
Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073.

Princeton Plasma Physics Laboratory

A Short Introduction to General Gyrokinetic Theory

H. Qin

February  2005

PRINCETON PLASMA
PHYSICS LABORATORY

PPPL

PPPL-4052 PPPL-4052



PPPL Report Disclaimers 
 

Full Legal Disclaimer 
 This report was prepared as an account of work sponsored by an agency of the United 
States Government. Neither the United States Government nor any agency thereof, nor any 
of their employees, nor any of their contractors, subcontractors or their employees, makes 
any warranty, express or implied, or assumes any legal liability or responsibility for the 
accuracy, completeness, or any third party’s use or the results of such use of any information, 
apparatus, product, or process disclosed, or represents that its use would not infringe 
privately owned rights. Reference herein to any specific commercial product, process, or 
service by trade name, trademark, manufacturer, or otherwise, does not necessarily 
constitute or imply its endorsement, recommendation, or favoring by the United States 
Government or any agency thereof or its contractors or subcontractors. The views and 
opinions of authors expressed herein do not necessarily state or reflect those of the United 
States Government or any agency thereof. 
 
Trademark Disclaimer 
 Reference herein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its 
endorsement, recommendation, or favoring by the United States Government or any agency 
thereof or its contractors or subcontractors. 
 
 

PPPL Report Availability 
 

 This report is posted on the U.S. Department of Energy’s Princeton Plasma Physics 
Laboratory Publications and Reports web site in Fiscal Year 2005. The home page for PPPL 
Reports and Publications is: http://www.pppl.gov/pub_report/ 
 
Office of Scientific and Technical Information (OSTI): 
 Available electronically at: http://www.osti.gov/bridge. 
 Available for a processing fee to U.S. Department of Energy and its contractors, in paper 
from: 
 U.S. Department of Energy 
 Office of Scientific and Technical Information 
 P.O. Box 62 
 Oak Ridge, TN 37831-0062 

 Telephone: (865) 576-8401 
 Fax: (865) 576-5728 
 E-mail: reports@adonis.osti.gov 
 
National Technical Information Service (NTIS): 
 This report is available for sale to the general public from: 
 U.S. Department of Commerce 
 National Technical Information Service 
 5285 Port Royal Road 
 Springfield, VA 22161 

 Telephone: (800) 553-6847 
 Fax: (703) 605-6900 
 Email: orders@ntis.fedworld.gov 
 Online ordering: http://www.ntis.gov/ordering.htm 



A SHORT INTRODUCTION TO GENERAL GYROKINETIC
THEORY

H. QIN

Abstract. Interesting plasmas in the laboratory and space are magnetized.
General gyrokinetic theory is about a symmetry, gyro-symmetry, in the Vlasov-

Maxwell system for magnetized plasmas. The most general gyrokinetic theory
can be geometrically formulated. First, the coordinate-free, geometric Vlasov-

Maxwell equations are developed in the 7D phase space, which is defined as
a fiber bundle over the spacetime. The Poincaré-Cartan-Einstein 1-form pull-

backed onto the 7D phase space determines particles’ worldlines in the phase
space, and realizes the momentum integrals in kinetic theory as fiber integrals.

The infinite small generator of the gyro-symmetry is then asymptotically con-
structed as the base for the gyrophase coordinate of the gyrocenter coordinate

system. This is accomplished by applying the Lie coordinate perturbation

method to the Poincaré-Cartan-Einstein 1-form, which also generates the most
relaxed condition under which the gyro-symmetry still exists. General gyroki-

netic Vlasov-Maxwell equations are then developed as the Vlasov-Maxwell
equations in the gyrocenter coordinate system, rather than a set of new equa-

tions. Since the general gyrokinetic system developed is geometrically the same
as the Vlasov-Maxwell equations, all the coordinate independent properties of

the Vlasov-Maxwell equations, such as energy conservation, momentum con-
servation, and Liouville volume conservation, are automatically carried over to

the general gyrokinetic system. The pullback transformation associated with
the coordinate transformation is shown to be an indispensable part of the

general gyrokinetic Vlasov-Maxwell equations. Without this vital element, a
number of prominent physics features, such as the presence of the compres-

sional Alfvén wave and a proper description of the gyrokinetic equilibrium,
cannot be readily recovered. Three examples of applications of the general

gyrokinetic theory developed in the areas of plasma equilibrium and plasma
waves are given. Interesting topics, such as gyro-center gauge and gyro-gauge,

are discussed as well.

1. Introduction

General gyrokinetic theory is about a symmetry, gyro-symmetry, in the Vlasov-
Maxwell system for magnetized plasmas. In addition to its theoretical importance
and elegance, gyro-symmetry can be employed as an effective numerical algorithm
for modern large scale computer simulations for magnetized plasmas. Histori-
cally, gyrokinetic theory has been developed in various formats in different con-
text [2,4,8–10,12,15,18,22,24,25,27,28,30–32,35–37,41,43,45–51,53,54,56,59,60].
However, gyrokinetic theory can be put into a form much more general and geo-
metric than those found in literature. Here, we will geometrically develop such a
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2 H. QIN

general gyrokinetic theory, and leave the computational side of the story [5, 11, 13,
14, 19, 21, 23, 33, 34,42,57] to Ref. [58].

2. Geometric Vlasov-Maxwell Equations

Since we are looking for the gyro-symmetry of the Vlasov-Maxwell equations,
it is necessary to first develop a geometric point of view for the Vlasov-Maxwell
equations. Because it turns out that the geometry of the Vlasov-Maxwell equations
is best manifested in the spacetime of special relativity, we will start from the
relativistic Vlasov-Maxwell equations. The phase space where the Vlasov-Maxwell
equations reside is a 7-dimensional manifold

(1) P = {(x, p) | x ∈M, p ∈ T ∗
xM, g−1(p, p) = −m2c2} ,

where M is the 4-dimensional spacetime, T ∗M is the 8-dimensional cotangent bun-
dle of M , and g−1 is the inverse of the metric tensor of M defined by

(2) (g−1)αβgβγ = δα
γ .

The phase space is a fiber bundle over spacetime M (see Fig. 1),

(3) π : P −→M .

The worldlines of particles on P are determined by the Poincaré-Cartan-Einstein

x

M

q

P

π

xπ −1( )

Figure 1. Phase space and fiber integral.

1-form constructed as follows. First, take the only two geometric objects related
to the dynamics of charged particles, the momentum 1-form p and the potential
1-form A on M , then perform the only nontrivial operation, i.e., addition with the
right units, to let particles interact with fields,

(4) γ̂ =
e

c
A + p .
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γ̂ is what we call Poincaré-Cartan-Einstein 1-form on the spacetime M. In a Carte-
sian inertial coordinate system xµ (µ = 0, 1, 2, 3),

(5) x0 = ct and A0 = −φ .
The Poincaré-Cartan-Einstein 1-form on the phase space P is obtained by pulling
back γ̂,

(6) γ = π∗γ̂ .

Particles’ dynamics is determined by Hamilton’s equation

(7) iτdγ = 0 ,

where τ is a vector field, whose integrals are particle’s worldlines on P .
Very elegantly, the Poincaré-Cartan-Einstein 1-form γ also gives the necessary

“volume form” needed for the fundamental “velocity integrals” in kinetic theory.
Define the Liouville 6-form ω on the 7D phase space P as

(8) ω = − 1
3!m3

dγ ∧ dγ ∧ dγ .
We take the viewpoint that the “velocity integrals” in kinetic theory are geomet-
rically fiber integrals [26] defined as follow. For x ∈ M, and q ∈ π−1(x) ⊂ P (see
Fig. 1), consider the form

(9) ωx(q)(u1, u2, u3)[v1, v2, v3] ≡ ω(q)(u1, u2, u3, ṽ1, ṽ2, ṽ3) ,

where

ui ∈ Tq [π−1(x)], vi ∈ TxM, Tqπ(ṽi) = vi, ṽi ∈ TqP , (i = 1, 2, 3).

Actually, ṽi is not unique because in general Tqπ is not injective. However, ωx(q) is
well defined because according to the submersion theorem,

(10) Ker(Tqπ) = Tq [π−1(x)] .

Therefore, ωx(q) is a 3-form on π−1(x), valued in 3-forms on M. The 3-form flux on
M corresponding to a distribution function f : P −→ R is the result of integration
of fωx over the fiber π−1(x) at x,

(11) j(x) =
∫

π−1(x)

fωx .

The fact that j(x) is the conventional 3-form flux can be verified by expressing ω in
a coordinate system composed of inertial coordinates xµ (µ = 0, 1, 2, 3) for M and
three corresponding coordinate pi with i = 1, 2, and 3 for TxM. In this coordinate
system we have the following expressions in the phase space P ,

(12) p0 = −
√
m2c2 + p2 ,

dγ =
e

c
Ai,jdx

j ∧ dxi + dpi ∧ dxi − eφ,jdx
j ∧ dt− c

∂

∂pi

√
m2c2 + p2dpi ∧ dt ,(13)

ω = dp1 ∧ dp2 ∧ dp3 ∧
(
dx1 ∧ dx2 ∧ dx3 − p1

mγr
dt ∧ dx2 ∧ dx3

− p2

mγr
dx1 ∧ dt ∧ dx3 − p3

mγr
dx1 ∧ dx2 ∧ dt

)
,(14)
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where

(15) γr =

√
1 +

p2

m2c2
.

The Maxwell equations are

(16) d ∗ dA = 4πe
∫

π−1(x)

fωx ,

where ∗α is the Hodge-dual of α on spacetime M. Overall, the Vlasov-Maxwell
equations on the 7D phase space P can be geometrically written as

(17) df(v) = 0, ivdγ = 0 , and d ∗ dA = 4πe
∫

π−1(x)

fωx .

3. Noether’s Theorem, Symmetries, Kruskal Ring, and Lie
Coordinate Perturbation

Noether’s theorem links symmetries and invariants. Here, we cast the theorem
in the form of forms. Define a symmetry vector field η (infinite small generator) of
γ to be a vector field that satisfies

(18) Lηγ = ds

for some s : P −→ R, where Lη is the Lie derivative. η generates a 1-parameter
symmetry group for γ. Using Cartan’s magic formula, we have

(19) d(γ · η) + iηdγ = ds .

For the vector field τ of a worldline,

(20) d(γ · η) · τ = ds · τ ,
which implies that γ · η − s is an invariant.

In the present study, we will only consider the non-relativistic case in an inertial
coordinate system for M with x0 = ct. In addition, we chose three corresponding
coordinate pi (i = 1, 2, 3) as the fiber coordinates for P at x with

(21) p0 = −
√
m2c2 + p2 = −mc − 1

2
p2

mc
+O

[
(
p

mc
)4

]
.

We normalize γ by m, A by mc/e, and φ by m/e such that

γ = (A + v) · dx −
[
v2

2
+ φ

]
dt ,(22)

v ≡ p/m .(23)

Here, the bold mathematical symbols A, v, and p represent the i = 1, 2, 3 compo-
nents of the 1-forms A, v, and p, dx represents dxi (i = 1, 2, 3), and (A + v) · dx
is just a shorthand notation for

∑
i=1,2,3(Ai + vi)dxi. The normalizations for γ, φ,

and A will be used thereafter, unless it is explicitly stated otherwise.
The symmetry for γ that we are interested is an approximate one. It is an

exact symmetry when the electromagnetic fields are constant in spacetime. To
demonstrate the basic concept, we first consider the case of constant magnetic
field without electrical field. Because of its simplicity, there are several symmetries
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admitted by γ. The gyro-symmetry is the symmetry given by the infinite small
generator (vector field)

(24) η = vx

(
1
B

∂

∂x
+

∂

∂vy

)
+ vy

(
1
B

∂

∂y
− ∂

∂vx

)
.

Applying Noether’s theorem, we can verify that the corresponding invariant is the
magnetic moment

(25) µ =
v2

x + v2
y

2B
.

The gyro-symmetry η has a rather complicated expression in the Cartesian coordi-
nates (x, y, vx, vy). A new coordinate will be constructed such that η is a coordinate
base

(26) η =
∂

∂θ
,

where θ is the gyrophase coordinate. Eq. (24) indicates that the gyro-symmetry η is
neither a rotation in the momentum space, nor a rotation in the configuration space
or its prolongated version in the phase space. Therefore, θ is not a momentum coor-
dinate or a configuration coordinate. It is a phase space coordinate that depends on
particles’ momentum as well as their spacetime positions. We will call the orbit of
η in phase space Kruskal ring, and points on which Kruskal ring mates [31], which
are illustrated in Fig. 2. Shown in Fig. 3 is direct laboratory observation of charged
particle gyro-motion in magnetic field [1]. It is the projection of the Kruskal ring
in the configuration space.

P

η= ∂∂
∂θ

Kruskal Ring

Figure 2. The orbit of the gyro-symmetry η = ∂
∂θ is Kruskal ring.

Points on the ring are ring mates [31].

When the fields are not constant in spacetime, the gyro-symmetry η in Eq. (24)
is broken. We therefore seek an asymptotic symmetry when the spacetime in-
homogeneity is weak. Finding the most relaxed conditions of spacetime inhomo-
geneity under which an asymptotic gyro-symmetry still exists is our goal as well.
The strategy to achieve our objectives has two steps. (i) Construct a non-fibered,
non-canonical phase space coordinate system Z̄ = (X̄ , ū, w̄, θ̄) such that γ can be
expanded into an asymptotic series

(27) γ = γ̄0 + γ̄1 + γ̄2 + ... ,

where γ̄1 ∼ εγ̄0, γ̄2 ∼ εγ̄1 , and ε � 1. Z̄ is the called the zeroth order gyrocenter
coordinate. In addition, γ̄0 admits the gyro-symmetry η = ∂/∂θ̄, but γ̄1 does not
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Figure 3. Direct laboratory observation of charged particle gyro-
motion in magnetic field. [1]. (Reprint permitted by AIP and Dr.
Amatucci.)

necessarily; (ii) Introduce a coordinate perturbation transformation such that in
the new coordinates Z = (X, u, w, θ), γ1 admits the gyro-symmetry η = ∂/∂θ. In
fact, we will seek a stronger symmetry condition

∂γ/∂θ = 0 ,

which is sufficient for η = ∂/∂θ to satisfy Eq. (18). Z is the called the first order
gyrocenter coordinate. The small parameter ε measures the weakness of spacetime
inhomogeneity of the fields. The coordinate perturbation transformation procedure
indicates that the most relaxed conditions for the existence of an asymptotic gyro-
symmetry is

E ≡ Es + El, B ≡ Bs + Bl,(28)

El ∼ v × Bl

c
, Es ∼ ε

v × Bl

c
, Bs ∼ ε Bl ,(29) (

|ρ| ∇E
l

El
,

1
ΩEl

∂El

∂t

)
∼

(
|ρ| ∇B

l

Bl
,

1
ΩBl

∂Bl

∂t

)
∼ ε ,(30) (

|ρ| ∇E
s

Es
,

1
ΩEs

∂Es

∂t

)
∼

(
|ρ| ∇B

s

Bs
,

1
ΩBs

∂Bs

∂t

)
∼ 1 ,(31)

where the fields were split into two parts. (El,Bl) are the large amplitude parts
with long spacetime scale length comparable to the spacetime gyroradius ρ =
(ρ, 1/Ω), and (Es,Bs) are the small amplitude parts with spacetime scale length
smaller than the spacetime gyroradius.

The coordinate perturbation method we adopt belongs to the class of pertur-
bation techniques generally referred as Lie perturbation method [3, 6, 7, 37]. A
coordinate transformation for the 7D phase space P can be locally represented by
a map between two subsets of the R7 space, T : z 
−→ Z = T (z). As illustrated in
Fig. 4, for the same point p in phase space, there could be more than one coordinate
systems (patches). The correspondence between two different coordinate systems
for the same point in phase space is the coordinate transformation. In the present
study, we assume a coordinate transformation can be represented by a single map
almost everywhere. The subset of phase space which can not be covered by the
single map has zero measure and does not contribute to the fiber integrals.
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P

p z

Z

R

T

7

CoorC diinate System 1

Coordinate System 2

Figure 4. Coordinate transformation as a map in R7.

To see how γ is transformed by T , let Z = z +G1(z) and G1(z) ∼ ε,

Γ(Z) = γ(z) = γ [Z −G1(z)] = γ
[
Z −G1(Z) +O(ε2)

]
= γ(Z) − LG1(Z)γ(Z) +O(ε2)

= γ(Z) − iG1(Z)dγ(Z) − d [γ ·G1(Z)] +O(ε2) .(32)

If γ is an asymptotic series as in Eq. (27),

Γ(Z) = Γ0(Z) + Γ1(Z) +O(ε2) ,(33)

Γ0(Z) = γ0(Z) ,(34)

Γ1(Z) = γ1(Z) − iG1(Z)dγ0(Z) − d [γ0 ·G1(Z)] .(35)

Similar procedure can be straightforwardly carried out to second order. Let Z =
z +G1(z) +G2(z),

(36) Γ2(Z) = γ2(Z) − LG1(Z)γ1(Z) +
(

1
2
L2

G1(Z) − LG2(Z)

)
γ0(Z) .

4. Gyrocenter Coordinates

To construct the zeroth order gyrocenter coordinate Z̄ = (X̄ , ū, w̄, θ̄), we first
define two vector fields on M (or more rigorously sections of a vector bundle over
the spacetime M)

(37) D(y) ≡ El(y) × Bl(y)

[Bl(y)]2
, b(y) ≡ Bl(y)

Bl(y)
,

where y ∈ M. In addition, we define the following vector fields which also depend
on vx, the velocity at another spacetime position x ∈ M ,

u(y, vx)b(y) ≡ [vx(y) − D(y)] · b(y) b(y) ,(38)

w(y, vx)c(y, vx) ≡ [vx(y) − D(y)] × b(y)× b(y) ,(39)

c(y, vx) · c(y, vx) = 1 ,(40)

a(y, vx) ≡ b(y)× c(y, vx) ,(41)

ρ(y, vx) ≡ b(y)× [vx(y) − D(y)]
Bl(y)

,(42)
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where vx(y) is the velocity at x parallel transported to y, and all the fields can
depend on t. In the flat spacetime considered here, vx(y) = vx. The parallel trans-
ported velocity vx(y) has the following partition

(43) vx(y) ≡ D(y) + u(y, vx)b(y) + w(y, vx)c(y, vx) .

The zeroth order gyrocenter coordinate transformation

(44) g0 : z = (x, v, t) 
→ Z̄ = (X̄ , ū, w̄, θ̄, t)

is defined by

x ≡ X̄ + ρ(X̄ , v) ,(45)

ū ≡ u(X̄, v) ,(46)

w̄ ≡ w(X̄, v) ,(47)

sin θ̄ ≡ −c(X̄) · e1(X̄) ,(48)

t ≡ t ,(49)

where e1(X̄) is an arbitrary unit vector field in the perpendicular direction, and it
can depend on t as well. Consequently,

(50) v = D(X̄) + ūb(X̄) + w̄c(X̄) .

Substituting Eqs. (45)–(50) into Eq. (22), and expanding terms using the ordering
Eqs. (28)-(31), we have

γ = γ̄0 + γ̄1 + O(ε2) ,

(51)

γ̄0 =
[
Al(X̄, t) + ūb(X̄ , t) + D(X̄ , t)

] · dX̄ +
w̄2

2Bl(X̄, t)
dθ̄

−
[
ū2 + w̄2 +D(X̄ , t)2

2
+ φl(X̄ , t)

]
dt ,(52)

γ̄1 =
[
w̄

Bl
∇a ·

(
ūb +

w̄c

2

)
+

1
2
ρ · ∇Bl × ρ − w̄

Bl
∇D · a + As(X̄ + ρ)

]
· dX̄

+
[
− w̄3

2Bl3
a · ∇Bl · b +

w̄2

Bl
As(X̄ + ρ) · c

]
dθ̄+

[
1
Bl

As(X̄ + ρ) · a
]
dw̄

−
[
φs(X̄ + ρ) + ρ · ∂D

∂t
− 1

2
ρ · ∇El · ρ −

(
ūb +

w̄c

2

)
· w̄
Bl

∂a

∂t

]
dt .(53)

Here, every field is evaluated at Z̄ and can depend on t, and exact terms of the
form dα for some α : P → R have been discarded because their insignificance in
Hamilton’s equation (7). Computation needed in deriving the above equations is
indeed involving. It can be easily verified that ∂γ̄0/∂θ̄ = 0, but ∂γ̄1/∂θ̄ �= 0. As
discussed before, we now introduce a coordinate perturbation to the zeroth order
gyrocenter coordinates Z̄,

(54) Z = g1(Z̄) = Z̄ +G1(Z̄) ,

such that ∂γ1/∂θ = 0 in the first order gyrocenter coordinates Z = (X, u, w, θ).
Considering the fact that an arbitrary exact term of the form dα can be added to
γ1, we have

(55) γ1(Z) = γ̄1(Z) − iG1(Z)dγ0(Z) + dS1(Z) ,
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which, with Gt = 0, expands into

γ1(Z) =
[
G1X × Bl −G1ub + ∇S1 +

w

Bl
∇a ·

(
ub +

wc

2

)
+

1
2
ρ · ∇Bl × ρ

− w

Bl
∇D · a + As(X + ρ)

]
· dX +

[
G1X · b +

∂S1

∂u

]
du+

[
w

Bl
G1θ +

∂S1

∂w
+

+
1
Bl

As(X + ρ) · a
]
dw +

[
− w

Bl
G1w +

∂S1

∂θ
− w3

2Bl3
a · ∇Bl · b

+
w

Bl
As(X + ρ) · c

]
dθ+

[
− El · G1X + uG1u +wG1w +

∂S1

∂t
− φs(X + ρ)

−ρ · ∂D
∂t

+
1
2
ρ ·∇El · ρ +

(
ub +

wc

2

)
· w
Bl

∂a

∂t

]
dt .

(56)

In Eq. (56), every field is evaluated at Z and can depend on t. Extensive calculations
are needed to solve for G1 and S1 from the requirement that ∂γ1/∂θ = 0. We listed
the results without giving the details of the derivation,

G1X = −∂S1

∂u
+

w2

2Bl3
aa · ∇Bl +

wu

Bl2
(∇a · b) × b − w

Bl2
(∇D · a) × b

+
∇S1 + As(X + ρ)

Bl
× b(57)

G1u =
w2

2Bl2
a · ∇Bl · c +

wu

Bl
b · ∇a · b − w

Bl
b · ∇D · a

− b · [∇S1 + As(X + ρ)] ,(58)

G1w =
Bl

w

∂S1

∂θ
− w2

2Bl2
a · ∇Bl · b + c · As(X + ρ) ,(59)

G1θ = −B
l

w

∂S1

∂w
+

1
w

a · As(X + ρ) .(60)

The determining equation for S1 is

∂S1

∂t
+

(
El

⊥ × b

Bl
+ ub

)
· ∇S1 + El

‖
∂S1

∂u
+Bl ∂S1

∂θ
= El

⊥ ·
[
w2

2Bl3
ãa · ∇Bl

+
wu

Bl2
(∇a · b) × b − w

Bl2
(∇D · a) × b

]
− w2u

2Bl2
∇Bl : c̃a

−wu
2

Bl
b · ∇a · b +

wu

Bl
b · ∇D · a +

w3

2Bl2
a · ∇Bl · b

+
w

Bl
a · ∂D

∂t
+ ψ̃s − w2

2Bl2
∇El : ãa +

uw

Bl
a · ∂b

∂t
.(61)



10 H. QIN

The G1 and S1 in Eqs. (57)-(61) remove the θ-dependence in γ1 , i.e.,

γ (Z) = γ0(Z) + γ1(Z) ,(62)

γ0 =
[
Al(X, t) + ub(X, t) + D(X, t)

] · dX +
w2

2Bl(X, t)
dθ

−
[
u2 +w2 +D(X, t)2

2
+ φl(X, t)

]
dt ,(63)

γ1(Z) = − w2

2Bl
R · dX −H1dt ,(64)

H1 = El
⊥ · w2

2Bl3
∇Bl +

w2u

4Bl
b · ∇ × b + 〈ψs〉

− w2

4Bl2

(∇ · El − bb : ∇El
) − w2

2Bl
R0 ,(65)

R ≡ ∇c · a , R0 ≡ −∂c
∂t

· a ,(66)

ψs ≡ φs(X + ρ) − El
⊥ × b

Bl
· As(X + ρ) −wc · As(X + ρ) ,(67)

〈α〉 ≡ 1
2π

∫ 2π

0

αdθ , α̃ ≡ α− 〈α〉 .(68)

Even though Eqs. (57)-(68) are displayed without derivation, it may be necessary
to demonstrate the basic procedures of the derivation. For this purpose, we will
outline here the derivation of the X⊥ and w components of G1 in γ (z) . Let

γ1X(Z) =
[
G1X × Bl −G1ub + ∇S1 +

w

Bl
∇a ·

(
ub +

wc

2

)
+

1
2
ρ · ∇Bl × ρ

− w

Bl
∇D · a + As(X + ρ)

]
.(69)

We look at the following partition of γ1X(Z) · dX,

(70) γ1X(Z) · dX = b · γ1X(Z)b · dX + γ1X(Z) × b × b · dX .

For the first term in the right hand side of Eq. (70)

b · γ1X(Z) = −G1u + b · ∇S1 + b · As(X + ρ) − w

Bl
b · ∇D · a

+
1
2

(
ρ · ∇Bl × ρ

) · b +
w

Bl
∇a ·

(
ub +

wc

2

)
· b .(71)

Choosing G1u to be the form displayed in Eq. (58), we are left with the following
expression

(72) b · γ1X(Z)b · dX =
(
− w2

2Bl
R · b

)
b · dX .

Similarly, for the second term in the right hand side of Eq. (70)

γ1X(Z) × b = −G1X⊥Bl + b × ∇S1 − b × As(X + ρ) +
w

Bl
b × ∇D · a

+
1
2
ρ

(
ρ ·∇Bl

)
+
w

Bl
∇a ·

(
ub +

wc

2

)
× b .(73)
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Choosing G1X⊥ to be the perpendicular component part of the result displayed in
Eq. (57), we are left with

(74) γ1X(Z) × b × b · dX =
(
− w2

2Bl
R⊥

)
· dX .

Combining Eqs. (72) and (74), we obtain the first term on the right hand side of
Eq. (64). The rest of the derivation for Eqs. (57)-(68) can be carried out in similar
procedures.

A particle’s worldline is given by a vector field τ on phase space P which satisfies

(75) iτdγ = 0 .

The conventional gyrocenter motion equation can be obtained through

(76)
dX

dt
=
τX
τt

,
du

dt
=
τu
τt

,
dw

dt
=
τw
τt

,
dθ

dt
=
τθ
τt
.

After some calculation, we obtain the following explicit expressions up to order ε
for gyrocenter dynamics,

dX

dt
=

B†

b · B† (u +
µ

2
b · ∇ × b) − b × E†

b · B† ,(77)

du

dt
=

B† · E†

B† · b ,(78)

dθ

dt
= Bl + R · dX

dt
− R0 +

{
El · ∇Bl

Bl2
+
u

2
b · ∇ × b

+
∂

∂µ
〈ψs〉 − 1

2Bl

[∇ · El − bb : ∇El
]}

,(79)

dµ

dt
= 0 , µ ≡ w2

2Bl
,(80)

B† ≡ ∇ × [
Al(X, t) + ub(X, t) + D(X, t)

]
,(81)

E† ≡ El − ∇
[
µBl +

D2

2
+ 〈ψs〉

]
− u

∂b

∂t
− ∂D

∂t
.(82)

The modified fields B† and E† can be viewed as those generated by a modified
potential A† = (φ†, A†),

φ†(X, t) ≡ φl(X, t) + µBl(X, t) +
D(X, t)2

2
+ 〈ψs(X, t)〉 ,(83)

A†(X, t) ≡ Al(X, t) + ub(X, t) + D(X, t) ,(84)

B† = ∇ × A†, E† = −∇φ† − ∂A†

∂t
.(85)

In Eq. (80), the conserved magnetic momentum µ is constructed asymptotically
when the spacetime inhomogeneities are weak. Recently, the concept of adiabatic
invariant has been extended to cases with strong spatial inhomogeneities for mag-
netic field [20, 61].

5. Gyrocenter Gauge and Gyro-Gauge

An important fact is that the requirement ∂γ1/∂θ = 0 does not uniquely deter-
mine the coordinate perturbation G and the gauge function S, and therefore the
first order gyrocenter coordinates. There are freedoms in defining the zeroth order
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gyrocenter coordinates as well. For example, in Ref. [38], the following definition
of the zeroth order gyrocenter coordinates are used

x ≡ X̄ + ρ(X̄ , v) ,(86)

ū ≡ u(x, v) ,(87)

w̄ ≡ w(x, v) ,(88)

sin θ̄ ≡ −c(x) · e1(x) ,(89)

t ≡ t .(90)

This choice results in more terms in the expression for γ̄1. We will call the freedoms
in selecting the gyrocenter coordinates gyro-center gauges. In Eq. (66), R and
R0 are θ-independent, even though a and c are θ-dependent. Let R = (R0,R),
X = (t,X), and ∇ = (−∂/∂t,∇). The γ in Eq. (62) is invariant under the following
group of transformation

R −→ R′ + ∇δ(X) ,(91)

θ −→ θ′ + δ(X) .(92)

Apparently, this is a gauge group associated how the gyrophase θ is measured or
how Kruskal ring mates are labeled. Naturally, an appropriate name for this gauge
would be gyro-gauge. The R components of gyro-gauge group were first rigorously
derived in Ref. [39]. Without R, γ will not be invariant under the gyro-gauge group
transformation.

6. Pullback Transformation

Even though the γ in Eq. (62) is gyro-gauge invariant, it does not need to be.
Different gyro-center gauges can be chosen such that γ is not gyro-gauge invariant.
The gyrocenter coordinate system constructed is just a useful coordinate system
for physics, but not the physics itself. It can depend on the gauges (freedoms) we
choose, as long as it is useful. Gyrocenter coordinate system and the gyrokinetic
equation are not the total of physics under investigation. What is gauge invariant
is the system of gyrokinetic equation and the gyrokinetic Maxwell equations. The
key element which makes this gyrokinetic system gauge invariant is the pullback
transformation associated with the gyrocenter coordinate system. Without this
vital element, a number of prominent physics features, such as the presence of the
compressional Alfvén wave and a proper description of the gyrokinetic equilibrium,
cannot be readily recovered.

Kinetic theory deals with particle distribution function f, which is a function
defined on the phase space P , f : P → R. As discussed in Sec. 2, the familiar den-
sity and momentum velocity integrals needed for Maxwell’s equations are the fiber
integrals j(x) =

∫
π−1(x)

fωx at x, which returns a 3-form flux. A coordinate system
(x, v) for P is fibered if x are the coordinates for the base, i.e., the spacetime M . In
gyrokinetic theory, however, the useful gyrocenter coordinate system is non-fibered
because X are not coordinates for spacetime. The gyrocenter transformation g :
z 
−→ Z is a non-fibered coordinate transformation. No matter which coordinate
system is used, non-fibered or fibered, the moment integrals are still defined on
the fiber π−1(x) at each x, and j(x) should be invariant under general non-fibered
coordinate transformations. For the new non-fibered coordinate system Z to be
useful, it is necessary to know the construction of j(x) in it. To be specific, the
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current scenario is that the distribution function f is known in the transformed
non-fibered coordinate system Z as F (Z). Given F (Z), we need to pull back the
distribution function F (Z) into f(z),

j(x) =
∫

π−1(x)

g∗ [F (Z)]ωx ,(93)

g∗ [F (Z)] = F (g(z)) = f(z) .(94)

Considering the asymptotic nature of the construction of the gyrocenter transfor-
mation g,

(95) g = g1g0 , g0 : z 
−→ Z̄ , g1 : Z̄ 
−→ Z ,

we write

f(z) = g∗F (Z) = g∗0 g
∗
1 F (Z) = g∗0F

[
g1(Z̄)

]
= g∗0

[
F (Z̄) +G · ∇F (Z̄) +O(ε2)

]
= F [g0(z)] +G [g0(z)] · ∇F [g0(z)] +O(ε2) .(96)

7. General Gyrokinetic Vlasov-Maxwell Equations

After constructing the gyrocenter coordinates and the corresponding pullback
transformation, we are ready to cast the coordinate independent (geometric) Vlasov-
Maxwell equations (17) in the gyrocenter coordinates to obtain the general gyroki-
netic Vlasov-Maxwell equations. The gyrokinetic Vlasov equation is simply the
Vlasov equation df(τ ) = 0 in the gyrocenter coordinates Z, which is explicitly

(97)
dZj

dt

∂F

∂Zj
= 0 , (0 ≤ j ≤ 6) .

Because

(98)
∂

∂θ

(
dZ

dt

)
= 0 ,

the gyrokinetic equation can be easily split into two parts

F = 〈F 〉 + F̃ ,(99)

∂ 〈F 〉
∂t

+
dX

dt
·∇X 〈F 〉 +

du

dt

∂ 〈F 〉
∂u

= 0 ,(100)

∂F̃

∂t
+
dX

dt
· ∇X F̃ +

du

dt

∂F̃

∂u
+
dθ

dt

∂F̃

∂θ
= 0 ,(101)

where dX/dt, du/dt, and dθ/dt are given by Eqs. (77)-(79). It is necessary to
complete the kinetic equations for F with Maxwell’s equation. With the pullback
transformation (96), the gyrokinetic Maxwell’s equation can be written as

(102) d ∗ dA = 4π
∫

π−1(x)

[(F ◦ g0) + (G ◦ g0) · ∇ (F ◦ g0)]ωx .

We emphasize that Eq. (102) is not a new equation which contains different physics
than the original Maxwell’s equation with moment integral. The more appropriate
name for this equation should be “Maxwell’s equation with moment integral (fiber
integral) in the gyrocenter coordinates”.
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The gyrophase dependent F̃ can be decoupled from the system. Letting F̃ = 0,
Eqs. (100) and (102) form a close system for 〈F 〉 and A. We note that F̃ = 0
does not imply that f̃ = 0. f becomes gyrophase dependent through the pullback
transformation (96) andG. Indeed, f̃ andG contain significant amount of important
physics, which will be demonstrated in the next two sections.

The spirit of the general gyrokinetic theory is to decouple the gyro-phase dy-
namics from the rest of particle dynamics by finding the gyro-symmetry, which
is fundamentally different from the conventional gyrokinetic concept of “averaging
out” the “fast gyro-motion”. This objective is accomplished by asymptotically con-
structing a good coordinate system, which is of course a nontrivial task [16, 17, 40]
(see Fig. 5). Indeed, it is almost impossible without the Lie coordinate perturba-
tion method enabled by the geometric nature of the phase space dynamics. We
developed the gyrokinetic Vlasov-Maxwell equations not as a new set of equations,
but rather as the Vlasov-Maxwell equations in the gyrocenter coordinates. Since
the general gyrokinetic system developed is geometrically the same as the Vlasov-
Maxwell equations, all the coordinate independent properties of the Vlasov-Maxwell
equations, such as energy conservation, momentum conservation and Liouville vol-
ume conservation, are automatically carried over to the general gyrokinetic system.

Figure 5. Quest of useful coordinates [40]. (Peanuts by Charles
Schulz. Reprint permitted by UFS, Inc.)

8. Application: Spitzer Paradox

Now, we turn to the applications of the gyrokinetic theory developed. The first
application is related to how to describe plasma equilibrium using the gyrokinetic
theory. Spitzer first noticed the obvious differences between the currents described
by the fluid equations and the guiding center motion [53,54]. There are two aspects
of these obvious differences in an equilibrium plasma without flow and electric field.
First, the perpendicular current given by the fluid model is the diamagnetic current
b×∇p/B, which is not in the guiding center drift motion. On the other hand, the
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curvature drift and the gradient drift for the guiding center motion are not found
in the fluid results. This puzzle, first posed and discussed by Spitzer, is what we
call the Spitzer paradox. To resolve it, we must explain, qualitatively as well as
quantitatively, how the diamagnetic current is microscopically generated, and what
happens to the macroscopic counterparts of the curvature drift and the gradient
drift. Here, we will only discuss the first part of the puzzle — how the diamagnetic
current is generated microscopically. A detailed study of the puzzle and other
relevant topics can be found in Ref. [50].

Spitzer gave the well-known physical picture, which is illustrated in Fig. 6. The
basic setup is an equilibrium plasma with a constant magnetic field and a pressure
(density) gradient in the perpendicular direction. From the fluid equation b ×
B = ∇p, we know that the perpendicular current is b × ∇p/B. However, if we
look at the microscopic picture, for each gyrocenter, the drift motion does not
produce any gyrocenter current or flow because the magnetic field is constant in
spacetime. Spitzer pointed out that there are more particles on the left than on the
right; thus macroscopically gyromotion generates current and flow at each spatial
location. The key to resolve the paradox is the realization that the flow of particles

Plasma
Ions

Plasma Physicists

j B
x

y

n∇

??

Figure 6. Spitzer Paradox. In memory of Lyman Spitzer Jr.
(1914-1997) [52].

is fundamentally different from that of gyrocenters. The difference is rigorously
described by the pullback transformation discussed in Sec. 6. Because B is constant,
G1 = 0. Using Eqs. (93) and (96), the dx ∧ dt∧ dz component of j is

jy =
∫
vyg

∗
0

[
F (Z̄)

]
dv3 =

∫
vyF (x + ρ, v)dv3

=
∫
vy

[
F (x) + ρ ·∇F (x) + O(ε2)

]
dv3

=
∫
v2

y

∂F

∂x

1
B
dv3 =

(
b× ∇p

B

)
y

.(103)

The physics captured in Eq. (103) is clear. Even though the gyrocenter flow is
zero, particle flow can be generated by the pullback transformation g∗0 associated
with the zeroth order gyrocenter transformation g0. The Spitzer paradox highlights
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the “seeming conflict” between the theory of gyromotion and the fluid equations,
two most fundamental concepts in plasma physics, and emphasizes the important
physics content in the pullback transformation.

9. Application: Bernstein Wave and Compressional Alfvén Wave

As examples of applications of the gyrokinetic theory developed to plasma waves,
we derive the dispersion relations for the Bernstein wave and the compressional
Alfvén wave in this section. A detailed derivation of the complete dispersion relation
for plasma waves with arbitrary wavelength and frequency using the gyrokinetic
theory can be found in Ref. [46].

For the Bernstein wave, we consider an electrostatic wave propagating perpen-
dicularly in a homogeneous magnetized plasma. Let Bl = Bez = Ωez, El = 0,
As = 0, k = kex, and

(104) φs ∼ φ exp (ikx− iωt) .

Linearizing the gyrokinetic equation for F = F0 + F1, we have

(105)
dF1

dt
=
∂F1

∂t
+ ub · ∇F = −b · ∇ 〈φ〉 ∂F0

∂u
.

Assuming the equilibrium distribution function F0 to be Maxwellian

(106) F0 =
n0

(2πT/m)3/2
exp

( −v2

2T/m

)
,

the solution for the linear gyrokinetic equation is degenerate because k‖ ≡ b ·k = 0,

(107) F1 = − 1
T/m

F0

−k‖u
ω − k‖u

〈φ〉 = 0 .

The only physics content is found in the pull-back of the perturbed density, which
requires expressing the gauge function S1 in terms of the perturbed fields. The
equation for S1 is

(108) Ω
∂S1

∂θ
+
∂S1

∂t
= φ̃(X + ρ) = [ eρ·∇ − J0(

ρ · ∇
i

)]φ(X) .

Using the identity

(109) exp(λ cos θ) =
∞∑

n=−∞
In(λ) exp(inθ) ,

we can easily solve Eq. (108) for S1,

(110) S1 =
1

Ωiω̄
J0φ+

1
Ω

∞∑
n=−∞

In(iρk)
i(n− ω̄)

e inθ φ .
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where ω̄ = ω/Ω. Since F1 = 0, the density response (i.e., the dx∧dt∧dz component
of the 3-form flux in spacetime) comes only from S1 in the pull-back transformation.

n1 =
∫
g∗0

[
F1(Z̄) +G1 ·∇F0(Z̄) + O(ε2)

]
dv3(111)

=
∫

e−ρ·∇G1 ·∇F0(z)dv3 + O(ε2)

=
∫

e−ρ·∇ Ω
w

∂S1

∂θ

∂F0

∂w
dv3 +O(ε2)

=
∫

−e ρ·∇ F0

T/m

∞∑
n=−∞

nIn(iρk)
(n− ω̄)

e inθ φ(x) d3v + O(ε2) .

Using the facts that

(112)
∫ 2π

0

e i(m + n)ξ dξ = δm,−n2π ,

we have
(113)

n1 =
2π

(2πT )3/2

∫ −n0φ

T/m
exp(−

v2
‖ + v2

⊥
2T/m

)
∞∑

n=−∞

nI−n(−iρk)In(iρk)
(n − ω̄)

v⊥dv‖dv⊥ .

Carrying out the algebra with the help of some identities related to the Bessel
functions, we obtain

(114) n1 = n0
φ

T/m

∞∑
n=1

2n2

(
ω

Ω
)2 − n2

exp(− k2T

Ω2m
)In(

k2T

Ω2m
) .

Finally, the Poisson equation (in unnormalized units)

(115) −∇2φ =
∑
spec

4πen1

gives the dispersion relation of the Bernstein wave

(116) 1 =
∑
spec

4πn0e
2

Tk2

∞∑
n=1

2n2

(
ω

Ω
)2 − n2

exp(− k2T

Ω2m
)In(

k2T

Ω2m
) .

For low frequency and long wavelength modes, the leading order n1 in Eq. (114) is

n1 = −n0
k2φ

Ω2
.

Historically, this term has been referred as “the polarization drift term in the Pois-
son equation”. It has played an important role in the development of gyrokinetic
particle simulation methods [5,11,13,14,19,21,23,33,34,42,57]. However, its deriva-
tion were almost always heuristic. Using the general gyrokinetic theory developed
here, this term is rigorously recovered as a special case of the general pullback
transformation. In an inhomogeneous equilibrium, it is generalized into [47]

(117) n1 = ∇ ·
(n0

Ω2
∇φ

)
.
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Let’s rewrite the Poisson equation for the current case as,

∇ · (εE⊥) = 0 ,(118)

ε = 1 +
∑
spec

4πn0e
2

Ω2m
.(119)

Here ε can be viewed as the dielectric constant of the plasma in the perpendicular
direction. This point of view can be justified by the following alternative derivation
of Eq. (119). Because

(120) x = X + ρ + G1X ,

if we treat gyrocenters X as individual particles, then there is a charge separation
due to the G1X displacement (see Fig. 7). The induced electric polarization p
(dipole moment) for each gyrocenter is [29]

p =
e

2π

∫
G1X dθ ,(121)

G1X =
1
B

× ∇S1 .(122)

Calculation shows

(123) p =
−e
Ω2

∇⊥φ .

Therefore, the electric susceptibility for each species is

(124) χ =
n0e

2

Ω2m
,

which is consistent with Eq. (119).

+

+

+
+

+

-
- -

E X

x
1XG

ρ
≈

Figure 7. The G1X displacement induces an electric polarization
p (dipole moment) for each gyrocenter X.

We observe that the second term in Eq. (119), or the dielectric constant due to
the polarization drift, agrees with the well-known classical result. In this case, it
shows that the magnetized plasma described by the gyrokinetic theory physically
has the same linear response as that described by the classical theory. We take the
viewpoint that the general gyrokinetic theory should not contain different physics
that are not described by the Vlasov-Maxwell equations in the regular laboratory
phase space coordinates. However, there are gyrocenter coordinates where the
Vlasov-Maxwell equations have different forms more suitable for theoretical analy-
sis and numerical simulations. The challenge of the general gyrokinetic theory is to
construct such a useful coordinate system and associated pull-back transformation
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without losing or adding any physics content to the Vlasov-Maxwell equations. In-
deed, the dielectric constant in Eq. (119) is just a limiting case of the most general
classical dielectric constant tensor for magnetized plasmas [55], which has been re-
covered exactly from the general gyrokinetic theory with the most general pullback
transformation [46]. Alternative viewpoint on the dielectric response in gyrokinetic
plasma, which has important implications for numerical methods for gyrokinetic
systems, was discussed by Krommes [30].

To derive the dispersion relation for the compressional Alfvén wave, we consider
an electromagnetic wave propagating perpendicularly with Bl = Bez = Ωez, El =
0, φs = 0, k = key, and

(125) As = Ax exp (iky − iωt)ex .

As in the case of the Bernstein wave, F1 = 0 since k‖ = 0. Ignoring the finite
gyro-radius effect, the equation for S1 is

(126) Ω
∂S1

∂θ
+
∂S1

∂t
= w sin θAx .

The solution for S1 is

(127) S1 =
w

Ω
Ax

cos(θ) + iω̄ sin(θ)
(ω̄ + 1)(ω̄ − 1)

.

The perpendicular components of j are

j⊥ =
∫

−∂F0

∂w
G1w (vxdt ∧ dy ∧ dz + vydx ∧ dt ∧ dz)

= n0Ax

[ −ω̄2

−ω̄2 + 1
dt ∧ dy ∧ dz +

iω̄

(ω̄ + 1)(ω̄ − 1)
dx∧ dt ∧ dz

]
.(128)

The dt ∧ dy ∧ dz component is the polarization drift flow, and the dx ∧ dt ∧ dz is
the E ×B flow. When ω̄ � 1, the E×B flow from different species cancels out in
neutral plasma, and

(129) j⊥ = −
∑
spec

en0

B2
ω2Axdt ∧ dy ∧ dz .

Invoking the Maxwell’s equation d ∗dA = 4πj, we obtain the dispersion relation for
the compressional Alfvén wave

(130) ω2 = k2v2
A ,

where v2
A ≡ B2/4πn0 is the Alfvén velocity in unnormalized units.

10. Further Development

Physics is geometry. The geometric point of view for the gyrokinetic theory
has been proven to be efficient and productive. The geometry of the gyrokinetic
theory is rich. Many interesting topics, such as gyrocenter dynamics as a Hamil-
tonian system in a cotangent bundle [44], gyrocenter dynamics as an anholonomy
of a connection [44], collision operator for the gyrokinetic system, and gyrokinetic
concept for magnetized plasmas with strong spacetime inhomogeneities [20, 61] are
currently being investigated.
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