨnm = -(δB·∇Ψ0 / B0·∇ϕ)nm. (2) 

 
The nonresonant Fourier components just introduce small ripples in the flux surfaces.  If a resonant 
Fourier component is present (one satisfying n = ι m), the flux surface is broken and a magnetic 
island is produced. 
 
The response of a rotating plasma at the rational surface to an externally imposed resonant 
perturbation has been calculated theoretically for a variety of regimes and under a variety of 
assumptions.[1,18-23] These calculations have been done for either slab or cylindrical geometry.  
Because the local induced current is determined by the layer physics, these calculations are 
relevant for shaped tokamaks and for stellarators. 
 
The electromagnetic torque exerted on the rational surface by the resonant perturbation is opposed 
by a viscous torque produced by the plasma flow external to the surface.  (In a nonaxisymetric 
configuration there is in general also a direct j x B torque exerted on the boundary layer at the 
rational surface by the nonambipolar radial current.  This contribution to the torque is small for the 
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cases we consider in this paper.)  The threshold for resonant field penetration is determined by the 
relative magnitude of the electromagnetic torque and the viscous torque.  While the physics 
determining the magnitude of the electromagnetic torque is the same in tokamaks and stellarators, 
the physics determining the viscous torque is modified in a stellarator by the radial current 
produced by the nonambipolar transport.  In the absence of a resonant perturbation, this radial 
current produces an ambipolar potential and a corresponding contribution to the plasma flow.  
When a resonant perturbation is imposed, the electromagnetic torque causes the flow velocity to 
deviate locally from its ambipolar value.  The radial current arising from the resulting 
nonambipolar transport produces a j x B torque that opposes the electromagnetic torque and 
enhances the effectiveness of the shielding. 
 
Sections 3 and 4 discuss the calculation of the viscous torque for NCSX.  Section 3 discusses the 
ambipolar plasma flow in the absence of a resonant magnetic perturbation.  Section 4 discusses the 
viscous force that opposes the electromagnetic force produced by a resonant perturbation.  Section 
5 discusses the resulting penetration threshold for resonant magnetic perturbations. 
 
3. Unperturbed Ambipolar Plasma Flow in NCSX. 
 
In this section we calculate the plasma flow velocity profile in the absence of a resonant 
perturbation for our reference β = 4% NCSX equilibrium.  We first calculate the ambipolar 
potential and corresponding flow neglecting the effect of radial momentum diffusion.  We then 
bring in the effect of radial momentum diffusion (perpendicular viscosity) through the momentum 
diffusion equation.  Determination of the appropriate boundary conditions for the momentum 
diffusion equation requires a consideration of momentum loss at the plasma boundary, and for this 
purpose we calculate the interaction with neutrals and with the scrape-off layer.  Our analysis does 
not include a momentum source term due to neutral beams. It is planned to heat NCSX with 
balanced beams so as to minimize the associated current drive in the plasma core. 
 
3.1 Ambipolar Potential and Corresponding Plasma Flow Neglecting Radial Momentum 
Diffusion 
 
We solve for the temperature profiles and self-consistent ambipolar potential using a model [7] 
which consists of a set of one-dimensional transport equations in cylindrical geometry, with an 
assumed density profile. The thermal diffusivities are calculated as the sum of three contributions: 
neoclassical ripple transport, neoclassical axisymmetric transport, and an anomalous transport 
model with an adjustable coefficient.  The neoclassical ripple transport is calculated from a single 
helicity analytical neoclassical ripple model [24,25,26] using an effective helical ripple obtained 
from the full three-dimensional numerical equilibrium.  In particular, the calculation of the 
effective ripple in the 1/ν  regime uses a code developed by Nemov et al.[27]  The neoclassical 
axisymmetric transport is given by the Chang-Hinton formulation for a circular plasma cross 
section [28], using the same cross sectional area as the toroidal average of NCSX, with a correction 
factor incorporated to give agreement with an axisymmetric NCLASS[29] calculation.  Unlike 
many tokamaks,  stellarators often have experimentally determined thermal diffusivities that are 
approximately radially constant, and we adopt this simple model for the anomalous transport, with 
the anomalous diffusivity adjusted to match a target thermal <β> or H factor.  The transport model 
is described in more detail in Ref. [7].  The calculated electron and ion temperature profiles for our 
reference NCSX equilibrium are plotted in Fig. 3.  The assume density profile is shown in Fig. 4.  
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It is important to note that the thermal diffusivities are dominated by the contributions from 
anomalous and axisymmetric neoclassical transport, while only the helical neoclassical transport is 
expected to contribute to the non-ambipolar radial transport. By varying the effective helical ripple 
it should be possible to change the radial currents while not significantly affecting the thermal 
diffusivities [7]. 
 
In the absence of a radial electric field, the ions are lost more rapidly than the electrons, giving a 
net outward current.  The radial electric field, Er, builds up until it is sufficiently large to equalize 
the radial flux of the ions and electrons, jr = 0.  The calculated self-consistent ambipolar radial 
electric field is plotted in Fig. 4. 
 
In steady-state, the ion momentum equation determines the component of the flow perpendicular to 
the magnetic field: 2 2v / (1/ ) /i iB ne p B⊥ = × − ∇ ×E B B .  There is in addition a component of the 
flow velocity aligned with the magnetic field, v , and its magnitude is determined by the relative 
flow damping in the poloidal and toroidal directions.  As in a tokamak, the damping in the poloidal 
direction is strong.  The configuration is sufficiently close to quasi-axisymmetry that the flow 
damping in the toroidal direction is small.  This implies that the flow velocity in the poloidal 
direction can be taken to be zero to a good approximation.  In cylindrical geometry, we write 

ˆ ˆˆv vr b b⊥= × +v , where /b B= B , p tB Bθ φ= +B .  Imposing the constraint v 0θ = , we get 
v ( / )vt pB B ⊥= . 
 
NCSX has a strong axisymmetric component of shaping, with an ellipticity of 1.8, and it has an 
aspect ratio of 4.3.  We can ask what effect this geometry has on the calculation of the velocity 
driven by the ambipolar potential, whether there should be associated correction factors.  This 
question can be approached by considering the geometric effects on an axisymmetric field.  
Starting from the usual mixed representation for an axisymmetric field, ( )Fψ φ ψ φ= ∇ × ∇ + ∇B , 
it is straightforward to obtain a corresponding expression for the perpendicular component of the 
velocity, and to determine the parallel component of the velocity from the condition that vp = 0.  
We find ( ) p tv / v / /F B Bφ ψ ψ⊥ = ∇ = , and iv ( / / )R d d dp dφ ψ ψ≈ Φ − , where Φ  is the 
ambipolar potential.  It follows that our conclusions concerning the magnitude of the toroidal 
velocity are unaffected by the shaping. 
 
Our calculation of vφ  depends on the fact that the deviation from quasi-axisymmetry is sufficiently 
small that the flow damping in the toroidal direction may be neglected relative to that in the 
poloidal direction.  A criterion for the degree of quasi-axisymmetry required may be obtained by 
solving the momentum-balance equations in a flux surface.[30,31]  Working in Hamada 
coordinates, we write the ion flow as v v vθ φ

θ φ= +e e , with ,θ φe  the contravariant basis vectors in 
the poloidal and toroidal directions. The steady-state parallel force balance equation is 
0 = ⋅∇ ⋅ iB π , with πi the ion viscosity tensor.   In the Pfirsch-Schlüter and plateau regimes, one 

has v vθ φ
θ φµ µ⋅∇ ⋅ ≈ +iB π , and thus vθ/vφ ≈ µφ/µθ.  For a tokamak, axisymmetry implies µφ = 0, 

and thus vθ = 0.  A criterion for our calculation of φ ⋅e v  for a quasi-axisymmetric stellarator to be 
valid is 
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1 >> vθ/vφ = µφ/µθ. (3) 
In the Pfirsch-Schlüter regime, simple expressions for µθ,φ have been worked out[30] for model 
expressions for the magnetic field strength B. Taking a single helical component (m,n) with 
amplitude B0δ, one has B = B0[1 - ε cos(θ) - δ cos(mθ + nφ)], and 

 , 20 0
, ( )( , )

2
i i

ii ii

Bp B p B m n m n
B B

θ φ
θ φ

µ µµ ι δ
ν ν

∂⋅∇
= ≈ +

B . 

Here, µ0 = 4.095, νii is the ion-ion collision frequency, pi is the ion pressure, and ι ≡ q-1 is the 
rotational transform. Using this in Eq. (3) yields a ripple criterion for the validity of the analysis: 

 
2

2

( / )1
1
n m ∆

+ ∆
,                       (4) 

 
where 2 2 2( ) /m nq mδ ε∆ ≡ + . Fig. 5 is a plot of the effective helical ripple for the NCSX reference 
configuration.  The dominant contributions to the ripple come from m=2, n=1, and from m=3, n=2.  
The ripple criterion, Eq. (4), is adequately satisfied.  
 
3.2 Momentum Diffusion and Boundary Conditions: Interaction with Neutrals and with the 
Scrape-Off Layer 

 
The calculation thus far has not taken into account momentum diffusion.  We have taken the 
poloidal velocity to be zero because of the strong poloidal damping, and we only need to consider 
the toroidal component of the momentum diffusion equation.  We consider the momentum 
diffusion equation in a cylinder, where it takes the form: 

 z zv 1 v( ) r
d d dr j B
dt r dr dr θρ µρ= + .   (5) 

Here ρ is the plasma density, vz is the axial velocity, µ is the (anomalous) momentum diffusivity 
( µρ is the coefficient of perpendicular viscosity), and rj  is the current produced by nonambipolar 
radial transport.  In tokamak experiments, the anomalous momentum diffusivity has been found to 
be approximately equal to the anomalous cross-field thermal diffusion coefficient, and we assume 
that that is also the case here.  As mentioned above, stellarators often have experimentally 
determined thermal diffusivities that are approximately radially constant, and we adopt the simple 
model of taking µ to be radially constant.  For our reference NCSX equilibrium, µ ≈ 1.5 m2/sec. 
 
Equation (5) differs from the momentum diffusion equation in a tokamak by the presence of the 
last term, which is nonzero when the flow velocity on a flux surface is forced away from its 
ambipolar value.   
 
Eq. (5) must be supplemented by boundary conditions at the origin and at the edge.  At the origin, 
regularity requires zv / 0d dr = .  At the plasma edge, the boundary condition is determined by the 
interaction with neutrals and with the scrape-off layer, which produce a momentum flow through 
the plasma edge equal to 2

z4 v /aR d drπ µρ− , where a is the minor radius and R is the major radius.  
The momentum flow is equal to the total force exerted by the neutrals and scrape-off layer, which 
are taken to act on a radially narrow region at the plasma edge.  (We will justify this approximation 
below.) 
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Near the plasma edge, momentum is transferred to the neutrals primarily through charge exchange.  
Ionization reactions also must be taken into account, because they serve to impart some of the 
momentum picked up by the neutrals back to the ions.  To estimate the rate of momentum transfer 
to the neutrals we use the Degas code to do a Monte Carlo calculation for a model axisymmetric 
geometry.[32]   We use the φ = π /6 (bullet-shaped) cross-section for this purpose, as is appropriate 
for the expected initial placement of a limiter on NCSX. 
 
The momentum transfer to the neutrals is localized at the plasma edge, with the average 
momentum transfer rate in the zone 0.96 < r/a < 1 calculated to be about seven times as large as 
that in the zone 0.92 < r/a < 0.96.  The rate of momentum transfer to the neutrals can be expected 
to scale roughly linearly with the plasma velocity.  We write this momentum transfer rate as νnvz, 
where νn is a coefficient to be determined.  For an edge velocity of 290 km/sec, the integrated 
momentum transfer rate is calculated to be about 1.2 Newtons, corresponding to νn = 4 x 10-6 
kg/sec.  This gives the boundary condition a dvz(a) / d r = -κ vz(a), with κ ≈ 2. 
 
We next estimate the momentum transfer to the scrape-off layer.  We consider the case where there 
is a toroidal rail limiter.  Field lines outside the plasma edge intercept the limiter, with a connection 
length of L ≈ π R / ι, where ι ≈ 0.6 is the rotational transform at the plasma edge.  The ion mean 
free path is comparable to the connection length.  Particles outside the plasma edge are lost to the 
limiter in a time τ ≈ L / vti, so that the momentum loss rate in the scrape-off layer is approximately 
ρ vz / τ.  Combining this with momentum diffusion, and adopting a slab approximation (which is 
appropriate in the narrow scrape-off layer), we get z z( / )[ ( v / )] v /d dr d drµρ ρ τ= .  The velocity 
decays exponentially as a function of r in the scrape-off layer, vz(r) = vz(a) exp(-(r-a)/l).  The 
density obeys a similar equation, and it too decays exponentially in the scrape-off layer.  If the 
diffusion coefficients are equal, l ≈ 1.6 µτ .  Momentum is dissipated in the scrape-off layer at 

the rate z zv / .6 ( )v ( ) /
a

a aρ τ ρ µ τ
∞

≈∫ .  The momentum transfer rate is again of the form νn vz, 

with the scrape-off layer contribution to νn estimated to be roughly 0.6 ( ) /aρ µ τ .  The 
momentum transfer to the scrape-off layer is sensitive to the value of ρ at the edge.  For our 
assumed density profile ne(a) ≈ 1.5 x 1019 m-3, and we calculate κ ≈ 18.  For smaller values of 
ne(a), the momentum transfer to the scrape-off layer is correspondingly smaller, with the total 
momentum transfer rate bounded below by the contribution of the neutrals. 
 
Having determined the boundary conditions, we return to the solution of Eq. (5).  For this purpose, 
we must determine the dependence of jr on vz.  The radial current vanishes when vz has its 
ambipolar value, corresponding to the ambipolar value of the electrostatic potential.  We adopt a 
simple linear approximation for jr, interpolating between the values for Er=0 and for the ambipolar 
value of Er.  The last term in Eq. (5) can then be written in the form z( )[v v0( )]rj B r rθ α≈ − − , 
where v0 is the ambipolar value of vz (i.e. the value that vz assumes when Er has its ambipolar 
value).  Eq. (5) now assumes the linear form 

z z
z

v 1 v( ) ( )[v v0( )]d d dr r r
dt r dr dr

ρ µρ α= − −   (6) 

and can be solved numerically in a straightforward manner. 
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Fig. (6) shows numerical solutions for the steady-state velocity profile for three different values of 
κ.  The top curve corresponds to κ = 0, giving the velocity profile in the absence of momentum 
dissipation at the plasma edge.  The middle curve was obtained with κ ≈ 2, the lower bound on 
momentum dissipation due to collisions with neutrals.  The bottom curve corresponds to κ ≈ 18, 
the estimate for momentum dissipation in the scrape-off layer with the assumed value of ne(a).   
Because the ripple magnitude increases rapidly towards the plasma edge, the flow velocity profile 
is broad.  As the q profile evolves during startup, low order rational surfaces entering from the 
plasma boundary are particularly vulnerable to resonant magnetic perturbations.  The broad 
velocity profile in NCSX will provide relatively strong shielding for low order rational surfaces 
near the plasma edge, and this will potentially impact the options available for startup scenarios. 
 
4. Viscous Torque on Rational Surfaces 
 
When a resonant magnetic field perturbation is imposed on a rotating plasma, the resulting 
electromagnetic force slows the plasma rotation at the rational surface.  The electromagnetic force 
is balanced by a viscous force exerted by the neighboring plasma on the rational surface, which 
opposes the slowing of the plasma at the rational surface.  As the amplitude of the external 
perturbation is increased, the electromagnetic force increases, and the rotation velocity of the 
plasma at the rational surface decreases further.  The magnitude of the viscous force on the rational 
surface is determined by the momentum diffusion equation. 
 
In addition to the viscous force on the rational surface, there is also a direct j x B torque exerted by 
the current that arises from the non-ambipolar transport.  The total torque exerted directly by the 
radial current is obtained by integrating the torque density across the boundary layer at the rational 
surface.  For the case considered here, the viscous torque is estimated to be much larger than the 
torque exerted directly by jr. 
 
We again consider the reference NCSX equilibrium whose unperturbed velocity profile we 
discussed in the previous section.  The ι = 3/5 rational surface is of particular concern because of 
its low order and because of its proximity to external perturbations.  (It is located at r/a ≈ 0.8.)  The 
m=5, n=3 island proved to be the island that was the most difficult to suppress in the NCSX coil 
design process.  We consider here the resonant mode penetration at the ι = 0.6 rational surface in 
the presence of the ambipolar flow.  Assuming that an externally generated m=5, n=3 perturbation 
slows the rotation of the rational surface, we calculate the countervailing viscous force.  We solve 
the momentum diffusion equation for this purpose. 
 
The steady-state solution of Eq. (6) is obtained under the assumption that the electromagnetic force 
has slowed the rotation to a fraction of its ambipolar value.  Denote the velocity at the rational 
surface by vs, and the unperturbed velocity at the rational surface by vs0.  We consider the case 
where vs = vs0/2, and the case where vs = 0.  Figures (7) and (8) show, respectively, the 
corresponding solutions of Eq. (6) for κ ≈ 2 and κ ≈ 18.  In each plot, the top curve corresponds to 
the solution in the absence of an electromagnetic force, the middle curve corresponds to the 
solution when the velocity at the ι = 0.6 rational surface is slowed to half its ambipolar value, and 
the bottom curve corresponds to the solution when the rotation at the rational surface is entirely 
suppressed. 
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The viscous force exerted on the rational surface by the plasma flow is given by 
[ ]24 dv/drrRπ ρµ +

− , where [ ]dv/dr +
−  is the jump in the radial derivative of the fluid velocity across 

the associated boundary layer.  For κ ≈ 2, we calculate a[ ]dv/dr +
− ≈ 274 km/sec and 540 km/sec  

respectively for vs = vs0/2 and vs = 0.  For κ ≈ 18 we calculate a[ ]dv/dr +
−  ≈ 238 km/sec and 478 

km/sec respectively.  Relative to v0, the velocity on axis for the unconstrained velocity profile, we 
have a[ ]dv/dr +

− ≈ 3.4 v0 and 6.8 v0 for κ ≈ 2, a[ ]dv/dr +
− ≈ 3.5 v0 and 7.0 v0 for κ ≈ 18. 

 
We consider a simple model to compare the viscous force in a quasi-axisymmetric stellarator with 
that in a tokamak.  Fitzpatrick [18] writes 

v = v(0) + v(1),       (7) 
where v(0) is the velocity profile in the absence of the resonant perturbation, and he adopts the 
equation 

(1) (1)
z zv 1 v( )d d dr

dt r dr dr
ρ µρ=             (8) 

for the deviation of the toroidal velocity in a tokamak from its unperturbed value.  This is valid as 
long as the plasma flow is driven by a momentum source which is independent of v.  If we 
substitute Eq. (7) into Eq. (6), we get 

(1) (1)
(1)z z
z

v 1 v( ) vd d dr
dt r dr dr

ρ µρ α= − .               (9) 

Relative to the tokamak, the stellarator has an additional term (1)
zvα−  on the right hand side.  To 

get some insight into the effect of this term, we consider the simple model where µρ and α are both 
assumed to be independent of r.  The steady-state solutions of Eq. (9) are then the modified Bessel 
functions 0( /( ) )I rα µρ , 0 ( /( ) )K rα µρ .  For α >> µρ, these solutions have the asymptotic form 

1/ 4( / ) exp( /( ) ) / 2r rµρ α α µρ π  and 1/ 4 1/ 2( / ) exp( /( ) ) / 2r rµρ α π α µρ− , so that the perturbed 
velocity profile has a gradient scale length of 1/ 2( / )µρ α .  For α → 0, we recover the tokamak 
limit, where the scale length of the velocity gradient is comparable to r, so that the jump in dv / dr 
is of the order of v / r.  In a stellarator, the velocity gradient is affected by the magnitude of the 
non-ambipolar j x B force, so that the gradient scale length can be shorter, imparting greater 
stiffness to the flow velocity, and enhancing the shielding effect. 
 
5. Resonant Mode Penetration Threshold 
 
In mode penetration experiments on tokamaks where the amplitude of the external perturbation is 
gradually ramped up, it is found that the rational surface first slows to some fraction of its initial 
rotation frequency, and then abruptly ceases to rotate when the perturbation amplitude exceeds a 
threshold value.  The cessation of rotation is accompanied by a complete penetration of the 
resonant perturbation at the rational surface.  This is consistent with the predictions of theoretical 
calculations.  The magnitudes of the viscous and electromagnetic forces are functions of vs, and if 
vs > 0 it must satisfy Fvisc(vs) = Fem(vs).  There is predicted to be a threshold in the perturbation 
amplitude above which Fem(vs) exceeds Fvisc(vs) for 0 ≤ vs ≤ vs0, so that vs = 0 when the 
perturbation amplitude exceeds this threshold. 
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The magnitude of Fem scales as the square of the resonant perturbation amplitude, with the 
functional dependence of Fem(vs) (i.e. the shape of Fem(vs)) independent of the amplitude.  Our 
numerical solution shows that Fvisc(vs) is well approximated by a linear function of vs, as it is in a 
tokamak, so that while its amplitude may be quite different, the functional dependence on vs has 
not changed.  It follows that there is again a threshold value of the resonant perturbation amplitude 
above which Fem dominates Fvisc, and that at the threshold value vs is the same as in the tokamak.  
The resonant mode penetration threshold scales as Fvisc

1/2. 
 
To estimate the magnitude of the flow shielding effect for magnetic islands in NCSX, we compare 
with a resonant mode penetration experiment on DIII-D.[4]  The DIII-D reference case has been 
chosen to have similar parameters to those in our NCSX reference equilibrium.  It has 〈β 〉 ≈ 3.7%, 
〈ne〉 ≈ 5 x 1019 m-3, and an ellipticity κ ≈ 1.8.  Our reference NCSX equilibrium has 〈β 〉 = 4%, 〈ne〉 
= 6 x 1019 m-3, and an average axisymmetric component of ellipticity of 1.8.  The magnetic field of 
both the DIII-D reference shot and the NCSX reference case is 1.2 T.  The rotation frequency of 
the rational surface in the DIII-D reference shot is about 12 kHz.  For the NCSX case, the predicted 
rotation frequency ranges from about 9 kHz for κ ≈ 2 to about 7 kHz for κ ≈ 18.  DIII-D has R ≈ 
1.67 m and R/〈a〉 ≈ 2.1, while NCSX has R ≈  1.42 m and R/〈a〉 ≈ 4.3.  The experimentally 
observed penetration threshold in the DIII-D reference case is 4

21 10x4/ −≈BBr . 
 
6. Discussion 
 
The physics determining the penetration of a resonant magnetic perturbation in a stellarator differs 
from that in a tokamak due to the presence of a radial current produced by nonambipolar transport.  
As the electromagnetic force produced by the perturbation slows the rotation at the rational surface, 
the radial current driven by the resulting nonambipolar transport exerts a j x B force that resists 
departures from the ambipolar velocity and enhances the shielding effect.  The unperturbed 
velocity profile is also modified in a stellarator.  We have focused here on a particularly interesting 
regime, corresponding to an NCSX reference equilibrium, in which the configuration is sufficiently 
close to quasi-symmetry that the viscous damping in the toroidal direction is small, but the 
deviations from quasi-symmetry are sufficiently large to produce a substantial ambipolar flow, and 
a substantial modification of the flow-shielding effect.  Because the ripple magnitude increases 
rapidly towards the plasma edge, the flow velocity profile is broad.  The strong shielding for low 
order rational surfaces near the plasma edge will have potential implications for startup scenarios. 
 
A reference DIII-D shot with parameters similar to those of our reference NCSX equilibrium has 
been reported to have a penetration threshold of 4

21 10x4/ −≈BBr .[4]    Calculations with the PIES 
code found that the resonant m = 5, n = 3 field component associated with an initial NCSX coil 
design algorithm that did not explicitly target resonant field error reduction was 

310x3.1/ −≈BBrnm .  This is likely above the penetration threshold, even including the 
enhancement of the shielding due to nonambipolarity, and a further coil optimization using the 
PIES code to reduce the magnitude of the resonant field components was a prudent step in the coil 
design process. 
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To the extent that the plasma flow shields out residual resonant magnetic field components at 
rational surfaces, it will further improve the flexibility of the NCSX device, and it will further 
reduce the vulnerability of the NCSX device to field errors. 
 
The flexibility of the nonaxisymmetric NCSX device will potentially allow a variety of 
experiments to clarify the physics of the shielding of resonant magnetic perturbations by plasma 
flow.  Control over the magnitude of the non-quasisymmetric ripple will provide a knob for 
adjusting the magnitude of the nonambipolar current and the toroidal flow damping.  Moreover, 
the thermal diffusivities are dominated by the contributions from anomalous and axisymmetric 
neoclassical transport, so they will not be significantly affected by modest changes of the 
effective helical ripple.  The externally generated rotational transform will allow control over the 
q profile independent of the current profile.  Simultaneous adjustment of the neutral beam power 
and the ohmic current drive will allow adjustment of the rotation frequency with a fixed current 
profile.  Two sets of trim coils will provide control over the resonant components of the magnetic 
field.  Comparison of the experiments with theoretical predictions will provide a new perspective 
on the physics of the shielding, and will contribute towards the goal of being able to reliably 
predict field error penetration thresholds in tokamaks and stellarators.   
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Figure Captions 
 

1. Plasma boundary shape of reference quasi-axisymmetric configuration at poloidal cross sections 
separated by ∆φ = π/9. 

2. Plot of rotational transform profile, ι = 1/q, as a function of toroidal flux normalized to its value 
at the plasma boundary. 

3. Calculated electron and ion temperature profiles for the reference NCSX equilibrium. 
4. Electron density and ambipolar radial electric field for the reference NCSX equilibrium. 
5. The effective helical ripple for NCSX vs. the square root of the normalized toroidal flux as 

calculated by the NEO code. 
6. Calculated ambipolar velocity profiles for three different levels of momentum dissipation at the 

plasma edge.  The three curves were obtained with κ=0, κ ≈ 2 and κ ≈ 18, corresponding, 
respectively, to no momentum dissipation at the edge, to dissipation appropriate for neutral 
collisions only, and to dissipation produced by the scrape-off layer with ne(a) ≈ 1.5 x 1019 m-3. 

7. Numerical solution of the momentum diffusion equation for three different constraints at the 
rational surface, with κ = 2. The top curve (solid) is the unconstrained solution.  The middle 
and bottom curves correspond, respectively, to vs = vs0/2 and vs = 0.  

8. Numerical solution of the momentum diffusion equation for three different constraints at the 
rational surface, with κ = 18.  Again, the top curve (solid) is the unconstrained solution, while 
the middle and bottom curves correspond, respectively, to vs = vs0/2 and vs = 0.
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Figure 3 
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Figure 4 
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