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Abstract. The nonlinear dependencies inherent to the historical Kp data
stream (1932-2003) are examined using mutual information and cumulant
based cost as discriminating statistics. The discriminating statistics are
compared with surrogate data streams that are constructed using the corrected
amplitude adjustment Fourier transform (CAAFT) method and capture the
linear properties of the original Kp data. Differences are regularly seen in the
discriminating statistics a few years prior to solar minima, while no differences
are apparent at the time of solar maximum. These results suggest that the
dynamics of the magnetosphere tend to be more linear at solar maximum
than at solar minimum. The strong nonlinear dependencies tend to peak
on a timescale around 40-50 hours and are statistically significant up to one
week. Because the solar wind driver variables, VBs and dynamical pressure
exhibit a much shorter decorrelation time for nonlinearities the results seem to
indicate that the nonlinearity is related to internal magnetospheric dynamics.
Moreover, the timescales for the nonlinearity seem to be on the same order as
that for storm/ring current relaxation. We suggest that the strong solar wind
driving that occurs around solar maximum dominates the magnetospheric
dynamics suppressing the internal magnetospheric nonlinearity. On the other
hand, in the descending phase of the solar cycle just prior to solar minimum,
when magnetospheric activity is weaker, the dynamics exhibit a significant
nonlinear internal magnetospheric response that may be related to increased
solar wind speed.

1. Introduction

It is well known that the magnetosphere responds
to variation in the solar wind parameters [Clauer
et al., 1981; Baker et al., 1983; Crooker and Gringauz,
1993; Papitashvili et al., 2000], and it has been estab-
lished that the magnetosphere has a significant lin-
ear response to the solar wind. However, it is also
expected that the magnetosphere has a nonlinear be-
havior due to the internal dynamics associated with
loading and unloading of magnetic energy associated

with storms and substorms. In this paper, we explore
the nonlinear behavior of the magnetosphere as char-
acterized by the planetary index, Kp.

The data analysis of Bargatze et al. [1985] indi-
cated that the dynamical response of the magneto-
sphere to solar wind input could not be entirely un-
derstood using linear prediction filters. This finding
led to an increasing emphasis on detecting and un-
derstanding the nonlinear dynamical behavior of the
magnetosphere. A significant body of work focused
on trying to characterize magnetospheric dynamics as
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a low dimensional chaotic, nonlinear system and fo-
cused on calculating properties of a possible strange
attractor in the Earth’s magnetosphere [Vassiliadis
et al., 1990; Roberts et al., 1991; Roberts, 1991; Vassil-
iadis et al., 1991; Sharma et al., 1993]. Many of these
studies focused on estimating the dimension of the
attractor using such measures as the correlation inte-
gral or Taken’s estimator [Takens, 1980]. Such studies
commonly use an embedding based on the time his-
tory of a single variable.

The study of Prichard and Price [1992] suggested
that for datasets with a long autocorrelation time the
computation of the correlation integral leads to spu-
rious estimates of the dimension. Moreover, in many
cases statistical tests of nonlinearity such as dimen-
sion or entropy yield similar results for both the actual
dataset and surrogate datasets [Theiler et al., 1992]
suggesting that those nonlinear tests do not reveal
the presence of nonlinearity on the system [Prichard
and Price, 1992]. A specific paper addressing the
AE index showed no evidence for low dimensional
behavior [Prichard and Price, 1993]. They argued
that it would be appropriate to study the solar wind-
magnetosphere interaction as an input-output system
rather than as an autonomous system.

Followingup on that suggestion, Price and Prichard
[1993] examined the nonlinear response of the AE
index to the VBs input signal and concluded that
there is some evidence for a deterministic nonlinear
response of the Earth’s magnetosphere. They esti-
mated that consideration of the nonlinearity improved
predictive capability by roughly 10%. Improvements
in predictive capability using the technique of nonlin-
ear filters [Vassiliadis et al., 1995; Ukhorskiy et al.,
2002] and neural networks [Gleisner and Lundstedt,
1997] compared with linear predictive filters are also
suggestive that nonlinearities in magnetospheric dy-
namics are important and should be considered for
predictive models. That nonlinearity is important in
magnetospheric dynamics is also consistent with anal-
ysis of physics based magnetospheric analogue models
[Klimas et al., 1992, 1994; Horton and Doxas, 1996].

In this paper, we apply two discriminating statis-
tical approaches to detect the presence of nonlinear-
ity in magnetospheric dynamics—mutual information
and cumulant-based cost. The methods are applied
to time series data for Kp. The discriminating statis-
tic basically provides a measure of nonlinear relation-
ships between past and future values of the magnetic
indices. Because these measures relate the current
state of the magnetospheric index to past values, it

provides a measure of predictability for the system.

2. Discriminating Statistics for Linear
and Nonlinear Dependencies

It is useful to understand the probability of find-
ing a system in a particular state given past history
of the system and/or the past history of the system
drivers. We therefore consider a set of input variables
x ≡ (x1, x2, ..., xn), which could consist of past val-
ues of the system or data from an external driver,
and output variables y ≡ (y1, y2, ..., ym) for the sys-
tem. For the magnetospheric system, x could consist
of past history of solar wind drivers such as VBs and
dynamical pressure as well as internal magnetospheric
variables such as geomagnetic indices and energetic
particle fluxes. The output variables could consist of
future geomagnetic indices and particle fluxes.

The standard approach from the theory of linear
systems for evaluating the dependencies of the out-
put, y, on the input, x, is to consider the covariance
matrix for the variable z = (x, y), where the covari-
ance matrix is defined as C(z) = 〈(z−〈z〉)·(z−〈z〉)T 〉.
From the covariance matrix, we can define a measure
of the dependency of the output variables on the input
variables (e.g. the predictability)

λ(x, y) =

√
1 − det(C(z))

det(C(x)) det(C(y))
(1)

which is a generalization of the well known correla-
tion coefficient for one input and one output variable
[Tsonis, 2001]. It is also obvious that if x and y are
independent that λ = 0. On the other hand, if x and
y are linearly dependent det(C(z)) will vanish and
λ = 1.

A more general measure of dependency between an
input and output is obtained by considering whether

P (x, y) ?=P (x)P (y). (2)

where P (x, y) is the joint probability of x and y while
P (x) and P (y) are the probability of x and y respec-
tively. If the relationship holds, then the variables
x and y are independent. For all other cases, there
is some measure of dependency. In the case where
the system output is completely known given the in-
put, P (x, y) = P (x). The advantage of considering
Equation 2 is that it is possible to detect the pres-
ence of higher order nonlinear dependencies between
the input and output even in the absence of linear
dependencies [Gershenfeld, 1998].
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In this work, we employ to two discriminating
statistics that quantify Eq. 2—mutual information
and a cumulant based cost. Mutual information
has the advantage that in the limit of Gaussian
joint probability distributions, it may be simply re-
lated to the linear predictability λ defined earlier [Li,
1990]. Cumulants have the advantage of good statis-
tics for limited datasets and noisy systems [Deco and
Schürmann, 2000]. Moreover, for high-dimensional
systems it is more efficient to compute moments of
the data rather than try to construct the probability
density function.

2.1. Mutual Information

Mutual information (MI) is obtained from en-
tropies, which provide a measure of uncertainty. The
mutual information between the input x and output
y basically compares the uncertainty of measuring a
particular input and its output together with the un-
certainty of measuring the input and the output in-
dependently. Computation of the mutual information
involves estimating the probability distribution func-
tion using such methods as clustering, kernel density
methods or quantization.

For our study, the mutual information is com-
puted as follows: Suppose measurements of two quan-
tities are obtained (e.g. Solar Wind data and Kp

measurements or past Kp and future Kp). The
datasets will span a range of data which can be
binned/quantized—the number of bins may be differ-
ent if the variables require different resolution. After
quantization, we have two variables, x and y, that will
take on discrete values, x̂ and ŷ, where

x̂ ∈ {1, ..., N} ≡ ℵ1; ŷ ∈ {1, ..., M} ≡ ℵ2 (3)

The variables may be thought of as letters in alpha-
bets ℵ1 and ℵ2 which have N and M letters respec-
tively. The extracted data are then sequences of let-
ters. The entropy associated with each of the vari-
ables is defined as

H(x) = −
∑
ℵ1

p(x̂) log p(x̂); H(y) = −
∑
ℵ2

p(ŷ) log p(ŷ);

(4)
where p(x̂) is the probability of finding letter x̂ in the
set of x-data and p(ŷ) is the probability of finding let-
ter ŷ in the set of y-data. To examine the relationship
between the two variables, we extract a sequence of
words (x̂, ŷ) from the dataset. The joint entropy is

defined by

H(x, y) = −
∑
ℵ1,ℵ2

p(x̂, ŷ) log p(x̂, ŷ); (5)

where p(x̂, ŷ) is the probability of finding the word
(x̂, ŷ) in the set of (x, y)-data. The mutual informa-
tion is then defined as

I(x, y) = H(x) + H(y) − H(x, y) (6)

Once the data is quantized, computation of the
mutual information simply involves sorting the data
pairs, counting their occurrence and summing over all
possible word combinations.

For a continuous probability distribution, the mu-
tual information is generalized to

I(x, y) =
∫

p(x′, y′) log
p(x′, y′)

p(x′)p(y′)
dx′dy′ (7)

In the limit of Gaussian distributed joint probability
distribution, the mutual information collapses to

I(x, y) =
1
2

log
(

det(C(z))
det(C(x)) det(C(y))

)
(8)

where z = (x, y) so that it is natural to define a mea-
sure, Λ(x, y) that includes both linear and nonlinear
dependency as

Λ(x, y) =
√

1 − e−2I(x,y) (9)

[Li, 1990; Darbellay and Vajda, 1999]. The mutual
information may vary from 0 to ∞ so that Λ varies
from 0 for independence to 1 for dependence.

The difference between λ and Λ signals the inade-
quacy of a linear model on the grounds that linear cor-
relations capture only linear relationships. As such,
the cost, DMI = Λ−λ is an indicator of the presence
of underlying nonlinear dynamics [Tsonis, 2001].

2.2. Cumulant-Based Cost

An alternative measure of the dependency between
the input and output is to compute a cost based on
evaluating the cumulants of the underlying probabil-
ity distribution [Deco and Schürmann, 2000]. The cu-
mulants may be obtained directly by computing mo-
ments from the data and do not require reconstruction
of the probability density function.

If Equation 2 were true, then there would be cer-
tain statistical relations between the higher-order cor-
relation tensors

Ci...j =
∫

dzP (z)zi...zj ≡ 〈zi...zj〉 (10)
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where z = (x, y) and i, ..., j ∈ 1, ..., n + m where x
and y have dimensions n and m respectively. By def-
inition, zi is an input variable if i ∈ M ≡ [1, n] and
an output variable if i ∈ N ≡ [n+1, n+m]. In partic-
ular, the cumulants, K1i2...in, of the distribution are
defined by

Ki = Ci = 〈zi〉 (11)
Kij = Cij − CiCj = 〈zizj〉 − 〈zi〉〈zj〉
Kijk = Cijk − CijCk − CjkCi − CikCj + 2CiCjCk

Kijkl = Cijkl − CijkCl − CijlCk − CilkCj − CljkCi

−CijCkl − CilCkj − CikCjl + 2(CijCkCl

+CikCjCl + CilCjCk + CjkCiCl + CjlCiCk

+CklCiCj) − 6CiCjCkCl

If Equation 2 were true, all cumulants involving cross-
correlations between the input and output variables
should vanish. Therefore, we define a cost function

DC =
∞∑

q=1

∑
i1,...,iq∈Πq

K2
1i2...iq

(12)

where Πq are all combinations of q integers I ≡
(i1, ..., iq) such that I /∈ M or I /∈ N (that is they are
not exclusively input variables or exclusively output
variables).

The cumulant-based cost can be used as an indica-
tor of nonlinearity by considering the differences be-
tween the cost truncated at second order versus keep-
ing contributions to the cost from higher-order cumu-
lants [Deco and Schürmann, 2000]. When the joint
probability distribution is Gaussian, all higher order
cumulants vanish. It is therefore useful to Gaussianize
each input/output variable in computing this discrim-
inating statistic [Kennel and Isabelle, 1992; Schreiber
and Schmitz, 1996; Deco and Schürmann, 2000]. The
procedure involves (a) drawing a string random data
of the same length as the original data set from a
Gaussian distribution, (b) ordering the two data sets
numerically, and (c) inverting the sorted Gaussian
data [as described in Schreiber and Schmitz, 1996] ac-
cording to the inverse map of the original data set.
This procedure ensures that higher-order cumulants
that are nonzero are only the result of higher-order
correlations between the input and output variables
and gives a cleaner result.

2.3. Evaluating the Discriminating Statistic

The presence of underlying nonlinear dynamical
behavior will be established using the discriminat-
ing statistics DMI and DC . In order to establish the

existence of a nonlinearity in the data, we will con-
struct realizations of “surrogate data” [Theiler et al.,
1992; Prichard and Price, 1992] that share the same
linear properties as the original data. In particu-
lar, the “surrogate data” have the same autocorre-
lation, power spectrum, and distribution of values as
the original data [Kugiumtzis, 1999]. If the discrim-
inating statistic for the original data is significantly
different from discriminating statistics of the “surro-
gate data,” then it is unlikely that the original data
could be modeled as a linear process such as a simple
autoregressive (AR) model. In this way we falsify the
“null hypothesis” that the underlying dynamics can
be described as a linear process.

The discriminating statistic will be computed for
the actual data set, D0, as well as for NS surrogate
data sets, DSi , (where Si is the ith surrogate set).
Falsification of the null hypothesis will be gauged
by the significance, S = |D0 − µS |/σS where µS ≡∑

i DSi/NS is the average of the statistic over all sur-
rogate data sets and σ2

S =
∑

(DSi − µS)2/(NS − 1)
is the variance of the surrogate data. The hypothesis
is falsified when the significance exceeds an arbitrary
value. A common choice is 2 or 3 standard deviations
which gives 95% and 99.5% assuming a normal dis-
tribution. The assumption of normal distribution is
reasonable when as few as 30 surrogate datasets are
used. We have found little difference from the case
where as many as 500 surrogate data sets were used.

For the analyses in this paper, we will be consider-
ing time series of geomagnetic indices. To prepare
the surrogate data, we apply the corrected ampli-
tude adjusted Fourier transform method (CAAFT)
[Kugiumtzis, 1999]. The generated surrogate data are
like the amplitude adjusted Fourier transform method
(AAFT) [Theiler et al., 1992], but corrected to match
the autocorrelation (necessary due to the limited size
of the dataset [Schreiber and Schmitz, 1996]). For
the correction, a linear interpolation for the graph
of the relation between the Gaussian and the trans-
formed autocorrelation is found, for lags up to a given
τmax. This τmax will be taken at least as large as the
maximum timescale of interest for our calculations.
Using this interpolation function, for the autocorrela-
tion of the given time series, the autocorrelation of the
respective Gaussian time series is estimated. Based
on this autocorrelation, the coefficients of the corre-
sponding AR model of order p (which we prescribe
as the length τmax/(number of measurements) are
estimated and an AR-time series is generated, and
transformed to match the amplitude distribution of
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the original time series. This process is performed
20 times to obtain a statistic of candidate AR mod-
els. Then the most proper is selected, in the sense
that the autocorrelation of the generated surrogate
matches best the autocorrelation of original data set.
Based on this AR model, we generate realizations of
a surrogate data stream and transform to match the
amplitude distribution of original data. In our analy-
sis, we find that the linear properties of the data are
well captured by this method.

2.4. Significance as an Indicator of Nonstation-
arity

If it is expected that the underlying dynamics of a
system are nonstationary, it is appropriate to test how
the significance changes as a function of time. This
test may be performed by considering the evolution
of the significance computed in overlapping windows
as a function of time (a task similar to constructing a
spectrogram). If the significance changes appreciably
over time, it is a good indicator that the dynamics are
changing. Because the cumulant-based statistic has
the advantage of good statistics for limited datasets,
the technique would be far better than the mutual
information based statistic for examining nonstation-
arity in a dataset on short timescales. In our study,
we examine the significance of the underlying magne-
tospheric dynamics over the history of the Kp which
includes nearly seven full solar cycles. We compute
the discriminating statistic for each year using three
year windows of data which is adequate to resolve
changes in the underlying dynamics over the course
of an eleven year solar cycle. In order to achieve good
statistics using the mutual information based discrim-
inating statistics it was necessary to compute the sig-
nificance using three year data windows. The use of
smaller data windows would degrade the mutual in-
formation results so that no meaningful conclusion
could be drawn from the analysis. On the other hand,
the cumulant based statistic could be reasonably ap-
plied to data windows as short as a few days to detect
changes in the underlying dynamics.

3. Application to Magnetic Indices

The state of the magnetosphere is commonly des-
ignated using the global magnetic activity index, Kp.
K indices isolate solar particle and IMF effects on
the earth’s magnetic field; over a three-hour period,
they classify into disturbance levels the range of vari-
ation of the more unsettled horizontal field compo-

nent on the ground. Each activity level relates al-
most logarithmically to its corresponding disturbance
amplitude. Three-hour indices discriminate conserva-
tively between true magnetic field perturbations and
the quiet-day variations produced by ionospheric cur-
rents. K indices are quantized in 28 steps from 0
(quiet) to 9 (greatly disturbed) with fractional parts
expressed with +/- or in thirds of a unit.

Our initial examination of the nonlinearity of the
Kp time series suggested a solar cycle dependence in
the nonlinearity. In order to achieve better statistics
(particularly for the mutual-information measure), we
found it useful to consider data from three year win-
dows. This length of window is appropriate for dis-
criminating differences in dynamical behavior over
the course of the 11-year solar cycle.

3.1. Mutual-Information Based Predictability

In Figure 1 we show the results from the mutual-
information based predictability for data near a so-
lar maximum for the years 1980-1982. Panel (a)
shows the linear correlation as a function of time de-
lay. Panel (b) shows the mutual-information based
measure of correlation as a function of time delay.
Panel (c) shows the difference between (a) and (b)
as a function of time delay. The mean and spread
of the surrogate data are also shown with dotted and
dashed lines respectively. The significance based on
panel (c) is shown in panel (d). The open circles in-
dicate that the measure of nonlinearity suggests the
measured data was more linear than the surrogates
while the crosses indicate when the significance in-
dicates the measured data was more nonlinear than
the surrogates. Several items of importance should be
noted. First, panel (a) demonstrates that the linear
properties of the surrogate datasets are statistically
identical to those of the measured data. Second, the
nonlinearity measure of the surrogate data increases
with time delay. This increase is a result of (a) the
limited size of the dataset, (b) the fact that the data
is not Gaussian distributed, and (c) the fact that the
CAAFT method while preserving linear properties is
itself a nonlinear transform which could introduce ad-
ditional nonlinearities into the data. Third, for this
solar maximum the value of the significance is gen-
erally less than 1 indicating that there is no statis-
tical difference between the measured data and the
surrogate data. Therefore the assumption that the
underlying dynamics can be described with a linear
AR process based on the last 200 hours of data is not
falsified. A second example showing similar results
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(a) Linear Predictability for 1980−1982
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(b) M−I based Predictability for 1980−1982
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(d) Significance for 1980−1982

Figure 1. Analysis of Kp data from 1980-1982 (near a solar maximum) using the difference between linear
predictability and mutual information based predictability as the discriminating statistic. Panel (a) shows the
linear predictability (λ); panel (b) shows the mutual-information based predictability (Λ); panel (c) shows the
discriminating statistic (Λ − λ); and panel (d) shows the significance based on panel (c). In all figures, the
quantities derived from the actual data are shown as solid lines, the means of the surrogates are shown with dotted
lines and the upper and lower standard deviations of the surrogates are shown as dashed lines. Significances that
are positive (more nonlinear) are shown as an x while negative (more linear) significances are shown with an o.
This analysis suggests that there is no statistical difference between the discriminating statistic for the surrogate
data and the actual Kp sequence.
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(a) Linear Predictability for 1999−2001
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(b) M−I based Predictability for 1999−2001
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(d) Significance for 1999−2001

Figure 2. Analysis of Kp data from 1999-2001 (near a solar maximum) using the difference between linear
predictability and mutual information based predictability as the discriminating statistic. The format is the same
as for Figure 1. Note that as for the 1980-1982 solar maximum, there is no evidence to suggest any difference in
the discriminating statistic from the surrogate data which was obtained from the CAAFT method.
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(a) Linear Predictability for 1994−1996
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(d) Significance for 1994−1996

Figure 3. Analysis of Kp data from 1994-1996 (near a solar minimum) using the difference between linear
predictability and mutual information based predictability as the discriminating statistic. The format is the same as
for Figure 1. Note that although the linear properties of the Kp time series are well reproduced by the surrogates, the
discriminating statistics indicate that there is significant nonlinearity that has not been captured. The significance
can be as large as 4 standard deviations and peaks around 50 hours.
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(a) Linear Predictability for 1974−1976
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(b) M−I based Predictability for 1974−1976
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(d) Significance for 1974−1976

Figure 4. Analysis of Kp data from 1974-1976 (near a solar minimum) using the difference between linear
predictability and mutual information based predictability as the discriminating statistic. The results are similar
to the analysis of the solar minimum shown in Figure 3.
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Figure 5. The solar cycle dependence of the mutual-information based significance is shown for the historical
Kp timeseries. Panel (a) shows the maximum significance for each 3 year window of data; panel (b) integrates all
positive significance larger than 2; panel (c) integrates all positive significance larger than 3; and panel (d) shows
a histogram of all significance measures larger than 2 for all historical Kp. The data are grouped into several
significance ranges. Statistically, large significance appears to peak around 30-50 hours. When the significance is
larger, the peak is tightly clustered around 50 hours. For reference, the sunspot number (scaled for clarity) has been
displayed in panels (a)-(c) with a light line. Note that minima in the nonlinearity coincide with maximum sunspot
number and the maximum nonlinearity occurs approximately two years before the minimum sunspot number.
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for another solar maximum is shown in Figure 2.
For a solar minimum (1994-1996) the results of this

analysis are strikingly different as shown in Figure 3.
The format of the plots is the same as in Figure 2.
While again, the surrogates capture the linear prop-
erties of the data, the measure of nonlinearity is signif-
icantly different. The significance exceeds 3 for time
delays on the order of 40-75 hours falsifying the null
hypothesis that the system could be modeled as a lin-
ear AR process on those timescales. The negative val-
ues for the significance for short delays indicates that
the real data behaves more linearly than the surrogate
data (but also seems related to the fact that the sur-
rogates do not have much spread at small correlation
time). A similar case is shown for another solar min-
imum in Figure 4 which also indicates a peaked non-
linear significance at a correlation time of 50 hours. It
should be noted that the nonlinear peak for 1994-1996
is broader than the more focused peak for 1974-1976
which has very high significance. It should be con-
cluded that there is a significant nonlinearity in the
underlying dynamics of the system for these years.

In order to evaluate whether this nonlinear feature
is related to the solar cycle, we examined all data
available from 1932-2003 using a three year window as
in Figures 1-4. The results of this analysis are shown
in Figure 5. In this figure we present several measures
of nonlinear significance over the course of several so-
lar cycles. Panel (a) shows the maximum significance
for each year. Panel (b) shows an integrated measure
of the significance. Significances which either (1) indi-
cate that the data is more linear than the surrogates
(as for small time delay in Figure 3) and/or (2) are
less than 2 standard deviations are set to 0 when per-
forming the average. Our choice of two standard devi-
ations ensures that there is at least a 95% probability
that the nonlinearity measures are significant. Panel
(c) shows the same thing at the three standard devi-
ation level which ensures over 99% probability that
the nonlinearity measure is significant. It should be
noted that only the relative value of the integrated
significance should be compared over the solar cycle
(as the significance may be sharply peaked and aver-
age to less than 1). Panel (d) shows occurrences of
time delays for different bounds on the significance.
We have also displayed the sunspot number in panels
a,b, and c for comparison. There is an obvious solar
cycle effect. There tend to be minima in significance
around the peak in the sunspot number. Maxima in
the nonlinearity appear approximately two years prior
to minimum sunspot number.

3.2. Cumulant-Based Significance

We performed a similar analysis of Kp using the
cumulant-based cost defined earlier. For this particu-
lar analysis, we Gaussianized the data and computed
surrogate datasets using the CAAFT procedure. We
show the same solar maximum as computed with the
mutual information measure in Figure 6. In panel (a)
we show the cost obtained when cumulants are kept to
second order. In panel (b) we show the cost obtained
when cumulants are kept to fourth order. Panels (c)
and (d) show the cumulant-based significance based
on second-order cumulants (SL) and fourth-order cu-
mulants (SNL), respectively. A second example is
shown in Figure 7.

Several features are of interest. First, the linear
significance measure shows virtually no difference be-
tween the measured data and the surrogate data.
This result indicates that the method used to con-
struct the surrogates preserves the underlying linear
dynamics in accordance with the null hypothesis. Sec-
ond, although the fourth-order cost does not track the
mean of the surrogates, it does lie for the most part
within the spread of the surrogates and therefore, we
cannot conclude that there is any indicator of nonlin-
earity.

On the other hand, for the solar minimum dis-
cussed earlier we find a similar indicator of nonlinear-
ity. Figures 8-9 are in the same format as Figure 6 for
the years 1994-1996 and 1974-1976. As for the case of
solar maximum, the linear cost of the data and sur-
rogates is in excellent agreement. On the other hand,
the fourth-order cost reveals a significant difference
from the surrogate data. For 1994-1996 the appear-
ance of a broad range of nonlinearity extending up
to 75 hours is in accordance with our earlier find-
ings based on the mutual-information statistic shown
in Figure 3 although the peak maximum is shifted to
longer timescales. For 1974-1976 the peak significance
is much sharper, stronger, and peaks around 50 hours
as in Figure 4.
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Figure 6. Analysis of Kp data from 1980-1982 (near a solar maximum) using the cumulant-based cost as the
discriminating statistic. Panel (a) shows the cost based on keeping cumulants to second order; panel (b) shows
the cost based on keeping cumulants to fourth order; panel (c) shows the linear significance (based on panel (a))
and panel (d) shows the nonlinear significance (based on panel (b)). That the surrogate data constructed by the
CAAFT method captures the linear properties of the data well is indicated by a linear significance that is generally
less than 1. For this data, the nonlinear significance of the actual data does not differ appreciably from the surrogate
data. In panel (a) and (b) the mean of the surrogate is shown with a dotted line and the standard deviation are
shown as dashed lines.
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Figure 7. Analysis of Kp data from 1999-2001 (near a solar maximum) using the cumulant-based cost as the
discriminating statistic. The format is the same as for Figure 6. Note that as for the 1980-1982 solar maximum,
there is no evidence to suggest any difference in the discriminating statistic from the surrogate data which was
obtained from the CAAFT method.
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Figure 8. Analysis of Kp data from 1994-1996 (near a solar minimum) using the cumulant-based cost as the
discriminating statistic. The format is the same as for Figure 6. Note that although the linear properties of the
Kp time series are well reproduced by the surrogates, the discriminating statistic indicates that there is significant
nonlinearity that has not been captured. Note that there is a broad range of large significance with a noticeable
peak around 75 hours. The broad extent of the large significance is similar to Figure 3 although the maximum
significance appears to be shifted to 75 hours.
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Figure 9. Analysis of Kp data from 1974-1976 (near a solar minimum) using the cumulant-based cost as the
discriminating statistic. For this case, the significance is more sharply peaked than for Figure 8 and similar to the
significance based on the mutual-information based statistical measure shown in Figure 4.
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Figure 10. The solar cycle dependence of the cumulant-based nonlinear significance is shown for the historical
Kp timeseries. Panel (a) shows the maximum significance for each 3 year window of data; panel (b) integrates all
positive significance larger than 2; panel (c) integrates all positive significance larger than 3; and panel (d) shows
a histogram of all significance measures larger than 3 for all historical Kp. The data are grouped into several
significance ranges. Statistically, the significance peaks around 40-50 hours. When restricted to larger significance
events the peaks remain at approximately at the same time delay. For reference, the sunspot number (scaled for
clarity) has been shown in panels (a)-(c). Note that minima in the nonlinearity coincide with maximum sunspot
number and the maximum nonlinearity occurs approximately two years before the minimum sunspot number.
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We also performed an analysis for the years 1932-
2003 using the cumulant-based significance as shown
in Figure 10. For this case, the solar cycle dependence
of the nonlinearity is even more obvious than for the
mutual-information based statistic. The peak occurs
roughly two years prior to minimum sunspot number.
Although the peak significance does vary from solar
cycle to solar cycle, within the solar cycle the value
of the significance and the time delay remain roughly
the same. We also performed a statistic on the oc-
currences of various time delays binned according to
the significance measure. The most significant events
appear to have a time-delay around 25-50 hours—
although the peak is broad. At higher significance,
the peak shifts up to around 50 hours.

3.3. Comparison of M-I and Cumulant Results

Qualitatively, the mutual information approach
and the cumulant-based approach present similar re-
sults. Figures 1-2 and 6-7 each indicate that for those
solar maxima there is no detectable nonlinearity in
the data. On the other hand Figures 3-4 and 8-9 each
indicate that just prior to solar minimum there is a
significant nonlinearity. In comparing Figures 3 and
8 it should be noted that both discriminating statis-
tics indicate a strong broad nonlinearity ranging up
to 75 hours with weaker nonlinearity up to 150 hours
(∼one week). In contrast, the nonlinearity shown in
Figures 4 and 9 is more sharply peaked near 50 hours
and is qualitatively similar.

Figures 5 and 10 indicate a solar cycle dependence.
The sunspot number is shown in these plots for ref-
erence. Maxima and minima in sunspot number are
clearly seen in the data for these years with an 11 year
period. The solar cycle proceeds in the following man-
ner: just prior to solar minimum a band of sunspots
forms at mid-latitude on the solar surface and rapidly
reaches a peak in number. The sunspot bands gradu-
ally move to lower latitude over the course of the so-
lar cycle and eventually disappear following the emer-
gence of a new band of sunspots at mid-latitude. At
the time of solar minimum sunspot bands at both
mid- and low-latitude are found. The solar wind
plasma also changes character during the solar cycle.
Recent satellite observations from Ulysses indicate in
the declining phase near solar minimum most of the
energy from the solar wind source goes into a steady
high speed polar solar wind. The fast flows arise from
large coronal holes that cover the polar regions at this
time during the solar cycle. At low latitudes, the so-
lar wind is much slower and intermittent [McComas

et al., 2000]. On the other hand, during solar max-
imum, the global 3-D structure of the solar wind is
completely different. Near maximum, highly variable
flows are observed at all heliolatitudes. These flows
arise from a mixture of sources including streamers,
coronal mass ejections, and small low latitude coronal
holes [Neugebauer et al., 2002].

The maxima of the nonlinear significance occurs
just prior to the re-emergence of sunspots at mid-
latitude at the time of high speed polar streams. Both
the mutual information- and cumulant-based mea-
sures show this behavior. The cumulant-based mea-
sure seems to yield more uniform results with less
variation while the mutual-information based mea-
sure seems to have greater variation in the peak
amplitudes. The peaks in nonlinearity near 1964
and 1985 appear to be more emphasized with the
cumulant-based measure than the mutual-information
based measure.

The binned delays also provide an interesting com-
parison. In both cases, the total distribution of non-
linearity with significance greater than 3 appears to
peak around 25-50 hours. However, the mutual in-
formation based significance seems to provide a much
more sharply peaked distribution than the cumulant-
based significance. In both cases, higher significance
nonlinear correlations tend to peak around 50 hours.

While there are many similarities in the results,
the differences likely rise from the statistical nature
of the analysis. In computing the mutual information-
based measure, we considered three year windows of
data which provided approximately 8760 data points
from which to construct the probability distributions.
For histogram estimation of the probability distribu-
tion function it is proposed that log2 N +1+log2(1+
κ̂
√

N/6) is the proper number of bins for histogram
estimation where N is the number of data points and
κ̂ is the kurtosis of the data [Venables and Ripley,
1994]. This gives 18 data bins which we have found
to give the best statistics. Indeed, using the actual
binning of Kp into 28 discrete bins provides far nois-
ier statistics and the nonlinearity cannot be identified.
The best binning choice also tries to divide the data
equally among the bins which tends to wash out fea-
tures in the higher Kp values. On the other hand, the
cumulant-based significance does not require binning
of the data as it is based on moments of the distribu-
tion. Moreover, we also Gaussianized the data which
also provides a cleaner signal for the discriminating
statistic. Because the cumulant-base measure is more
reliable for limited and noisy datasets, we are inclined
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to trust that statistic more than the mutual informa-
tion where there is a discrepancy between them.

3.4. Is the Nonlinearity Imposed by the Solar
Wind?

Having established that there is a nonlinearity in
the Kp data, it is natural to ask whether the non-
linearity is intrinsic to the solar wind or whether it
is the result of the nonlinear interaction between the
solar wind and the magnetosphere. To examine this
question, it is useful to examine the solar wind data.
It is commonly believed that VBs and the dynam-
ical pressure are drivers of magnetospheric activity.
The history of these variables from Nov 1963 through
Nov 1999 has been presented by Papitashvili et al.
[2000]. In the last two solar cycles, the maxima of
VBs occurred shortly after the peak sunspot number
while the minima coincided with minimum sunspot
number. The dynamical pressure rises abruptly over
one to two years beginning near solar maximum, then
slowly decreases until the next solar maximum [Pap-
itashvili et al., 2000; Richardson et al., 2001].

To evaluate the intrinsic nonlinearity in the solar
wind, we examine data taken from the WIND satel-
lite. The data has been propagated from the satellite
location to the earth and is computed in the GSM
coordinate system. Because there is missing data in
this time series it is not straightforward to apply the
CAAFT method to construct surrogate data. The
following procedure was used to construct the sur-
rogate datasets. First, the autocorrelation for the
original data set was computed from available data.
This procedure only requires pairs of data points sep-
arated by time τ which ranges in our calculation up
to an arbitrary cutoff. Once the autocorrelation func-
tion is computed, we obtain the Fourier transform
which is the power spectrum of the original time se-
ries. The power spectrum could also be obtained us-
ing Fourier techniques developed for unevenly sam-
pled data [Press et al., 1992, section 13.8]. From the
power spectrum we take the square root of the Fourier
coefficients and multiply by random phases. The in-
verse Fourier transform then provides surrogate data
which is sorted and mapped to the original data set.
The surrogate data has the same linear properties as
the original data set. The proof of this assertion lies
in the comparison of the linear significance of the orig-
inal data (with its data gaps) and the surrogate data
sets.

In Figure 11 we plot the linear and nonlinear cost
of the VBs time series for 1995. When comparing

this figure with Figure 8 notice the significant differ-
ences in the timescale for the decay of correlations.
The magnetosphere requires about twice as long to
become decorrelated than the solar wind. Moreover,
the nonlinear cost of the magnetosphere decays over a
far longer timescale (1 week) compared with the falloff
of the solar wind (which basically shows no substan-
tial correlations beyond 2 days). There is a relatively
strong nonlinearity in the solar wind detected up to
around 25 hours. The nonlinearities at 80 and 180
hours barely rise above the 3 sigma significance com-
pared with the large significance levels seen in the Kp

data over the extended period. Moreover, the peaks
at large τ are questionable in light of the small value
of the cost. The large sigma value occurs because all
the surrogates basically show no correlation beyond
about 30 hours and therefore the spread of the sur-
rogates is small leading to an overly enhanced signif-
icance. The spread in the solar wind data should be
contrasted with the spread in the Kp surrogates which
remains relatively constant over the entire range of τ .

The dynamic pressure shown in Figure 12 for 1995
has a longer correlation time than VBs but there is
no indication of the existence of nonlinear correlations
over the entire range of correlation time considered. It
is not readily apparent why the short correlation time
nonlinearity of VBs is not also seen in the dynam-
ical pressure. It should also be noted that because
the correlations do not decay so rapidly the spread of
surrogates remains reasonably large and no spurious
peaks are found at long correlation time.

At solar maximum, basically the same pattern is
seen in the solar wind data with strong nonlinear-
ity in VBs at short correlation time. The absence
of any apparent solar cycle nonlinearity that matches
the magnetospheric nonlinearity leads us to conclude
that the nonlinearity detected in Kp is not the result
of an intrinsic nonlinearity in the solar wind that is
being filtered by the magnetosphere. It seems more
likely that the nonlinearity is the result of the nonlin-
ear interaction between the solar wind and magneto-
sphere that results from intrinsic nonlinear behavior
of the magnetosphere responding to the solar wind
driver.
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Figure 11. Analysis of VBs data from 1995 (near a solar minimum) using the cumulant-based cost as the
discriminating statistic. Panel (a) shows the linear cost keeping cumulants to second order, panel (b) shows
the nonlinear cost keeping cumulants to fourth order, panel (c) shows the linear significance comparing with the
surrogate data and panel (d) shows the nonlinear significance. The mean of the surrogate data is shown in dotted
and the spread with dashed lines. The main feature is the existence of a nonlinearity at correlation times between
5 and 30 hours.
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Figure 12. Analysis of dynamic pressure data from 1995 (near a solar minimum) using the cumulant-based cost
as the discriminating statistic following the same format of Figure 11. The main feature is the absence of any
appreciable nonlinearity. Note that the strong nonlinearity seen in VBs at small correlation time is absent in the
analysis of the dynamical pressure.
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3.5. Cross-significance of solar wind and mag-
netosphere data

So far, we have only considered dependencies be-
tween the input and output for single variables (Kp,
VBs, and dynamical pressure). In this section, we
generalize the approach to consider the nonlinear cor-
relations between multiple variables. In this case,
we are interested in understanding the nonlinear cou-
pling between the solar wind and magnetospheric dy-
namical systems. Price and Prichard [1993] exam-
ined a similar question using a variety of statistics
and concluded that VBs and AE exhibited some evi-
dence for deterministic nonlinear response using two
different discriminating statistics. We therefore con-
sider coupling between a solar wind variable such as
VBs and Kp. For this comparison, we will consider
the contribution to the higher order cumulants for:
(a) {V Bs(t−τ ), V Bs(t)}, (b) {Kp(t−τ ), Kp(t)}, and
(c) {V Bs(t − τ ), Kp(t)} as shown in Figure 13. As
we have seen previously, the higher order cumulants
provide a measure of nonlinearity relative to a set of
surrogates. For simplicity, in this analysis, we Gaus-
sianize the variables and construct the surrogates by
scrambling the data. We plot difference between the
second and fourth order cumulants against the cor-
relation time. The cumulants are normalized to a
common factor.

We present our analysis for 1995 in Figure 13,
which is near a solar minimum and was examined pre-
viously in Figures 8 and 11. The first item to be noted
is that the difference between the fourth order cost
and second order cost is qualitatively representative
of the nonlinear significance when the costs were com-
pared against surrogate data sets. This is the obvious
consequence that the surrogate data basically have
the same second order cumulant as the original data
and the fourth order cumulant statistically vanishes.
It is clear that the VBs nonlinearity has shorter cor-
relation time than the Kp nonlinearity. Moreover, the
cross correlation between VBs and Kp peaks around
3 hours and then tracks the VBs nonlinearity up to
around 25 hours. The peak around 3 hours is similar
to timescales obtained from linear prediction filters
that are dominated by the linear magnetospheric re-
sponse [Bargatze et al., 1985]. On the other hand,
the nonlinear cross correlation does not appear at all
like the Kp nonlinearity which has timescales on the
order of 50 hours. This result suggests that the Kp

nonlinearity is related to internal magnetospheric dy-
namics and not to inherent nonlinearity in the solar
wind driver.

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ (hours)

D
(4

)
C
−

D
(2

)
C

Higher Order Cumulants for 1995

(VB
s
(t−τ),K

p
(t))

(VB
s
(t−τ),VB

s
(t))

(K
p
(t−τ),K

p
(t))

Figure 13. Higher order cumulants obtained from
the following input-output pairs: {V Bs(t), Kp(t −
τ )} (dotted) {V Bs(t), V Bs(t − τ )} (dashed), and
{Kp(t), Kp(t − τ )} (solid) for 1995. The difference
between the fourth order cumulant measure and the
second order cumulant measure is shown as a function
of correlation time, τ . The cumulants are all normal-
ized to a common factor and the reader is referred
to Figures 8 and 11 for comparison with surrogate
data. Note that the cross correlation between the so-
lar wind VBs data and Kp tracks the VBs nonlinearity
between 10 hours and 25 hours. On the other hand,
the high significance peaks in the Kp nonlinearity do
not appear to be related to the intrinsic solar wind
nonlinearity. This result suggests that the Kp nonlin-
earity is the result of internal dynamical behavior of
the magnetosphere.

3.6. Solar Cycle Dependence of the Nonlinear-
ity

Our study seems to indicate that the magneto-
spheric dynamics captured by the Kp index exhibits a
nonlinearity. Although the nonlinearity does not ap-
pear to be intrinsic to the solar wind, it does appear
to be related to the solar cycle as evidenced by the so-
lar cycle dependence of the significance. It is natural
to consider whether the nonlinearity may be related
to the strength of the solar wind driver, which de-
termines the nonlinear dynamical properties for ana-
logue models of the magnetosphere [e.g. Klimas et al.,
1992; Horton et al., 1999].

Due to the strong linear response of the magne-
tosphere to solar wind drivers [Bargatze et al., 1985;
Vassiliadis et al., 2002], it is reasonable to consider
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the Kp level as an indicator of the strength of the
driver. We performed a linear cross-correlation study
comparing the monthly sunspot number with the
monthly average of the Kp index since 1932. The
results are shown in Figure 14. First, it is appar-
ent that Kp is highly correlated on average with the
11 year solar cycle over the history of the Kp index
with a short one or two year lag time. (It should
be noted that solar cycle 21 has an unusually large
four year lag time). The maximum anti-correlation
occurs with a time lag of 6 years indicating that the
smallest monthly average Kp tends to occur 6 years
following solar maximum (that is, at solar minimum).
Although not plotted, the minima and maxima auto-
correlation of the sunspot number basically occur at
the same lag as the cross correlation of Kp and the
sunspot number. This result shows that magneto-
spheric activity is strongest just following the solar
maximum and gradually weakens approaching solar
minimum. It seems reasonable to conclude that the
primary driver of this activity is strongest around so-
lar maximum and becomes weaker approaching solar
minimum.

On the other hand, the cumulant-based signifi-
cance shown in the dashed curve of Figure 14 appears
to be anti-correlated with the sunspot number with
a time lag of approximately 4.5 years. The mutual
information based significance has a slightly shorter
time lag. If the strength of Kp is considered as a proxy
for strength of the primary solar wind driver, this re-
sult indicates that the primary solar wind driver is
not in phase with the nonlinearity detected by the
statistical analysis presented in this paper.

As mentioned in §3.3 the appearance of nonlinear-
ity in the descending phase of the solar cycle occurs
around the time when high velocity streams are ob-
served at high latitude with respect to the ecliptic
plane of the solar system. There is also an increase
in solar wind velocity at low latitudes during the de-
scending phase to solar minimum [Luhmann et al.,
2002]. It should be noted however that the total ram
pressure near the earth (considered to be a primary
driver) actually decreases at this time due to an de-
crease in density [Richardson et al., 2001; McComas
et al., 2003]. Because the primary drivers of magneto-
spheric activity would appear to be decreasing at this
time, it seems plausible that the solar wind velocity
acts as a secondary driver with increased importance.
The solar wind speed is, in fact, believed to have a
significant driving effect on magnetospheric activity
as evidenced through correlations between the solar
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Figure 14. Linear cross correlation, λ of the sunspot
number, NSS(t), with Kp(t + τ ) and the cumulant-
based integrated significance from Figure 10b as a
function of correlation time, τ in years. It is ap-
parent that the Kp index is closely related to the
sunspot number while the significance is somewhat
anti-correlated. If the Kp index is taken as a proxy
for the strength of the magnetospheric driver, it is
apparent that the driver follows the solar cycle (max-
imum at solar maximum and minimum at solar min-
imum). It should be noted that the maximum signif-
icance correlation typically occurs two years prior to
solar minimum.

wind speed and electron fluxes in the magnetosphere
[Vassiliadis et al., 2002].

To examine the relationship between the solar wind
velocity and the nonlinearity detected in the descend-
ing phase of the solar cycle, we have examined the re-
lationship between the solar wind speed measured by
IMP8 and a measure of nonlinear significance (taken
from panel b of Figure 10) in Figure 15a. The av-
erage velocity (computed with a 100 day window) is
compared with yearly significance computed with a
three year sliding window, and it can be seen that
the speed and significance are somewhat correlated
(although the fact that some features are not cor-
related does indicate that the relationship may be
more complicated). The linear cross-correlation be-
tween the mutual information based significance and
the solar wind speed demonstrates that they are best
correlated with time lag smaller than 1 year (that is,
they both peak around the same time during the so-
lar cycle). We therefore conclude that although the
nonlinearity is not well correlated with the maximum
of Kp activity, it is closely correlated with increased
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solar wind speed during the descending phase prior
to solar minimum.

This finding raises a number of interesting ques-
tions. First, the fact that the nonlinearity detected
in our study (Figures 5 and 10) appears to maximize
just prior to solar minimum (when the primary driver
is weaker) and to minimize around solar maximum
(when the primary driver is stronger) seems some-
what counterintuitive. Indeed, studies of the ana-
logue model of Klimas et al. [1992] found regular peri-
odic behavior of the model magnetosphere for a weak
steady driver, but chaotic model behavior for a strong
intermittent driver. The increase of CMEs and so-
lar wind drivers such as VBs and dynamic pressure
around solar maximum would seem to be the natu-
ral conditions for increased nonlinear behavior. Such
nonlinearity was not detected in our analysis.

On the other hand, Horton et al. [1999] presented
a study of a complex dynamical system known as the
WINDMI model for the solar-wind driven magnetosphere-
ionosphere system. The solar-wind driving potential
was used as a forcing parameter in the model. As
forcing was increased the low-state fixed point lost its
stability leading to period doubling bifurcations and
chaos. However, at stronger forcing, the system even-
tually returned to stability [Horton et al., 1999]. Hor-
ton et al. [1999] suggested that the inverse bifurcation
corresponded to storm-like magnetospheric states. It
may well be that around the time of solar maximum,
when the magnetospheric driver is stronger, the sys-
tem is over-driven and responds more linearly. Such
behavior is typical of a driven, damped pendulum.
When weakly driven, the pendulum exhibits linear
behavior. At larger amplitudes, the pendulum enters
a chaotic regime where the dynamics is highly nonlin-
ear. When over-driven the pendulum again exhibits
linear behavior.

On the other hand, in the descending phase of
the solar cycle just prior to solar minimum, the pri-
mary driver is weaker, but the velocity is larger. The
increased solar wind velocity appears to be related
to a significant nonlinear internal magnetospheric
response. We suggest that when the primary so-
lar drivers are large, the magnetosphere locks on to
the solar wind and the linear response to the solar
wind dominates dominates internal magnetospheric
dynamics. In the descending phase of the solar cycle
prior to solar minimum, when the magnetosphere is
more weakly driven by the solar wind, the internal
magnetospheric dynamics related to increased solar
wind velocity can play a more important role.
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Figure 15. The solar wind speed and the significance
obtained in 10b are shown in panel a. The velocity has
been averaged over 100 day windows. Panel b shows
that the correlation is peaked at zero time delay indi-
cating that the appearance of the nonlinearity is well
correlated with the appearance of high speed velocity
streams. It should be noted that other variables such
as VBs and dynamical pressure are not closely related
temporally to the significance.
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3.7. Physical Mechanisms Responsible for the
Nonlinearity

It is also of interest to identify the physical mecha-
nism responsible for the nonlinear dynamical behav-
ior. The typical timescale for the magnetospheric
nonlinearity detected in our analysis is on the order
of one to two days. The nonlinearity typically de-
cays away on the order of one week. This timescale
is much longer than the coherence time of solar wind
drivers or coupling processes related to global geo-
tail Alfvén oscillations (approximately 1 hour) or M-I
coupling mediated by Alfvén waves (approximately
10 minutes) [Horton et al., 1999].

On the other hand, the timescales are consistent
with relaxation processes that are associated with dis-
turbed magnetospheric events. Recovery from storms
typically last up to a week in accordance with the de-
cay of the nonlinear significance. Moreover, the 1-3
day timescale for nonlinear response is well in accor-
dance with relaxation processes that are responsible
for recovery of the magnetosphere. A similar analy-
sis of Dst data indicates very similar behavior of the
nonlinear response with a nonlinear response peaked
around 1-2 days. By examining 300 hour windows for
the cumulant based significance we also found that
large significance typically accompanies large nega-
tive excursions of the Dst index. These factors sug-
gest that the nonlinear peaks may be associated with
recovery of the ring current following storms. More-
over, electron fluxes out to geosynchronous orbit are
also observed to be correlated with solar wind speed
on the timescale of 1 to 2 days [Vassiliadis et al.,
1999].

While the Kp index was not designed to provide
the best measure of the ring current, it does respond
to changes in the ring current. The ring current at
the time of storms is built up through injection of
particles from the magnetotail and outflows from the
ionosphere. During the recovery phase of storms, the
ring current decays due to various loss mechanisms—
adiabatic drifts through the dayside magnetopause,
charge exchange, wave-particle interactions, Coulomb
collisions, and collisions at low altitude with the at-
mosphere [Daglis et al., 1999; Jordanova, 2003, and
references therein]. The primary loss mechanism for
the storm-time ring current is charge exchange which
has a lifetime of hours to days [Tinsley, 1976]. An
important secondary mechanism is wave particle in-
teractions. Khazanov et al. [2002] and Jordanova
[2003] have shown that wave growth of electromag-
netic ion cyclotron waves near the He+ and O+ cy-

clotron frequencies can also be a significant source
of ion loss due to wave-particle scattering into the
loss cone. Such waves are typically excited by tem-
perature anisotropies that develop as the result of (a)
compression of the magnetosphere and (b) differences
in gradient and curvature drift as a function of pitch
angle. The timescale for EMIC induced proton diffu-
sion is 0.8, 4.3, and 48 days for EMIC amplitudes of
0.1, 0.035, and 0.01 nT [Albert, 2003]. EMIC waves in
the equatorial region are commonly found with ampli-
tudes as large as 1 nT [Labelle and Treumann, 1992].
It should be noted that oxygen, hydrogen, and helium
decays may be somewhat different leading to multiple-
phase decays as well.

3.8. Relevance of Nonlinearity to Kp Predic-
tive Models

The existence of significant nonlinearity in Kp

dynamics due to internal magnetospheric dynamics
could potentially complicate predictability of magne-
tospheric dynamics based on solar wind input. The
importance of this internal response has been rec-
ognized and included in empirical predictive models
[Burton et al., 1975] and has also been incorporated
into neural network models using recurrent neural
networks which allows for a nonlinear memory capac-
ity [Wu and Lundstedt, 1996, 1997].

In the context of our statistics-based findings it is
interesting to consider the results of the Costello neu-
ral network [Costello, 1997, http://www.sec.noaa.gov
/rpc/costello/index.html] which is purely driven by
the solar wind inputs: V ,IMF |B|, and IMF Bz.
We examined the performance of the Costello neu-
ral network over the course of two solar cycles (1975-
2001). The model was evaluated by comparing the
neural network predictions with the data using the
skill scores defined in [Detman and Joselyn, 1999] and
the results are shown in Figure 16. Although the re-
sults are fairly accurate during quiet times (Kp<5),
they are less accurate during moderate or active times
(Kp>5). This behavior is also consistent with the
previous evaluation of Costello model [Detman and
Joselyn, 1999]. The correlation coefficient between
the forecast and official Kp is 0.75.
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Figure 16. Performance of the Costello NN over two solar cycles from 1974 to 1998. The True Skill Statistic (TSS)
and Gilbert Skill (GS) scores have the following interpretation: a value of 1 indicates a perfect forecast, a value
of 0 indicates a random forecast, and negative values can also indicate anti-correlation between the forecast and
the data. The results indicate that the Costello network could use improvement—especially for active conditions.
Moreover, the variation of the scores over the solar cycle indicates that the neural network performs much better
at solar maximum than at solar minimum. This result is not surprising given our finding that the dynamics involve
more nonlinearity at solar minimum.
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The most interesting feature of this plot is that
there is better predictability at solar maximum than
at solar minimum. This result is consistent with our
findings that the system behaves more linearly at so-
lar maximum than at solar minimum. One would
expect that a more linear system would have bet-
ter predictability. In a companion paper, Wing et al.
[2004] have analyzed four neural network predictors
of Kp, and found that the network trained with so-
lar wind data spanning two solar cycles also exhibits
this same solar cycle dependence. Wing et al. [2004]
have also shown that keeping past history of Kp im-
proves predictability for short term forecasts and sig-
nificantly reduces this solar cycle dependence. This
result suggests that an internal response may be nec-
essary to capture the nonlinear relaxation of the mag-
netosphere during solar minimum.

4. Conclusions

In this paper we have introduced two discriminat-
ing statistics that can be used to detect the pres-
ence of nonlinear correlations in a multivariate sys-
tem. Our analysis of the Kp data indicates that
the dynamics of the Kp variable may be captured
statistically with a linear AR model at solar maxi-
mum, while a few years prior to solar minimum when
sunspots first appear at mid-latitude, the Kp variable
exhibits a significant nonlinearity. This nonlinearity
appeared regularly during the course of seven solar
cycles spanned by the Kp dataset. The nonlinear-
ity seems to peak around 30-50 hours and gradually
decreases over the course of a one week correlation
time. The highest significance nonlinear correlations
seem to have a timescale on the order of 50 hours.

The overall timescale of the nonlinearity (on the
order of a week) is the same time associated with re-
covery from storms. The peak timescale, 1-2 days,
seems to be a timescale associated with charge ex-
change and wave-particle interactions associated with
ring current relaxation.

Our examination of the solar wind data seems to
indicate a that the intrinsic nonlinearity of the solar
wind variables has a much smaller correlation time
that vanish rapidly compared with the long correla-
tion time of the Kp index. Therefore, it is reason-
able to conclude that the nonlinearity is not the result
of the magnetosphere filtering an intrinsic solar wind
nonlinearity, but rather that the nonlinearity results
from the internal dynamical response to different so-
lar wind drivers.

Although magnetospheric activity is strongest shortly
after solar maximum, the nonlinearity is not detected
at that time. The absence of nonlinearity may be re-
lated to the fact that the system is strongly driven
and the linear magnetospheric response to the driver
suppresses the internal magnetospheric nonlinearity.
On the other hand, when the magnetospheric activity
is smaller around solar minimum, the internal mag-
netospheric nonlinearity is detected and internal dy-
namics are more important. The nonlinearity ap-
pears to be closely associated with increased solar
wind speed. Solar wind speed is also correlated with
electron flux levels on the same timescale as the non-
linearity detected in our analysis [Vassiliadis et al.,
2002]. These results seems consistent with the finding
that the Costello neural network model shows greater
predictability of Kp at solar maximum (most linear)
than at solar minimum (most nonlinear) when only
external drivers are considered.
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