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Abstract. Pressure driven, ideal ballooning stability calculations are often used to predict

the achievable plasma β in stellarator configurations. In this paper, the sensitivity of ballooning

stability to plasmas profile variations is addressed. A simple, semi-analytic method for expressing

the ballooning growth rate, for each field line, as a polynomial function of the variation in the

pressure-gradient and the average magnetic shear from an original equilibrium has recently

been introduced [Phys. Plasmas, 11(9):L53, 2004.]. This paper will apply the expression to

various stellarator configurations and comment on the validity of various truncated forms of the

polynomial expression. In particular, it is shown that in general it is insufficient to consider only

the second order terms as previously assumed, and that higher order terms must be included to

obtain accurate predictions of stability.
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1. Introduction.

An economically viable fusion reactor must sustain high-pressure, stable equilibria. It is

often predicted that the short wavelength, pressure-driven instabilities, ballooning modes,

will be the instabilities that limit the obtainable plasma stored energy. An important pre-

diction from tokamak stability studies was the appearance of the second region of stability

[1], where sufficiently high pressure-gradient stabilizes the ballooning mode. There is no

guarantee that second stable regions exist for general three-dimensional equilibria. Quan-

titative calculations are required to determine whether second stability is possible for any

given configuration. It has been shown that some stellarators do [2, 3, 4], and that some

stellarators do not [5, 6], possess second stable regions. The question thus arises : what

property of the configuration determines whether a second stability region will exist?

Before proceeding, we should note that the lack of a continuous symmetry in devices

such as the stellarator greatly complicates the extension from the infinite-n, localized

ballooning modes to the finite-n, global modes [7, 8]. For the axi-symmetric tokamak,

it is a relatively straight-forward procedure to construct global modes from the localized

modes [9]. Furthermore, an additional complication produced by the lack of symmetry in

stellarators is that the equilibrium itself is not guaranteed to have perfectly nested flux

surfaces. This will result in local pressure flattening near the rational sufaces, and this

has been raised suggestions that local stability criteria may not be relevant for stellara-

tor stability [10, 11]. Recent experimental results [12] suggest that experiments violate

ballooning stability limits. This, however, is an area of open research. An alternative
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explanation of the observed discrepancy between theory and experiment is that slight

variations in the boundary geometry can sufficiently change the stability properties [13] :

the conclusion being that ballooning stability may well be relevant in setting the pressure

limit in stellarators. Given this, we seek to elucidate and provide a means to quantify the

strength of the physical mechanism of second-stability.

The ‘brute-force’ approach to investigate this question is to numerically compute an equi-

librium and solve the ballooning eigenvalue equation. The pressure is then increased

and the process repeated. This process is tedious, particularly so given that computing

a three-dimensional equilibrium is a computationally intensive task, and this approach

imparts little insight. Furthermore, this method cannot ascertain if, beyond a region of

instability, there lies a second stable region.

A better approach, the method of profile variations, was introduced by Greene & Chance

[1] for axisymmetric configurations. They considered variations in the pressure-gradient

and average shear at a selected magnetic surface in the equilibrium. The pressure-gradient

and average shear have a crucial impact on ballooning stability, as the presence of pressure-

gradients in regions of unfavorable curvature is the cause of ballooning instability, while

shear is the dominant stabilizing mechanism. The equilibrium itself is then adjusted to

preserve force balance, and a family of semi-analytic neighboring equilibria is constructed.

For each such constructed neighboring equilibrium, the ballooning equation may be re-

solved numerically (exactly) and marginal stability diagrams constructed. Such diagrams

are widely used to study tokamak stability, and the analysis has been extended to stel-
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larator geometry [2, 14]. This method eliminates the need to re-compute the equilibrium,

and illuminates the role of the local magnetic shear.

The mechanism for second stability was determined to be that pressure induced varia-

tions in the parallel current, J‖ = J · B/B2, cause variations in the local shear, which

may strengthen the stabilizing force in regions of unfavorable curvature. This stabiliz-

ing force may, depending on the geometry, overwhelm the destabilizing effect. A related

pressure-induced stabilization phenomenon that should be mentioned, is when increased

pressure alters the geometry of the configuration [15, 16, 17]. While this mechanism can

modify the stability properties, it is generally a smaller effect, as is verified by equilibrium

reconstruction and stability analysis [4].

Recently, the method of profile variations has been extended using an additional eigenvalue

perturbation analysis [18]. It was shown that it is not necessary to re-solve the ballooning

equation for the semi-analytic, neighboring equilibria. Whether ballooning stability will

improve or degrade as the pressure-gradient is increased can be inferred from information

obtained directly from the original equilibrium. An analytic polynomial expression for the

eigenvalue γ, with numerically computed coefficients, for how the ballooning eigenvalue

depends on variations in the pressure-gradient, δp′, and average shear, δι-′, was derived.

This paper will examine the accuracy of various truncated forms of the polynomial, as

applied to three stellarators of present research. It is shown that, in general, it is not

reliable to truncate the polynomial at second order as was implied in Ref.[18], though for

at least one configuration the second order expression is accurate. For the configurations

4



presented in this paper, it is sufficient to extended the polynomial expression through to

fourth order.

In Section 2, an outline of the derivation will be presented. Initially, the method of profile

variations is used to construct families of neighboring magnetostatic equilibria [1, 14].

Subsequently, a perturbation approach is employed to estimate the effect these variations

have on the ballooning eigenvalue [18]. Full details of the method have been presented in

Ref.[18] and references therein. In Section 3, the predictions of the expression for a variety

of stellarator configurations will be explored, and Section 4 will expand upon some of the

conclusions presented in Ref.[18]. In Ref.[18] it was claimed that a second stable region

will exist if ∂2γ/∂p′2 < 0. Here we show that this criterion is valid only if the higher order

terms can be neglected.

2. Method.

For a given configuration, the the ballooning eigenvalue equation, where γ = −ω2 is the

eigenvalue and γ > 0 indicates instability, is written [14]

[∂ηP∂η +Q− γR]ξ = 0, (1)

where the ballooning coefficients P,Q,R are P = B2/gψψ + gψψL2, Q = 2p′
√
g(G +

ι-I)(κn + κgL) and R =
√
g2P . Here L is the integrated local shear L =

∫ η
ηk
s(η′)dη′

where s = ι-′ + s̃ is the local shear (where s̃ denotes the part of the local shear that varies

within a flux surface), and κn, κg represent the normal and geodesic curvatures. The

normalized radial wavenumber, sometimes called the ballooning angle, ηk, is that point
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chosen where the integrated local shear vanishes. This expression is written in Boozer

coordinates [19] (ψ, θ, ζ) with the Jacobian
√
g = (G + ι-I)/B2, and η is a parameter

that measures distance along a field line. The eigenvalue γ is a function of the magnetic

flux surface, ψ, magnetic field line label and ηk. Instability is a balance between the

destabilizing pressure/curvature drive and the stabilizing effect of the local shear that

appears through L. This is an eigenvalue equation and for realistic geometry must be

solved numerically. This paper will assume that the equilibrium is supplied numerically,

and that the ballooning eigenvalue and eigenfunction (γ, ξ), for a given field line and given

ηk, has been solved.

A family of semi-analytic, nearby equilibria may be constructed using the method of

profile variations [1]. Variations in the pressure p(ψ) and rotational-transform profiles

ι-(ψ) are introduced in the form

p(ψ) → p(ψ) + µ δp(y), (2)

ι-(ψ) → ι-(ψ) + µ δ ι-(y), (3)

where µ is a small expansion parameter. The auxiliary variable y = (ψ−ψb)/µ is used to

ensure that the variations in the pressure-gradient and average shear are O(1), whereas the

variation in the pressure and rotational-transform are O(µ). The rationale for imposing

such variations is that it is the pressure-gradient and shear, rather than the pressure and

rotational-transform, that directly influences ballooning stability. All physically relevant

quantities are similarly varied. The variations are constrained by requiring that the

system satisfy ∇p = J×B and that the magnetic field strength be undisturbed to lowest
6



order. In this manner, a self-consistent, nearby equilibrium may be constructed for each

variation (δp′, δι-′). Full details of this approach in stellarator geometry are presented in

Ref.[14, 2, 18]

To lowest order in the variations, the curvature of the magnetic field is unchanged. It is the

local shear which is primarily affected by the profile variations, where s→ s+spδp
′+s ι-δι-′

and sp and s ι- are analytic functions of the equilibrium. For the ballooning equation, the

variations δp′, δι-′ alter the ballooning coefficients. Analytic expressions for P → P + δP

and Q→ Q+ δQ may be derived [18]. The terms δP and δQ depend only on the original

equilibrium, the eigenvalue-eigenfunction pair (γ, ξ) and the quantities δp′, δι-′ :

δP = δPp′δp′ + δP ι-′δι-′ + δPp′2δp′2 + δPp′ ι-′δp′δι-′ + δP ι-′2δι-′2, (4)

δQ = δQp′δp′ + δQ ι-′δι-′ + δQp′2δp′2 + δQp′ ι-′δp′δι-′ + δQ ι-′2δι-′2. (5)

Note that δp′ and δp′2 are both of order unity (similarly for δι-′, δι-′2). For given δp′, δι-′,

after calculating the perturbed coefficients, the perturbed ballooning equation may be

resolved numerically (exactly) and marginal stability diagrams constructed. This is the

conventional method for generating marginal stability diagrams as functions of p′ and ι′.

Rather than solve the perturbed ballooning equation numerically, further analytic progress

may be made. An analytic expression for how the ballooning mode growth rate varies

with pressure-gradient and shear can be derived [18]. The crucial observation is that

ballooning stability is an eigenvalue problem. For small profile variations, the impact of

pressure-gradient and averaged shear variations can be treated as a perturbed eigenvalue
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problem. An appropriate expression for the change in the eigenvalue δγ is

δγ =
∂γ

∂p′
δp′ +

∂γ

∂ ι-′
δι-′ +

∂2γ

∂p′2
δp′2 +

∂2γ

∂p′∂ ι-′
δp′δι-′ +

∂2γ

∂ ι-′2
δι-′2 + . . . , (6)

The dots ‘. . .’ here indicate that the third order terms δp′3, δp′2δι-′, δp′δι-′2, δι-′3, the fourth

order terms δp′4, δp′3δι-′, δp′2δι-′2, δp′δι-′3, δι-′4, and all higher order terms, are present. For

the expression to be useful, it is required that the magnitude of the higher order terms

rapidly diminish so that a truncated form of Eqn.(6) is meaningful. This paper will

investigate the accuracy of various truncated forms of this expression.

Using the shorthand notation, 〈ξ1|F |ξ2〉 ∫
ξR ξdη =

∫
ξ1Fξ2dη, the first order derivative

∂γ/∂p′ is given by

∂γ

∂p′
= 〈ξ|∂ηδPp′∂η + δQp′ − γδRp′|ξ〉, (7)

A similar expression holds for ∂γ/∂ ι-′. To calculate the second order derivatives, it is

required to determine the first order variations, δξp′ and δξ ι-′ , in the eigenfunction, which

are solved from

B δξp′ =
∂γ

∂p′
R ξ − [∂ηδPp′∂η + δQp′ − γδRp′] ξ, (8)

where B = [∂ηP∂η + Q − γR] and a similar equation holds for δξ ι-′. The second order

derivatives are then given by

∂2γ

∂p′2
= 〈ξ|∂ηδPp′2∂η + δQp′2 − γδRp′2|ξ〉 + 〈ξ|∂ηδPp′∂η + δQp′ − γδRp′|δξp′〉

− ∂γ

∂p′
(〈ξ|R|δξp′ 〉+ 〈ξ|δRp′ |ξ〉) , (9)

and similar expressions hold for ∂2γ/∂p′∂ ι-′ and ∂2γ/∂ ι-′2. The third, fourth and all

higher order terms may be similarly calculated. All derivatives depend only on the initial
8



equilibrium and the unperturbed eigenvalue–eigenfunction pair. Once they have been

calculated, the influence of pressure-gradient and average shear variations on ballooning

stability is known, and the marginal stability boundary, defined by γ + δγ = 0, may

immediately be determined from Eqn.(6). Furthermore, noting that positive γ indicates

instability, and that increasing pressure-gradient corresponds to δp′ < 0, we note that for a

small increase−δp′, the eigenvalue γ will increase if ∂γ/∂p′ < 0 and decrease if ∂γ/∂p′ > 0.

This result enables a criterion to determine, for a given configuration, if whether increased

pressure-gradient will be stabilizing or destabilizing. Furthermore, a second stable region

is indicated if ∂2γ/∂p′2 < 0. This latter statement must be tempered by the additional

requirement that the third and higher order terms in Eqn.(6) can safely be ignored. The

following results will show that this is not always the case. In general, it is necessary to

consider higher order terms. The following section will compare predictions of various

truncated forms of Eqn.(6) with the exact result, as obtained be re-solving the perturbed

ballooning eigenvalue equation numerically, for various stellarator configurations.

To consider realistic stellarator equilibria, we use the VMEC [20] code to compute an

equilibrium. To solve the ballooning equation, we adopt a finite difference method, as

described by Sanchez et al. [21]. The eigenfunction is represented by a discrete set of

(2N + 1) points ξi equally spaced along a selected field line on the ‘full-grid’ according to

ηi = −η∞+(i−1)∆, with the grid-spacing ∆ = η∞/N chosen to give about 100 grid points

along the field line per poloidal transit, with the boundary conditions ξ1 = ξ2N+1 = 0,

and where η∞ is chosen sufficiently large to contain the mode (several poloidal transits).
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The equation to be solved becomes a set of 2N − 1 linear equations of the form

Pi+ 1
2

∆

(ξi+1 − ξi)

∆
−
Pi− 1

2

∆

(ξi − ξi−1)

∆
+Qiξi = γRiξi.

Here, Qi and Ri are calculated on the full-grid at ηi, whereas Pi+ 1
2

is calculated on the

half-grid ηi + ∆/2. This is a matrix equation, Mξ = γξ, where M is tri-diagonal. The

largest eigenvalue and its eigenfunction are then solved using standard numerical routines

[21]. The same finite difference approximation is suitable for calculating what amounts

to be inner products appearing in the expressions for the derivatives.

3. Results.

Marginal stability diagrams for various configurations will now be presented. In all of the

diagrams, the location of the original equilibrium surface in (p′, ι-′) space is indicated with

‘+’ if that field line is unstable or with ‘−’ if that surface is stable. Also, only the symmet-

ric field line passing through θ = 0, ζ = 0 has been considered, with the ‘ballooning-angle’

chosen ηk = 0. A comprehensive ballooning analysis of the equilibria considered here

would consider all field lines, on all surfaces, with all values of the ballooning eigenvalue

ηk. This is not attempted here; rather it is the intention of this article to illustrate the

application of using perturbed eigenvalue analysis to predict the stability of the selected

field line in the neighboring equilibria.

In Fig.(1) is shown the stability diagram for a for a three field period, quasi-poloidal

stellarator-tokamak hybrid studied by Ware et al. [3]. The marginal stability curve

obtained by re-solving the perturbed eigenvalue equation exactly at 200× 200 points on
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the (δp′, δι-′) space is compared to the stability curve obtained from Eqn.(6) using terms up

to and including second order (dotted) and up to and including fourth order (dashed). The

quantitative agreement between the semi-analytic expression Eqn.(6) and the numerical

value is very good, particularly considering the large variation in (δp′, δι-′) ∼ (p′, ι-′). In

this case, the truncated expression Eqn.(6) to second order provides a good estimate of

the full stability boundary, and the fourth order expression is better still. Note that the

dotted and dashed curve required only one eigenvalue-eigenfunction calculation, whereas

the solid curve required 200× 200.

In Fig.(2) is shown the corresponding stability diagram for an LHD-like configuration.

For this case, the marginal stability boundary obtained by truncating Eqn.(6) at second

order fails to reproduce the full boundary. In this case, it is necessary to go to higher

order. The fourth order expression does give good agreement with the exact curve. This

behavior is repeated in the stability boundary for an NCSX-like configuration Fig.(3).

4. Discussion.

As it is not a-priori known to what order the expression for the perturbed eigenvalue

Eqn.(6) must be extended to obtain reliable results, a practical application of this the-

ory would require higher order terms to be calculated until the magnitude of these extra

terms becomes sufficiently small. Though the expressions for the higher order derivatives

∂(n)γ/∂p′(n), . . . , do become quite lengthy, they are easily calculated numerically. Ulti-

mately, all the derivatives depend only on the original equilibrium, and the derivatives

(and perturbed eigenfunctions) of lower order.
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If the expression Eqn.(6) truncated to second order was reliable, the second stability

properties of the configuration would be described by ∂γ/∂p′ and ∂2γ/∂p′2. In this case,

a second stable region will exist if ∂2γ/∂p′2 < 0. This is the case for the quasi-poloidal

configuration Fig.(1). This, however, is not generally the case, and for the LHD-like and

the NCSX-like configurations, higher-order expressions must be employed.

It would be of interest to determine what property of the configuration determines at what

order the expression can be truncated. In most applications of experimental interest, the

magnitude of the variations δp′, δι-′ are likely to be small, and the smaller the δp′, δι-′ the

more accurate truncated expressions will be.

The marginal stability diagrams are geometry dependent, and differing geometry can have

a dramatic impact on ballooning stability. In particular, for a given configuration, the

geometry of flux surfaces near the magnetic axis may be sufficiently different from those

near the plasma edge. It may be the case that a configuration will have a strong second

stable region near the plasma core, but a weaker second stable region near the plasma

edge. This in fact is the case for the LHD-like configuration. Also, for large variations

in the plasma pressure, the geometry of the configuration may change. The change in

ballooning stability caused by pressure induced variations in the geometry is smaller than

that caused by pressure induced variations in the local shear, but nevertheless if the

geometry changes significantly it will be necessary to recompute the marginal stability

diagram.

In stellarator equilibria, the ballooning eigenvalue is local to each field line. The eigenvalue

12



also depends on the ballooning angle ηk. It is often the case in tokamak configurations that

the first stable boundary is determined by ηk = 0, but that the second stable boundary is

determined by non-zero ηk. A comprehensive ballooning analysis must consider all field

lines for all values of ηk.

The eigenvalue perturbation theory is valid for discrete (non-degenerate) eigenvalues and

as such the theory is valid only for the unstable spectrum (though discretization will

eliminate the continuous spectrum). This problem may be avoided by adjusting the

pressure-gradient using the method of profile variations to find an unstable eigenmode.

The stability diagram may then be based on this point.

The analysis is completely general and applicable to axi-symmetric devices such as toka-

maks, where it is known that shaped configurations possess stronger second-stable regions.

The analysis presented in this letter may be of benefit to stellarator optimization routines

and future stellarator designs, existing stellarator experiments, and also to the study of

micro-instabilities which employs a similar eikonal approach.

This work was supported in part by U.S. Department of Energy Contract No. DE-AC02-

76CH0-3073.
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FIG. 1: Comparison of stability boundaries obtained from the exact eigenvalue solution (solid)

with that obtained from Eqn.(6) using terms up to second order (dotted) and terms up to fourth

order (dashed) for a quasi-poloidal hybrid stellarator.
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FIG. 2: Comparison of stability boundary obtained from the exact eigenvalue solution (solid)

with that obtained from Eqn.(6) using terms up to second order (dotted) and terms up to fourth

order (dashed) for an LHD-like configuration.
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FIG. 3: Comparison of stability boundary obtained from the exact eigenvalue solution (solid)

with that obtained from Eqn.(6) using terms up to second order (dotted) and terms up to fourth

order (dashed) for an NCSX-like configuration.
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