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Abstract

A new method for the solution of nonlinear dispersive partial differential equations is de-
scribed. The marker method relies on the definition of a convective field associated with the
underlying partial differential equation; the information about the approximate solution is asso-
ciated with the response of an ensemble of markers to this convective field. Some key aspects of
the method, such as the selection of the shape function and the initial loading, are discussed in
some details.

1 Introduction

Marker methods have been used for a long time in various disciplines (e.g. plasma physics,
astrophysics, etc.) to give numerical solutions of purely convective problems [1, 2]. In these
methods an ensemble of markers (or ‘superparticles’) is used to approximate the solution; the
region of interest covered by the markers defines the phase space associated with the solution.
Each marker is represented through its weight and position in phase space. The markers are
advanced in time according to the characteristics (‘equations of motion’) of the underlying par-
tial differential equation (PDE) associated with the problem. Marker methods are particularly
useful for collisionless problems [1–4]. However, in many applications of interest (e.g. turbulent
plasmas), diffusive processes can be important. Marker methods usually include diffusive effects
in a perturbative fashion [5,6]: in the first step, the markers are evolved in phase space according
to the collisionless (i.e. purely convective) dynamics; in the second step, diffusive effects are
included by a randomization of the markers’ weights and/or velocities according to a prescribed
probability distribution. Although this method agrees with physical intuition, it is, from the
numerical point of view, quite noisy and possibly inaccurate. The marker method presented in
this paper allows for the simultaneous treatment of convective and diffusive effects.

The main idea behind the marker method for the solution of a given PDE is to rewrite it as
a conservation equation with a generalized convective velocity. In general (even in linear cases),
the generalized convective velocity depends on the solution of the PDE itself. Each marker,
which carries the information of the solution of the PDE through its weight and its position,
is advanced in time using a Lagrangian scheme. The generalized convective velocity mentioned
earlier is computed through the information contained in the ensemble of markers and through
the so-called shape function.



As it will become apparent in the next sections, the marker method can actually be applied
to solve a general class of PDEs that are encountered commonly in physical and engineering
sciences.

The marker method, unlike the finite difference and the finite element methods, does not rely on
the concept of a grid (of course one can, if needed, reconstruct the solution on a fixed grid through
the collective information associated with the markers). Increased resolution can be achieved in
a natural way by locally increasing the number of markers and/or modifying the initial loading
of the markers. Unlike the finite difference method, the marker method can be trivially extended
to multi-dimensional problems.

This paper is organized as follows; in section 2, the marker method is described in the con-
text of the solution of a one-dimensional linear diffusion equation. Some aspects of the marker
method such as the shape function and the initial loading of the markers are also discussed in
section 2 and numerical examples are provided. Numerical examples of the marker method for
the linear diffusion equation, the nonlinear Burgers’ equation, the Korteweg-de Vries equation
and a highly-nonlinear diffusion equation are presented in section 3. Concluding remarks are
given in section 4.

2 Marker Method

The purpose of this paper is to present a new numerical method for the solution of nonlinear
dispersive PDEs, such as the nonlinear Burgers’ equation [7–9]

∂f

∂t
+ f

∂f

∂x
= µ

∂2f

∂x2
, (µ > 0) (1)

and the Korteweg-de Vries (KdV) equation [10]

∂f

∂t
+ 3

∂f2

∂x
+

∂3f

∂x3
= 0 , (2)

with initial conditions f(x, 0) = f0(x). As mentioned in the Introduction, particle methods
are usually applied to purely convective problems [i.e. by neglecting the right-hand side in
Eq.(1)]. Therefore, the new aspect of the marker method is best described in the context of a
simple example: the linear diffusion equation which is a limiting case of Eq.(1). An analysis of
the smoothing approximation obtained through the shape function, which represents a crucial
aspect of the method, is also discussed in this section. A specific numerical application of the
marker method to the case of a one-dimensional linear diffusion equation is given.

2.1 Basic Idea

For illustrative purposes, we describe the marker method for one-dimensional problems (as men-
tioned in the Introduction, the generalization to multi-dimensional problems is straightforward).
We consider an ensemble of N markers. Each marker k is defined through its position xk

and its weight Wk. The solution of a given one-dimensional PDE is found by allowing the
set {(xk, Wk); k = 1, · · · , N} to evolve in time according to a generalized nonlinear convective
velocity. The generalized convective velocity usually depends on the solution itself and a form of
convolution of the approximate solution with a shape function is required.



Consider the one-dimensional diffusion equation

∂f

∂t
=

∂2f

∂x2
, (3)

subject to the initial condition f0(x) = f(x, 0). The main idea behind the marker method is to
write Eq.(3) as a conservation equation

∂f

∂t
+

∂

∂x
(V f) = 0 , (4)

where

V = −1
f

∂f

∂x
. (5)

For clarity, f(x, t) is used to denote the exact solution of Eq.(3) whereas F (x, t) represents its
approximation. The function f can be approximated by an ensemble of markers (or ‘superpar-
ticles’) for which each marker j has an associated weight, Wj, and a time-dependent position,
xj(t). As in standard particle methods, such an approximation can be written in terms of delta
functions [1, 2]

F̂ =
N∑

j=1

Wjδ (x − xj) , (6)

where δ(x) is the usual Kronecker delta function; the hat notation indicates that the represen-
tation is singular. For example, 1/F̂ (x, t) can be singular in region where f(x, t) is nonzero;
furthermore, the ratio of delta functions [implied in Eq.(5)] is not defined. Substituting the
discrete representation (6) in Eq.(4) yields the characteristics associated with the generalized
velocity V

dxj/dt = V (xj(t), t)
xj(0) = x0j

}
j = 1, · · · , N (7)

As noted above, V ∝ ∂F̂ /∂x/F̂ is not well defined. As in conventional particle methods, a
smoothed version of F̂ is obtained by taking the convolution of Eq.(6) with a shape function

F (x, t) =
(
Sε ? F̂

)
(x, t) =

N∑
j=1

WjSε(x − xj) , (8)

where Sε(x) = S(x/ε)/ε and
∫

Sdx = 1; ε is termed the support parameter. Using representation
(8) in the trajectory equations, Eq.(7), one gets

dxj

dt
= −

N∑
k=1

WkS
′
ε (xj(t)− xk(t))

N∑
k=1

WkSε (xj(t)− xk(t))
, (9)

where a prime denotes a derivative with respect to x and the initial positions are xj(0) = x0j.
Note that the weights in Eq.(9) do not vary in time; in particular, if all the weights are ini-
tially equal, then all the information about the approximation F (x, t) is contained in the marker
positions. The equations of motion (9) can be integrated using standard ordinary differential
equation (ODE) techniques, such as the Runge-Kutta method [14], as used in this paper.



Before considering a numerical illustration of the marker method, several observations are in
order. Clearly the accuracy of the marker method depends crucially on the shape function and
its support parameter, ε (see next section). The number of markers, the method of integration
of the equations of motion, the initial loading of the ensemble {(xk, Wk); k = 1, · · · , N} and the
time step of integration also do influence the accuracy of the marker method. In some sense, the
positions of the markers define a moving grid as far as the approximate solution is concerned.
Of course one can reconstruct the approximate solution F on a fixed grid {Xg; g = 1, · · · , Ng} at
time t by invoking the representation (8):

Fg(t) ≡ F (Xg, t) =
N∑

j=1

WjSε(Xg − xj(t)) .

The marker method can be easily generalized to nonlinear dispersive PDEs such as the KdV equa-
tion, Eq.(2), and Burgers’ equation, Eq.(1). Both these equations can be written as conservation
equations [Eq.(4)] with convective velocities

V (x, t) = 3f +
1
f

∂2f

∂x2
,

for the KdV equation and

V (x, t) =
f

2
− µ

f

∂f

∂x
,

for Burgers’ equation. The marker method is very versatile in its applications, whereas conven-
tional (e.g. finite difference) methods usually require substantial modifications to account for
additional nonlinear or dispersive terms, for example.

In summary, the marker method can be cast in the following algorithmic form;
1. initial stage:

• rewrite the original PDE as a conservation equation with generalized convective velocity V ;

• select the number N of markers and the shape function S to approximate the solution; and

• load the markers according to a uniform or nonuniform spatial distribution.

2. main iteration loop:

• evaluate the (instantaneous) generalized convective velocity for each marker;

• integrate the characteristics (associated with the conservation equation) for a time step ∆t.

The above algorithm (main iteration loop) is repeated Nt times, where Nt is a prescribed number
of time steps.

The main differences between the marker method presented in this paper with conventional
marker (PIC) methods are the following:

• The conventional PIC method is based on the original PDE whereas the present marker
method is based on the equivalent conservation equation (associated with the original PDE).

• The conventional PIC method uses the splitting operator method to account for diffusive
terms whereas the marker method treats convective and diffusive contributions simultane-
ously.



2.2 Analysis of the Smoothing Approximation

As mentioned in the previous section, the accuracy of the marker method depends crucially on
the properties of the smoothed PDE’s approximate solution. Therefore it is important to study
the impact of the shape function and its support parameter ε on test functions. As it will become
apparent below, the accuracy of the smoothing approximation is also related to the initial loading
of the markers. The smoothed approximation of the exact solution f(x) is given by

F (x) =
N∑

j=1

WjSε(x − xj) , (10)

where Sε(x) = S(x/ε)/ε and the shape function S(x) with finite support satisfies the normaliza-
tion condition

+1∫
−1

S(x)dx = 1 ,

and S(x) = 0 for |x| > 1. In some cases, there are advantages in using shape functions with
infinite support, in which case the normalization condition is of the form

∫ +∞
−∞ Sdx = 1. Apart

from the actual form of the shape function, there is some freedom in selecting the value of
the support parameter ε. However one can estimate an appropriate value for ε based on the
following considerations. For illustrative purposes, consider a simulation with N markers that
are initially distributed uniformly in the interval x ∈ [−L, L]; therefore, at t = 0, the average
distance between markers is h = 2L/N . If the support parameter is such that ε < h, then
Sε(xj − xk) ∝ S((xj − xk)/ε) = 0 for all markers j 6= k; this implies that the position of each
marker will be independent of the positions of the other markers at least at t = 0. We conclude
that the support parameter must be larger than the average distance between markers, at least
in the average sense. In addition, the value of ε, which is equivalent to a grid spacing in the
finite difference method, must be chosen such as to accurately resolve the spatial scale length
of f(x). In summary, if λ denotes the (known or estimated) spatial scale length of f(x) and h

is the average distance between markers, the support parameter, ε, must satisfy the following
inequality

h � ε � λ .

There is some freedom in selecting a shape function. Typically one requires some smoothness
properties and/or ease of computation (for example, a Gaussian shape function is smoother than
a hat shape function, but it is computationally more demanding to evaluate). Below is a set of
shape functions that are defined on the interval [−1, +1]:

S1(x) =
1
2

(gate function)

S2(x) = 1 − |x| (hat function)

S3(x) =
3
4

(1 − x2) (quadratic polynomial)

S4(x) =
15
16

(1− x2)2 (quartic polynomial) (11)

S5(x) = µ (1 − |x|) e−x2
(hat/Gaussian)

S6(x) = β
(
1 − x2

)2
e−x2

(quartic polynomial/Gaussian)

where µ = (
√

πerf(1) + 1/e − 1)−1 and β = 2/
(

3
2 erf(1)− 1/e

)
are constants of normalization,

and erf(x) denotes the error function

erf(x) =
2√
π

∫ x

0

e−t2dt .



In some cases it is numerically convenient to use shape functions with infinite support such as,
for example, the Gaussian shape function

S(0)(x) =
e−x2

√
π

. (12)

In order to improve the accuracy of an approximate solution F =
(
Sε ? F̂

)
one can demand that

some even moments of a Gaussian-based shape function vanish. If a shape function satisfies∫ +∞

−∞
x2qS(N)(x)dx = 0 ,

for q = 1, · · · , N then the smoothness of S(N)(x) is said to be order N . The systematic construc-
tion of shape functions with arbitrary smoothness order is described in Appendix A. The explicit
expressions for S(0), S(1), S(2) and S(3) are

S(0)(x) =
e−x2

√
π

,

S(1)(x) =
(

3
2

− x2

)
e−x2

√
π

,

S(2)(x) =
(

15
8

− 5
2

x2 +
1
2

x4

)
e−x2

√
π

,

S(3)(x) =
(

105
48

− 105
24

x2 +
7
4

x4 − 1
6

x6

)
e−x2

√
π

. (13)

Note that the computational cost for evaluating SN (x) is dominated by the exponential factor
e−x2

. The shape functions given by Eqs.(13) are shown in Fig.1. In some applications, it can be
advantageous to use shape functions with large N . In order to illustrate this point, we consider
a positive-definite test function

φM (x) = 1 + sin (Mπx/L) ,

defined in the interval x ∈ [−L, L] and M is a positive integer (mode number). Fig.2 shows the
approximate representation of φM(x) for shape functions with smoothness order 0,1,2,3 [Eq.(13)
and Fig.1] for the mode number M = 4 and a set of N = 32 uniformly distributed markers. The
exact test function is shown as a thick plain line. Clearly the approximation of φM(x) improves
significantly as the smoothness order of the shape function is increased. Fig.3 shows the L2 norm
of the error for the test function φM (x) as a function of the mode number M for the shape
functions of Eq.(13).

2.3 Initial Loading

The second factor that affects the approximation of f(x) is the initial distribution of the position
of the markers and their associated weights (referred to as the initial loading). There are two
basic approaches to the initialization of the ensemble {(xj, Wj) ; j = 1, · · · , N}. In the first
approach, the markers are uniformly distributed in space. Using the approximation of∫

f(x)dx ≈
∑

j

f(xj)h ,

where h is the distance between two consecutive markers, and noting that [see Eq.(6)]∫
F̂ dx =

∑
j

Wj ,



it follows that

Wj = f(xj)h
xj+1 − xj = h .

In the second approach, each marker has the same weight, but the spatial distribution of the
markers is not uniform. If there are N markers, the marker weight is then Wj = σ/N where

σ ≡
+∞∫
−∞

fdx. In order to determine the spatial distribution of the markers, it is convenient to

introduce the variable

ξ =

x∫
−∞

f(x′)dx′

+∞∫
−∞

f(x′)dx′
,

which, by construction, is a positive-definite quantity in the unit interval. A uniform distribution
in ξ, that is ξj = (j − 1

2 )/N (∀j), yields

xj = g−1

((∫ +∞

−∞
f(x)dx

)
j − 1

2

N

)
Wj =

σ

N
(14)

where g−1 denotes the inverse of g(x) ≡ ∫ x
−∞ f(x′)dx′. As a numerical illustration, consider the

function

f(x) = xe−x2
,

in the interval x ∈ [0, x0], x0 > 0. The initialization based on a set of uniformly distributed xj

yields

xj = (j − 1/2)h ,

Wj = xje
−x2

j h ,

where h = x0/N . Alternatively, one can demand that each marker carries an equal weight;
following the procedure described above [Eq.(14)] one obtains

xj =

√
− ln

(
1 − j − 1/2

N

(
1− e−x2

0

))
Wj =

1
N

, (15)

Fig.4 shows the smoothed approximation of f(x) for a uniform spatial loading (dotted line)
and a nonuniform spatial loading (dashed line) using a quadratic shape function with support
parameter ε = 0.1 for a set of N = 32 markers. The plain line represents the exact function.
For the same parameters, the quartic shape function, which satisfies S ′(x = ±1) = 0, yields a
better approximation. Further improvement can be achieved using the shape function based on
a quartic polynomial and a Gaussian function [S(x) = S6(x); see Eq.(11)]. Of course, smoother
approximations can be obtained by increasing the number of markers N . Another parameter
affecting the quality of the approximation is the support parameter, ε. Fig.5 shows the smoothed
approximation of f(x) for a uniform spatial loading (dotted line) and a nonuniform spatial loading
(dashed line) using a quartic shape function with support parameter ε = 0.2 for a set of N = 32



markers. Clearly a much better agreement between the approximated function and the exact
function is found. If the support parameter is further increased the smoothing effect of S(x)
becomes too important and the quality of the approximated function degrades. This observation
suggests the existence of an optimal support parameter; this is discussed in more detail in section
2.4.

2.4 Optimal Support Parameter

Consider a smooth, continuous function f(x) on the interval x ∈ [0, L]. An approximation of
f(x) based on a set of N markers is written in the usual form of

F (x) =
N∑

j=1

WjSε(x − xj) , (16)

where Sε(x) = S(x/ε)/ε denotes the shape function with argument x and support parameter ε.
We assumed that the sequences associated with the marker positions {xj ; j = 1, · · · , N} and the
marker weights {Wj; j = 1, · · · , N} are known. Note that if the support parameter ε is large
then F (x) will represent a smoothed version of f(x) whereas a too small value of ε may generate
a spurious oscillatory behavior in F (x). Intuitively there should exist an optimal value of the
support parameter, εopt. In order to determine εopt, we use a quadratic optimization technique.
We define a positive-definite energy functional

E =
N∑

g=1

(F (Xg) − f(Xg))
2 (17)

based on a uniform grid Xg = (g − 1/2)∆X and ∆X = L/Ng is the grid spacing. We assume
that the support parameter depends on a (continuous) time-like coordinate τ : ε = ε(τ). The
dynamical equation governing the support parameter is

dε

dτ
= −∂E

∂ε
. (18)

In the limit τ 7→ ∞, we expect ε 7→ εopt. Using Eqs.(16,17) the explicit form of Eq.(18) is

dε

dτ
=

2
ε2

Ng∑
k=1

(F (Xk)− f(Xk))Θk , (19)

where

Θk ≡
N∑

j=1

Wj

(
S(zjk) + zjkS ′(zjk)

)
, (20)

zjk ≡ (Xk − xj)/ε and a prime denotes a derivative with respect to the argument. We note that
the right-hand side of Eq.(19) depends nonlinearly on ε through F (Xk), zjk and the factor 1/ε2

that multiplies the summation. Eq.(19) can be advanced in time using standard ODE integrators.
We now consider a numerical example using a superGaussian with finite support

S(x) = C
(
1 − x2

)
e−x2

,

where C = (1/e +
√

πerf(1)/2)−1 is a constant of normalization and as before erf(x) denotes
the error function. Eq.(19) has been integrated using a fourth-order Runge-Kutta scheme. The



dotted line in Fig.6 shows the approximated profile, F (x) using the optimal parameter εopt =
0.0213 for the function

f(x) = 3Asech2(β(x − 1)) , (21)

with parameters A = 0.3, β =
√

A/4α and α = 0.000484. The dashed line represents F (x) for
the initial value of ε(0) = 1.0 whereas f(x) is show as a thin plain line. The number of grid
points is Ng = 100, the number of markers is N = 400 and the time step is ∆τ = 0.05. The
fast convergence of the quadratic optimization algorithm is due to the factor 1/ε2 in Eq.(19).
The quadratic optimization algorithm has been tested for various functions f(x); in all cases the
approximated profile F (x) at ε = εopt was in excellent agreement with the exact profile f(x),
indicating that the algorithm is robust and reliable.

3 Numerical Examples

The purpose of this section is to illustrate the marker method for the linear diffusion equa-
tion (section 3.1), the nonlinear Burgers’ equation (section 3.2), the Korteweg-de Vries equation
(section 3.3) and a highly nonlinear diffusion equation (section 3.4).

3.1 Linear Diffusion Equation

In this section, we apply the marker method for the diffusion equation, Eq.(3), with initial
conditions

f0(x) = 1 ; |x| ≤ 1
= 0 ; |x| > 1

}
(22)

The solution of the diffusion equation, Eq.(3), with initial conditions (22) is easily found using
Laplace transforms

f(x, t) =
1√
4πt

∫ +∞

−∞
f0(ξ) exp

(−(x − ξ)2/4t
)
dξ

=
1
2

[
erf
(

x + 1
2
√

t

)
− erf

(
x − 1
2
√

t

)]
,

where, as before, erf(x) is the error function with argument x. As mentioned in the previous
section, there is some freedom in the choice of the shape function S(x). Here we consider a shape
function with infinite support [see Eq.(13)]

S(1)(x) =
3/2 − x2

√
π

e−x2
. (23)

The equations of motion (9) have been integrated using a second-order Runge-Kutta method with
a fixed time step. The approximate solution has been reconstructed on a moving grid defined by
the marker positions x(t) = {xj(t); j = 1, · · · , N}. Note that one can determine the approximate
solution on a fixed, prescribed grid; however this approach involves the shape function (or some
other form of interpolation) that further reduces the accuracy of the numerical scheme. Fig.7
shows the exact solutions (plain line: t = 2.0; dotted line: t = 4.0) and the approximate solutions
(triangles: t = 2.0; squares: t = 4.0) of the diffusion equation for a set of N = 100 markers. The
initial condition is the square profile of Eq.(22). The parameters are: ∆t = 0.01, ε = 1/3 and
L = 14.0. We note the excellent agreement of the approximate solution with the exact solutions.
As it can be expected, slight errors do appear when F 7→ 0 although their magnitude are small.



Although not shown here, we have noted that the use of certain shape functions with finite
support can sometime lead to a clustering effect in the marker position, that is the solution ap-
pears to display an additional scale length associated with the support parameter. In general, the
use of shape function with infinite support appear to improve the accuracy of the approximate
solution.

3.2 Nonlinear Burgers’ Equation

As a second example, we apply the marker method to the solution of the nonlinear Burgers’
equation. Following the methodology presented in Section 2.1, the nonlinear Burgers equation
can be written as a conservation equation

∂f

∂t
+

∂

∂x
(V f) = 0 ,

where

V =
f

2
− µ

f

∂f

∂x
. (24)

It is interesting to note that the nonlinear term in Burgers’ equation appears as a linear term in
the convective velocity [first term in Eq.(24)] whereas the linear term in Eq.(1), which accounts
for the diffusive process, is represented as a nonlinear term in f [second term in Eq.(24)]. Before
presenting numerical results pertaining to the full nonlinear Burgers’ equation, we consider the
‘wave breaking’ effect associated with the quasilinear case [µ = 0 in Eq.(1)]

∂f

∂t
+ f

∂f

∂x
= 0 , (25)

with initial condition f(x, 0) = f0(x). The presence of the diffusive term in the original Burgers’
equation prevents the solution from becoming multiple valued. The exact solution of Eq.(25) is

f(x, t) = f0(x − ft) . (26)

The explicit solution of Eq.(26) for f amounts to a root finding problem. In this paper the
bisection method [14] has been used to solve Eq.(26). In the present case, the initial condition
was chosen as f0(x) = sech2x. The solution of the quasilinear problem (25) provides a simple
theoretical description of a shock wave. The time at which the shock forms may be estimated
by identifying it with the earliest time, tc, at which the profile f(x, t) becomes vertical, that is,
the time at which ∂f/∂x = ∞ for some point on the curve. From Eq.(26) we have the general
relation

∂f/∂x =
f ′
0

1 + tf ′
0

,

where a prime denotes a differentiation with respect to the argument. For the specific initial
profile of f0(x) = sech2x, we have f ′

0(x) = −2sech2x tanhx. On using the largest negative value
of this expression (namely xc = −4

√
3/9) to obtain the earliest time, we find tc = 1.299. Fig.8

shows the the initial profile (thick plain line) and the exact solutions at t = 0.4, 0.8, 1.2 are shown
by thin plain lines. The symbols represents the approximate solutions based on the markers’
positions. We note that the marker method is able to capture the transition just before the wave
breaking phenomenon very accurately; the algorithm fails around t ' 1.3 in good agreement
with our estimate for the critical time tc. We would like to point out that the complexity of
the algorithm for this nonlinear quasilinear problem is the same as that of the linear diffusion
equation discussed in the previous section. This is in contrast with finite difference methods



for which the linear diffusion equation and the nonlinear quasilinear problem (25) would require
different algorithms.

Having considered the limit cases of Eq.(1), we now present a numerical example for the full
nonlinear Burgers’ equation. Given the initial profile of

f0(x) = f(x, 0) =
µ

λ
(A − 4 tanh(x/λ)) ,

where µ, A and λ are constants, the exact solution of Burgers’s equation is (see Appendix B)

f(x, t) = 2µ
2a eµta2−ax + b eµtb2−bx + c eµtc2−cx

2 eµta2−ax + eµtb2−bx + eµtc2−cx
, (27)

where a = A/2λ, b = a + 2/λ and c = a − 2/λ. Fig.9 shows the exact (thin plain lines) and
approximate (symbols) solutions at t = 0, t = 100 and t = 200. The simulation has been carried
out with N = 256 markers (with an initial uniform spatial distribution) and a time step of
integration ∆t = 0.1. Other parameters are: A = 4.0, λ = 7.0 and µ = 0.1. We note that the
marker method is able to capture the steepening of the front with a very good accuracy.

3.3 Korteweg-de Vries Equation

In this section, the marker method is applied to the Korteweg-de Vries equation, Eq.(2). This
equation has been found relevant in various physical models such as shallow water waves [10],
ion acoustic waves in plasmas [12] and acoustic waves in an anharmonic crystal [13] and other
applications [11]. As before, Eq.(2) can be written as a conservation equation, Eq.(4), with
convective velocity

V (x, t) = 3f(x, t) +
1
f

∂2f(x, t)
∂x2

. (28)

The equations of motion are given by

dxk

dt
= V (xk, t) , (29)

xk(0) = x0k

where

V (xk, t) = 3
N∑

j=1

WjSε(xk − xj) +

N∑
j=1

WjS
′′
ε (xk − xj)

N∑
j=1

WjSε(xk − xj)
.

The simulations reported here were carried out using 2 different shape functions. The first shape
function has finite support (here defined in the interval x ∈ [−1, 1]) and it given by

S6(x) = β
(
1 − x2

)2
e−x2

, (30)

where β = 2/
(

3
2 erf(1)− 1/e

)
. The second shape function is a superGaussian with infinite

support [see Eq.(13)]

S(1)(x) =
1√
π

(
3
2

− x2

)
e−x2

. (31)



The accuracy of the marker method depends in part on the choice of the support parameter.
If the average distance between markers at t = 0 is denoted h, the support parameter can be
chosen of the form ε = α

√
h where α is a free parameter. If α is too small, the representation of

f will be ‘noisy’ (oscillatory) and the error norm will be large. If, however, α is large, then the
reconstructed function F (x, t) will represent a smoothed version of the actual profile f(x, t) and
therefore the error norm will be large. Fig.10 shows the L2 norm of the error computed on a fixed
grid with Ng = 5000 points for the profile f0(x) = sech2(x/2)/2 as a function of the parameter
α. The number of markers is N = 128 uniformly distributed in the interval x ∈ [−L, L] where
L = 12 (the distance between markers is then h = 2L/N ). As expected the error norm drops
with α for small α but increases with α for α ∼ 1. A value of α = 0.5 appears to be optimal for
this particular profile and number of markers. Fig.11 shows the initial profile (dotted line)

f(x, 0) = f0(x) =
1
2

sech2(x/2) , (32)

for a set of N = 128 markers, each marker having the same weight. The triangles represent the
position of the markers. The solution of Eq.(2) for the initial profile (32) is the soliton given by

f(x, t) =
1
2

sech2((x− t)/2) .

Fig.12 shows the exact solution of Eq.(2) with initial conditions (32) at t = 1.0 (dotted line).
The triangles represent the position of the markers (N = 128). Each marker has the same
weight, the time step is ∆t = 0.002 and the shape function used is the superGaussian, Eq.(31).
Clearly the algorithm fails to capture the correct solution as the markers tend to ‘coalesce’ in
the vicinity of the maxima of F . The numerical solution does not even resemble the exact
solution if one uses a shape function with finite support [Eq.(30)] as shown in Fig.13 (other
parameters are the same as in Fig.12). Fig.12 and Fig.13 were obtained by loading the markers
nonuniformly in space such that Wk = const. An alternative is to load the markers uniformly
in space resulting in nonuniform weights. Fig.14 represents the numerical solution of Eq.(29)
with the same parameters as in Fig.12 for a uniform loading in x. The positions of the markers
(triangles) are in excellent agreement with the exact solution (shown as a dotted line). If one
uses a larger timestep, ∆t = 0.01, one notices (Fig.15) the formation of a front around x = 3.
The marker method has also been tested for the case of a two-soliton problem. Given the initial
condition of

f0(x) = 6 sech2x , (33)

the solution of the KdV equation is [11]

f(x, t) = 12
3 + 4 cosh(2x− 8t) + cosh(4x− 64t)
(3 cosh(x− 28t) + cosh(3x− 36t))2

. (34)

Fig.16 shows the numerical solution (triangles) and the exact solution (dotted line) at t = 0.05
for the initial conditions of Eq.(33). The number of markers used is N = 500, the time step is
∆t = 10−5 and the support parameter is ε =

√
h. We note the excellent agreement between the

numerical solution and the exact solution. In the general case when the exact solution is not
known, one must carry out a scan in the time step (the final solution must be independent of
the time step). Fig.17 shows the L2 norm of the error measured at t = 0.1 for the case of Fig.16
as a function of the time step. As expected a large step yields an inaccurate solution. The error
norm becomes independent of the time step for ∆t < 0.0014.

3.4 Nonlinear Diffusion Equation

In this section, we apply the marker method to the solution of nonlinear diffusion equations. As
in the previous section, we consider the one-dimensional case as the complexity of the algorithm



is not affected by the dimensionality of the problem. The nonlinear diffusion equation is written

∂f

∂t
=

∂

∂x

(
D

∂f

∂x

)
+ Q(x) , (35)

with a diffusion coefficient of the form D = D0fe−f and a source term

Q(x) = −D0e
−f∞

[
f∞

∂2f∞
∂x2

+ (1− f∞)
(

∂f∞
∂x

)2
]

. (36)

Here f∞ = f∞(x) denotes the steady state solution of Eq.(35). The nonlinear diffusion equation
(35) can be written as a conservation equation [Eq.(4)] with a generalized convective velocity
given by

V (x, t) = −D∂f/∂x + S(x)
f

, (37)

where

S(x) =
∫ x

−∞
Q(x′)dx′ . (38)

The presence of the integral in Eq.(38) can be computationally prohibitive since S(x) is required
for every marker at every time step. In order to bypass this difficulty, S(x) has been computed
at the beginning of the simulations for a set of fixed grid points; the evaluation of this quantity
at the marker position is carried out through a linear interpolation using tabulated values of S(x).

The steady state solution has been taken as

f∞(x) = exp
(−α(x + x0)2

)
+ exp

(−α(x − x0)2
)

, (39)

and the initial profile is a Gaussian centered at x = 0:

f0(x) = f(x, 0) = e−x2
. (40)

Fig.18 shows the steady state solution [Eq.(39)] and the initial profile (triangles) for a set of
N = 256 markers uniformly distributed in the interval [−5/2, 5/2]. Other parameters are α = 4.0,
x0 = 0.5 and D0 = 10; the support parameter has been chosen as ε =

√
h where h is the

average distance between markers at t = 0. As in the linear case, the equations of motion have
been advanced in time using a second-order Runge-Kutta integrator [14] with a fixed time step
∆t = 0.01. Fig.19 shows the steady solution and the approximate solution at the marker positions
(triangles) at t = 80. We note the excellent agreement between the computed solution and
the exact solution. This numerical example highlights one important advantage of the marker
method: it is accurate in determining the long-time behavior of highly nonlinear dispersive
equations. Further the actual implementation of the algorithm is straightforward and be easily
adapted to more complex nonlinear dispersive PDEs.

4 Conclusions

In this paper we have introduced the marker method for the solution of the nonlinear dispersive
partial differential equations. The main idea behind the marker method is to rewrite a given
PDE as a conservation equation. A set of markers is then advanced in time (Lagrangian scheme)
according to a generalized convective velocity associated with the conservation equation [which



itself is an alternative (but exact) form of the original PDE]. The information about the approx-
imate solution can be obtained through a convolution of the markers’ weights and positions with
a shape function.

In this paper, we have addressed several aspects of the marker method such as the choice of
the shape function and the initial loading of the markers. Numerical examples have demonstrated
that the marker method yields accurate solutions for the linear and nonlinear diffusion equation,
the nonlinear Burgers’ equation and the Korteweg-de Vries equations.

The main advantages of the marker method are its ease of implementation, flexibility and
accuracy. Further, the marker method is naturally applicable to PDEs which solutions display
one or more shocks since the method is Lagrangian in nature; finite difference methods are often
(but not always) not accurate in such situations. The accuracy of the marker method is dependent
on the number of markers and the specific shape function used. Although shape functions with
finite support are usually ‘cheaper’ to evaluate, they can sometimes lead to a clustering effect
with the number of markers is insufficient. Numerical results have confirmed that shape functions
with infinite support are usually (but not always) preferable. The number of markers N affects
the accuracy of the solution in a more direct way. The quantity 2L/N (where 2L is the typical
spatial extent of the domain of interest in the one-dimensional case) can be seen as the analogue
of a grid spacing in the finite-difference method. Clearly an increase in the number of markers
yields a more accurate solution.

The solution of integral equations using the marker method is more difficult and will be ad-
dressed in future publications.
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Appendix A: Construction of Shape Functions

We consider shape functions of the form

S(x) = pN (x)h(x) , (41)

where pN(x) is a polynomial of order 2N

pN(x) =
N∑

n=0

αnx2n . (42)

and h(x) = e−x2
/
√

π is a normalized Gaussian. The shape function must satisfy the normalization
constraint of

+∞∫
−∞

S(x)dx = 1 . (43)

We may also require that additional (even) moments of S vanish. A shape function with smooth-
ness order N is defined such that S(x) satisfies the constraint

+∞∫
−∞

x2qS(x)dx = 0 , (44)

for q = 1, · · · , N as well as the normalization constraint, Eq.(43). The system (43,44) has N + 1
equations for N + 1 unknown coefficients α0, α1, · · · , αN . The equations to be solved are

N∑
n=0

αnIn = 1 ,

N∑
n=0

αnIn+q = 0 , q = 1, · · · , N

 (45)

where

In ≡ 1√
π

+∞∫
−∞

x2ne−x2
dx =

(2n − 1)(2n − 3)(2n− 5) · · ·(5)(3)(1)
2n

≡ (2n − 1)!!
2n

,

for n = 1, 2, · · · and I0 = 1. The solution of system (45) is

α = A−1u ,

where α = (α0, α1, · · · , αN−1, αN)T , u = (1, 0, · · · , 0)T are column vectors with N + 1 elements
and

A =



I0 I1 I2 · · · IN

I1 I2 I3 · · · IN+1

I2 I3 I4 · · · IN+2

· · · · · · · · · · · · · · ·
IN−1 IN IN+1 · · · I2N−1

IN IN+1 IN+2 · · · I2N

 .



The explicit expressions for the shape functions with smoothness order N = 0 to N = 3 are

S(0)(x) =
e−x2

√
π

,

S(1)(x) =
(

3
2

− x2

)
e−x2

√
π

,

S(2)(x) =
(

15
8

− 5
2

x2 +
1
2

x4

)
e−x2

√
π

,

S(3)(x) =
(

105
48

− 105
24

x2 +
7
4

x4 − 1
6

x6

)
e−x2

√
π

.



Appendix B: Analytical Solution of Burgers’ Equation

The nonlinear Burgers’ equation is

∂f

∂t
+ f

∂f

∂x
= µ

∂2f

∂x2
, (46)

where µ > 0 is the diffusion coefficient. It is easy to show that the function

θ(x, t) = exp
(
− 1

2µ

∫
f(x, t)dx

)
,

satisfies the diffusion equation

∂θ

∂t
= µ

∂2θ

∂x2
. (47)

Therefore a simple prescription for solving Burgers’ equation, Eq.(46), is (given an initial profile
f0(x) = f(x, 0))

• determine θ(x, 0) = exp
(− ∫ f0(x)dx/2µ

)
;

• obtain θ(x, t) by solving the diffusion equation (47); and

• determine f(x, t) from f(x, t) = −2µ∂θ/∂x/θ.

Consider the following initial profile

f0(x) = f(x, 0) =
µ

λ
(A − 4 tanh(x/λ)) .

Using the relation of
∫

tanhxdx = ln(cosh x) + C, we obtain

θ(x, 0) = θ̂ exp(−Ax/2λ) cosh2(x/λ) , (48)

where θ̂ = exp(Ax0/2λ)sech2(x0/λ) and x0 are constants. The solution of the diffusion equation,
Eq.(47), is

θ(x, t) =

+∞∫
−∞

G(ξ, x, t)θ(ξ, 0)dξ ,

where

G(ξ, x, t) =
1√

4πµt
exp

(
−(x − ξ)2

4µt

)
is the Green’s function. After some algebra one obtains

θ(x, t) =
θ̂

4

(
2 eµta2−ax + eµtb2−bx + eµtc2−cx

)
,

where a = A/2λ, b = a + 2/λ and c = a − 2/λ and

f(x, t) = − 2µ

θ(x, t)
∂θ

∂x

= 2µ
2a eµta2−ax + b eµtb2−bx + c eµtc2−cx

2 eµta2−ax + eµtb2−bx + eµtc2−cx
. (49)

For the special case A = 0 (see Eq.(48)), Eq.(49) simplifies to

f(x, t) = −4µ

λ

sinh(2x/λ)
cosh(2x/λ) + e−4µt/λ2 .



Figure 1: Gaussian-based shape functions with infinite support of order 0 (thick plain line), order 1
(dotted line), order 2 (dashed line) and order 3 (thin plain line).



Figure 2: Exact (thick plain line) and approximate representations of the test function φM(x) =
1 + sin(Mπx/L) with L = π and mode number M = 4 for a set of N = 32 uniformly distributed
markers. The approximate representations shown as a thin plain line, a dotted line, a dashed line and
a dotted-dashed line are for shape functions with smoothness order 0,1,2 and 3, respectively.



Figure 3: L2 norm of the error for the test function φM (x) = 1 + sin(Mπx/L) as a function of the
mode number M for shapes function with smoothness order 0 (asterisks), 1 (diamonds), 2 (triangles)
and 3 (squares)

.



Figure 4: Approximation of the function f(x) = xe−x2
(plain line) based on a set of N = 32 markers.

The dotted (dashed) line is for the case of uniform (nonuniform) spatial loading. The shape function
is a quadratic polynomial [S(x) = S3(x); see Eq.(11)] with parameter ε = 0.1.



Figure 5: Approximation of the function f(x) = xe−x2
(plain line) based on a set of N = 32 markers.

The dotted (dashed) line is for the case of uniform (nonuniform) spatial loading. The shape function
is a quartic polynomial [S(x) = S4(x); see Eq.(11)] with parameter ε = 0.2.



Figure 6: Approximated profiles (dashed line: ε = 1; dotted line: ε = εopt) for the function f(x) given
by Eq.(21) (thin plain line). The parameters are: N = 400, Ng = 100 and ∆τ = 0.05.



Figure 7: Exact (plain line: t = 2.0; dotted line: t = 4.0) and approximate (triangles: t = 2.0; squares:
t = 4.0)) solutions of the diffusion equation based on a set of N = 100 markers. The initial condition
is a square profile, Eq.(22). The shape function is a superGaussian [Eq.(23)]. Other parameters are:
∆t = 0.01, ε = 1/3 and L = 14.0.



Figure 8: Exact (thin plain lines) and approximate (diamonds: t = 0.4, triangles: t = 0.8 and
squares: t = 1.2) solution of the quasilinear equation ∂f/∂t + f∂f/∂x = 0 with initial condition
f(x, 0) = sech2x (thick plain line). The number of markers is N = 128, the time step is ∆t = 0.001
and the support parameter is ε =

√
h.



Figure 9: Exact (thin plain lines) and approximate (squares: t = 0.0, diamonds: t = 100 and
triangles: t = 200) solution of the nonlinear Burgers equation with initial conditions given by Eq.(27).
The parameters are: µ = 0.1, λ = 7.0 and A = 4.0. The number of markers used is N = 256 and the
time step of integration is ∆t = 0.1.



Figure 10: L2 norm of the error determined on a fixed grid with Ng = 5000 grid points as a function
of α for the profile F0(x) = sech2(x/2)/2 and a set of N = 128 markers. The parameter α is related
to the support parameter through the relation ε = α

√
h. The markers are distributed uniformly in

the interval x ∈ [−L, L] with L = 12 and h = 2L/N = 3/16.



Figure 11: Initial profile F0(x) = sech2(x/2)/2 based on a set of N = 128 markers with uniform
weights distributed in the interval x ∈ [−12, 12]. The triangles denote the positions of the markers
whereas the dotted line is the exact profile.



Figure 12: Single soliton at t = 0.1 with initial profile F0(x) = sech2(x/2)/2. The shape function used
is a superGaussian of smoothness order 1 (infinite support). At t = 0 the markers were loaded as in
Fig.11. The time step used is ∆t = 0.002. The triangles represent the position of the markers and
the exact profile is shown as a dotted line.



Figure 13: Same as Fig.12 but for the case of a shape function with finite support based on a quadratic
polynomial/Gaussian profile.



Figure 14: Same as Fig.12 for the case of nonuniform weights.



Figure 15: Same as Fig.14 but for a larger time step of ∆t = 0.01.



Figure 16: Double soliton at t = 0.05 with initial profile F0(x) = 6sech2(x) for a set of N = 500
markers in the interval x ∈ [−15, 12]. The time step used is ∆t = 1.0 × 10−5, the shape function is a
superGaussian of smoothness order 1 and the support parameter is ε =

√
h.



Figure 17: L2 norm of the error at t = 0.1 for the double soliton case as a function of the time step
of integration. All the parameters are the same as in Fig.16.



Figure 18: Steady state solution of the one-dimensional nonlinear diffusion equation (35) (plain line).
The triangles represents the initial position of the markers.



Figure 19: Steady state solution of the one-dimensional nonlinear diffusion equation (35) (plain line).
The triangles represents the position of the markers at t = 80.
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