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The effect on stellarator neoclassical transport of a

fluctuating electrostatic spectrum

H.E. Mynicka and A.H. Boozerb

aPlasma Physics Laboratory, Princeton University
bDept. of Applied Physics & Mathematics, Columbia University

Abstract

We study the effect on neoclassical transport of applying a fluctuating electro-

static spectrum, such as produced either by plasma turbulence, or imposed exter-

nally. For tokamaks, it is usually assumed that the neoclassical and “anomalous”

contributions to the transport roughly superpose,D = D nc+Dan, an intuition also

used in modeling stellarators. An alternate intuition, however, is one where it is the

collisional and anomalous scattering frequencies which superpose, � ef = � + �an.

For nonaxisymmetric systems, in regimes where @D=@� < 0, this “�ef picture”

implies that turning on the fluctuations can decrease the total radial transport. Us-

ing numerical and analytic means, it is found that the total transport has contri-

butions conforming to each of these intuitions, either of which can dominate. In

particular, for stellarators, the �ef picture is often valid, producing transport behav-

ior differing from tokamaks.

PACS #s: 52.55.Dy, 52.55.Hc, 52.35.Ra
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I. Introduction

In this paper, we examine the effect on neoclassical transport in a stellarator

or tokamak of introducing an additional fluctuating electrostatic (ES) field, such

as that produced by plasma drift turbulence, or imposed externally. The theory of

neoclassical transport in tokamaks (e.g., Refs. 1–3) and stellarators (e.g., Refs. 4,5)

has been extensively developed. Much theoretical work has also been done on

turbulent transport, mainly in tokamaks (see, e.g., Ref. 6). With increasing interest

in stellarators in recent years, some studies of turbulent transport in stellarators

(e.g., Refs. 7–10) have been carried out, though the greater geometric complexity

of stellarators has made numerical and analytic progress more difficult than for

tokamaks.

Here, we address two general intuitions in the literature about what one expects

the effect of the additional ES spectrum should be. The first, probably derived

principally from tokamak studies, here termed the “additive picture”, is that the

contributions to radial transport from Coulomb collisions and from the fluctuating

spectrum are roughly independent, so that the total radial transport coefficient D

may be approximately writtenD ' Dnc+Dan, with the usual Coulomb collision-

ality (�) producing neoclassical transport (Dnc), and the fluctuations producing the

“anomalous” contribution (Dan). This same view has been applied in modeling

stellarators (e.g., Refs. 11–14), supported in part by the observation 15 that stellara-

tor empirical scaling laws are similar to ones originally developed for tokamaks,

such as Lackner-Gottardi scaling.16

On the other hand, one may regard the ES fluctuations as an additional source

of collisionality, so that the total effective velocity-space scattering frequency � ef

may be written as the sum of the Coulomb collisionality plus that from the fluctua-

tions, �ef = � + �an. Thus, within this “�ef picture”, a simple guess for the effect
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of the fluctuations is to replace � by �ef in Dnc(�). In an axisymmetric tokamak,

where Dnc increases with increasing collisionality (@D=@� > 0), the additive and

�ef pictures are consistent, at least qualitatively. However, in stellarators, or rippled

tokamaks, there are regimes of collisionality in which @D=@� < 0, so that the � ef

intuition would predict that increasing the fluctuation amplitude should decrease

radial transport, opposite the additive expectation. The present work addresses to

what extent these expectations hold, using both numerical and analytical methods.

The idea that ES fluctuations might provide an effective collisionality was dis-

cussed in Refs. 17,18, and experimentally tested on the Saturn stellarator 19 to

enhance the plasma confinement time (by about 40%), by applying an RF elec-

tric field with frequency ! comparable to the bounce frequency 
be of electrons

trapped in a helical ripple well in order to enhance their detrapping rate. More

recently, Shishkin and coworkers have proposed applications of this idea, e.g., de-

trapping electrons to control the radial electric field,20 and entrapping ions to en-

hance impurity removal.21,22 Thus, the additive intuition derives principally from

modeling internally-generated fluctuations, while the � ef intuition derives from

externally-imposed fluctuations, though the two are different cases of the same

phenomenon. Here, we present numerical results and an analytic framework ex-

hibiting both types of behavior.

The remainder of the paper is organized as follows. In Sec. II, we set up the

framework for the calculations to follow, introducing some notation, the model to

be used, and the numerical approach employed. A first series of numerical results is

presented in Sec. III, finding situations where the �ef picture is valid and substantial

(order unity), and others where it is relatively small. To gain a better understanding

of the dependencies found, in Sec. IV we turn to a theoretical analysis of the issue.

The numerical results of Sec. III are for distributions f distributed “globally” over
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a flux surface and in pitch. The analytic results in Sec. IV provide more detailed

information, coming from distributions more localized in flux surface launch point

and in pitch. In Sec. V, we provide a comparison of the analytic results and a

second set of numerical runs which are also of this more localized nature. We

find rough agreement between the detailed analytic and numerical results. We also

find agreement between �an=� computed analytically and numerically, and from

the analytic expression for this ratio obtain a prediction for the modification by the

fluctuations of Dnc which agrees with the global numerical results of Sec. III. In

Sec. VI we summarize our findings, and discuss some of their implications.

II. Preliminaries

We study 3 toroidal configurations, all related to the design for the NCSX

quasi-axisymmetric (QA) stellarator, currently under construction. 13 The first con-

figuration, designated QA1, is one variant of the LI383 design for NCSX. The

second, designated TOK1, is the tokamak resulting from dropping all the n 6= 0

Fourier amplitudes Bmn of magnetic field strength B � jBj in QA1. Finally, we

add to the Fourier decomposition of TOK1 a single helical amplitude Bm0n0 , of

size considerably greater than the n 6= 0 amplitudes in QA1, resulting in a model

conventional stellarator CS1. (We take m0 = 2; n0 = 6, and ripple amplitude

Æ = 7:5% halfway out, compared with an effective Æ of less than 1% for NCSX.)

These configurations are characterized in Fig. 1, which shows for each, on the left,

a contour plot of B(�; �) over a flux surface, and on the right, B along a field

line, for one poloidal transit. Here, �; � are the poloidal and toroidal flux coordi-

nates, respectively. In terms of these, along with the toroidal flux 2� and poloidal

flux 2� p, the magnetic field B(x) may be written in the contravariant (Clebsch)
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representation

B = r � r� +r� � r p = r��r p; (1)

where � � � � q�, and � � q�1 � d p=d is the rotational transform.

On these magnetic fields we superpose a time-independent radial ambipolar

electric field Er � �@r�0, with ambipolar potential �0( ) = �E(1 �  = a) =

�E(1� r2=a2), where �E is a scaling amplitude,  a is  at the plasma edge, a is

the value of r at  =  a, and we define an average minor radius r( ) with units

of length by  � B0r
2=2, withB0 the average magnetic field strength on axis. All

3 configurations have B0 = 30 kG, and average major radius R0 � R( = 0; � =

0; � = 0) = 100 cm.

To these equilibrium fields, we add a fluctuating spectrum of electrostatic per-

turbations Æ�(x; t) =
P

m
�m( ) cos(�m�!mt), where m � (m;n) is a vector

index labeling the modes, �m � n� �m� + �m0, !m is the mode frequency, and

�m( ) is the mode amplitude. It is given by e�m=E1 = âmAm( ), where e is the

particle charge, E1 a reference energy, here taken equal 1 keV, Am( ) gives the

mode radial variation, with maximum 1, and âm is the mode amplitude. To model

drift turbulence, we take mode frequencies given by !m = �!!�k=(1 + k2?�
2
g),

and amplitudes given by âm = 10�3�A=(1 + k2?�
2
g), with �! and �A scaling

amplitudes. Here, !�k � �k��ncT=(eB) is the diamagnetic frequency, with

�n � �@r(lnn0), and @r � @=@r denotes a partial derivative.

We will consider 2 spectra. The first, denoted S1, models drift turbulence. Such

modes tend to keep kk small, hence to peak near rational surfaces with q( ) �

qmn � m=n. The 3 configurations here have q in the range q0 = 2:53 ' 5=2 at

 = 0, and qa = 1:51 ' 3=2 at  =  a. We thus take m having low m;n, with

qm in this range. We choose the 6 modes m=n = f3=2; 5=3; 2=1; 4=2; 6=3; 5=2g.

For these parameters, hydrogen ions at r = a=2 with energy E = E1 have
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k?�g ' :035m, putting this parameter in the range .07–.21 for the m-values used,

at or slightly below typical observed values (hk?�gi � 0:3) for ITG turbulence in

tokamaks.

For the second spectrum, denoted S2, we take the same model as S1, but with

all the n-values in S1 set to zero. This yields larger k k, hence larger parallel electric

fields Ek, such as were taken in the Saturn experiment in Ref. 19, in order to most

effectively break the bounce action Jb, and thereby enhance the �ef effect.

For numerical investigation we use the ORBIT guiding-center code, 23 which

is able to conveniently read numerical equilibria. For speed, and because it

captures the essential physics, we launch monoenergetic ensembles, of N p par-

ticles at  0= a = 0:5, and compute the radial diffusion coefficient D from

D = h(Æri)2=(2�i)i, where hF i � N�1
p

P
i Fi is an average over all Np particles,

Æri � ri � hri, and �i is the run time for particle i, the smaller of its confinement

time and a maximum run time T allowed for the ensemble. With this definition, in

situations (such as at very low collisionality� and smallE r) where the particle loss

becomes non-diffusive, this prescription for D still provides a meaningful measure

of the transport, an average inverse confinement time.

The code uses the numerical counterpart24 of the Lorentz collision operator

CL,

CLf =
�vk

B
@�Mvk@�f =

�

2
@�(1� �2)@�f; (2)

with � = Mv2?=(2B) the particle magnetic moment, and � = vk=v the particle

pitch. CL conserves particles and energy. The code works in units where R 0 =

M = 
g0 = 1, with M the particle mass and 
g0 � eB0=(Mc). In these units,

energy E1 =
1
2
(�g=R0)

2 ' 3:88� 10�6, hence �g=R0 ' 2:79� 10�3.
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III. Numerical Results

We first look at transport for spectrum S1, modeling drift turbulence, with

Er = 0. This small value of Er means that the ions are in the 1=� regime of

the “superbanana branch” of transport, a situation which usually holds in a real

experiment for electrons. The Er = 0 ion results given here thus also provide a

picture of what may be expected for the analogous effect for electrons. In Fig. 2 is

shown a scan of radial diffusion coefficient D versus central electron density n e0

(and thus �), with the fluctuations turned off (�A = 0), for each of TOK1, QA1,

and CS1. We use monoenergetic ensembles of Np = 3000 particles, randomly

distributed in �; �, and �. For TOK1 (bottom curve), one notes the banana regime

at low–�, starting to bend over into the plateau regime at the highest �. Just above

this is the transport from QA1, close to that from TOK1 at high–�, and manifesting

a weak 1=�-regime as one descends from there toward lower �. Well above that is

the transport from CS1, showing a much stronger 1=� regime, as one would expect.

In the flattened part of this curve at lowest �, the transport is no longer primarily

diffusive, dominated by helically-trapped particles (trapping state index � = h)

walking directly to the machine wall. (We will also designate toroidally-trapped

particles by � = t, and passing particles by � = p.)

In Fig. 3 we turn on the fluctuations, showing a scan of D versus �A, at �! =

0:03 and ne0 = 1013=cm3. From Fig. 2, this value of ne0 places CS1 just below

its descent into the 1=� regime, where one might expect a disparity between the

additive and �ef pictures to appear. As defined in Sec. II, �A = 10 corresponds

to e�m=E1 ' 10�2 at the point of maximum amplitude of �m, typical of drift

turbulence. In Fig. 3b, the simple neoclassical (�A = 0) values are subtracted

from the full D shown in Fig. 3a, to show the anomalous increment D an above

neoclassical. In either figure, one notes the monotonic increase with �A of D
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for TOK1, roughly quadratic in form, and consistent with the additive intuition

generally accepted for tokamak transport. The QA1 curve roughly parallels the

TOK1 curve, but has a modest amount of oscillatory structure on top of this. The

CS1 curve (lying above the shown range in Fig. 3a) displays much more of this

structure, so that over this range it is not clear that on average D is increasing with

�A at all.

In Fig. 4 is shown a scan in frequency amplitude �! , at ne0 = 1013=cm3 and

�A = 10. As for Fig. 3, Fig. 4a shows the total transport D = Dnc + Dan, and

Fig. 4b shows the anomalous increment Dan alone. The TOK1 curve displays a

sizeable peak at small frequencies, of half-width Æ�! ' 0:03, with D falling off

monotonically away from that peak toward the neoclassical value. From compar-

ison of the mode and particle frequencies, this appears to be due to a resonance

of mode frequencies with the bounce time of � = t particles. As in Fig. 3, the

QA1 and CS1 stellarator curves are nonmonotonic, having an additional oscil-

latory structure at larger frequencies, of amplitude much larger for CS1, as one

expects. In CS1, the central “tokamak peak” visible in the TOK1 curve is still ev-

ident, and the additional structure shows a succession of peaks spaced at roughly

��! ' 0:08. One notes that this additional structure in both QA1 and CS1 makes

Dan negative for some �!, counter to the additive picture, and consistent with the

�ef picture.

While Dan < 0 in the above results is conceptually interesting, it is only a

small effect, inducing a peak-to-peak change of around 8%. This is in part because

we have thus far taken Er = �E = 0, making Dnc very large for ions in CS1,

and also because, as noted earlier, spectrum S1 provides a relatively small Ek for

inducing turbulent pitch-angle scattering. Therefore, we now compare the effects

of spectrum S2 versus S1, and of �E = 0 versus �E = 0:6, a value large enough
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to close the superbanana orbits, i.e., to make � = h particles confined instead of

walking directly out of the machine. We also henceforth focus on CS1, for which

these effects are more pronounced.

In Fig. 5 we show a scan ofD versus density for CS1, showing the neoclassical

transport (�A = 0) for �E = 0 (upper curve) and �E = 0:6 (lower). The 1=�

regime is again evident for �E = 0. The �E = 0:6 curve displays 2 collisionality

regimes, the 1=� regime at higher �, having @D=@� < 0, and at lower �, the

“superbanana regime”,4,25 for which @D=@� > 0. If the �ef picture were correct,

this change in sign in @D=@� should cause a corresponding sign change in the

increment Dan toD when the spectrum is turned on.

This expectation is borne out in Fig. 6, which shows 4 frequency scans, each

for ne0 = 1013=cm3 and �A = 10, as in Fig. 4. As before, Fig. 6a shows the full

D, and Fig. 6b shows Dan. One notes the central tokamak peak in each curve,

though in the 2 �E = 0:6 curves C and D the peak is displaced toward more

negative �! than the �E = 0 curves A and B, a result of the E � B drifts of

trapped particles. Comparing curves A and B, one sees that spectrum S2 induces

a far larger effect, producing a reduction in D of about 30% around j�!j ' 0:22,

excluding the central tokamak peak.

Comparing the �E = 0:6 curves C and D, one again sees that S2 induces

a much larger effect, again maximum around j�!j ' 0:22, but in this case the

anomalous increment Dan is positive, as one would expect from the �ef picture.

IV. Theory

We now explore this effect analytically. To study it, we employ the “action-

angle formalism,” originally formulated for tokamaks by Kaufman.26 In this for-

malism, one parametrizes the 6-dimensional phase space z with the 3 invariant
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actions J of the unperturbed motion and their 3 conjugate angles �, and considers

the diffusion in J–space under the influence of some perturbation, either collisions

or a fluctuating spectrum. The angle-averaged distribution f(J) is then governed

by a kinetic equation

@tf = Cf = @J �D � @Jf; (3)

with @J denoting a gradient in J-space.

The Hamiltonian governing the collisionless motion has an unperturbed and

perturbing part,H(z) = H0(J)+h(z), where h � eÆ�(x; t) =
P

m
e�m( ) cos(�m�

!mt). From Hamilton’s equations, one has

_� = @JH = 
(J) + @Jh ' 
(J); (4)

_J = �@�h = �i
X
l;m

lhlm(J) exp(il � � � i!mt); (5)

where 
(J) � @JH0, and l is the 3-component vector index of the “coupling co-

efficients” hlm(J), the Fourier amplitudes of perturbing Hamiltonian h(�;J) =
P

m
hm(�;J). From these equations, one obtains26 the quasilinear diffusion ten-

sor Dan(J) describing the diffusion in J–space induced by h,

Dan(J) =
X
l;m

ll�Æ(l �
� !m)jhlmj
2; (6)

structurally the same as the usual expression for the quasilinear diffusion tensor

in momentum space p � Mv for an unmagnetized plasma, which Eq.(6) gen-

eralizes to any configuration where the unperturbed motion is integrable. The

particular choice of (�;J) depends upon the geometry studied. For the present

case, an appropriate choice is � = (�g; �b; ��), J = (Jg; Jb; Jd � (e=c) � p), with

Jg � (Mc=e)� the gyroaction, �g the gyrophase, describing the fastest time scale

of the motion, Jb the bounce action, �b its conjugate bounce phase, � p the drift-

orbit averaged value of  p, and its conjugate phase ��, the orbit-averaged Clebsch
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coordinate �, describing the slow, drift time-scale. Correspondingly one has the

characteristic frequencies of motion 
 � (
g;
b;
d), with gyrofrequency 
g,

bounce frequency 
b, and drift frequency 
d, and vector index l � (lg; lb; ld),

with gyro- and bounce-harmonics lg;b = 0;�1;�2; ::, and drift index ld, evaluated

below. J-space thus has 2 velocity-like actions J g; Jb, and one space-like one, Jd.

To extract physical information from Eq.(6), it will be useful to take projections

of D in various J-space directions. We define the (contravariant) basis vectors

�i � @JJi; (i = g; b; d), and for any function F (J); we also define �F � @JF .

Thus, for F ! E, one has �E � @JH0 � 
. In the comparisons in Sec. V, we

shall be principally interested in 3 “diagonal” projections of Eq.(6),

Drr � �
r �D � �r =

P
l;m(ldB0r=q)

2�Æ(l �
� !m)jhlmj
2,

DEE � �E �D � �E =
P

l;m !2m�Æ(l �
� !m)jhlmj2, and

DJJ � �
Jb �D � �Jb =

P
l;m l

2
b�Æ(l �
� !m)jhlmj

2.

We note thatDrr here does not represent the total radial transport computed in

Sec. III, but only the “direct” contribution, due to the radial excursions produced

by the perturbing potential. It does not account for the “indirect” contribution, due

to modification of the velocity-space distribution by � ef , which is described by

coefficients DEE and DJJ , and for the frequencies applied is significant mainly

for particles with � = h. For such frequencies in tokamaks, which have no � = h

particles, Drr should dominate. For stellarators with appreciable ripple, such as

the CS1 results shown in Fig. 6, the incremental indirect contribution from � an can

dominate.

For collisional transport, on the right side of Eq.(3) one instead uses for C the

angle-averaged Landau operator, or a simplified form such as the angle-average �CL

of the Lorentz operator in Eq.(2). Applied to tokamaks, the action-angle frame-

work has been used28,29 to compute tokamak neoclassical transport coefficients.
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To treat a case having both collisions and a fluctuating spectrum, one may take

C = Cnc + Can in Eq.(3), with Cnc ! �CL. This somewhat simplifies the correct

form — expression (6) should be collisionally broadened. Here, we will use only

the collisionless analytic form (6), and the corresponding simulations to follow will

be with the spectrum on and collisions off.

We now evaluate analytic expression (6), and in Sec. V compare its predic-

tions with numerical results. To evaluate the coupling coefficients, we write an

approximate description of the position x(z) of � = h particles, making explicit

its dependence on �, analogous to previous tokamak applications of this formal-

ism27,29:

 ' � +  d cos �d +  2 cos �b +  1 cos �g;

� ' �d + �2 sin �b + �1 sin �g ;

� ' �d + �2 sin �b + �1 sin �g

Here, the drift motion in a ripple well is described by � d(��) and �d(��) = �d0 +

qmn0�d, with qmn0 � m0=n0, and by “superbanana width” excursion  d in  .

The bounce motion in that well makes  ; �; � excursions  2; �2 and �2 ' q�2, and

the gyromotion makes gyro-excursions  1; �1 and �1. For simplicity, we neglect

the radial variation of mode amplitude �m( ) over the excursions  d;  2, and

 1. Mode phase �m may be written �m = �d + zb sin �b + zg sin �g , with �d �

n�d � m�d = n�d0 + (nqmn0 � m)�d, zb � n�2 � m�2 ' (nq � m)�2, and

zg � n�1 � m�1 ' k��g. Putting these into the expression for h =
P

m
hm

and using the identity exp(iz sin �) =
P1

l=�1 Jl(z) exp(il�), one reads off the

coupling coefficients:

hlm(J) =
1

2
e��mÆld;kdJlgJlb ; (7)

with ��m � �m( � ), Æl;k the Kronecker delta, and kd � @�=@�)�0 = n(1 �
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qmn=qmn0)=(1� q=qmn0) giving the (linear) transformation between �d and �� at

constant ripple phase �0 � n0��m0�. Here, Jlg has argument zg, Jlb has argument

zb, and mode indexm is implicit in the definitions of z g;b.

We perform the summation over l in Eq.(6). The factor Æld;kd in (7) yields a

single term with ld = kd in
P

ld
. Thus the term ld
d in the resonance argument

l � 
 � !m in (6) becomes kd
d = _�d = (nqmn0 � m) _�d, and the resonance

condition may be written !m = _�d + lb
b + lg
g. Because f
b; _�d; !mg � 
g

and zg . 1, only the lg = 0 term survives the
P

lg
. The resonance condition in the

final
P

lb
sets the value of lb, to �lb � [(!m� _�d)=
b], where [l] means the integer

part of l. The sum over lb has been done approximately by converting the sum to an

integral, which introduces some uncertainty in the overall coefficient. Eq.(6) then

yields

Dan(J) =
X
m

�l�l(�=4
b)je��mj
2J20 (zg)J

2
�lb
(zb); (8)

where�l = (kd; �lb; 0). From this one notes thatD ij � �
i �D ��j has only 4 nonzero

elements, and because Dij = Dji, only 3 independent ones.

V. Analytic and Numerical Comparison

We now evaluate the elements Drr; DEE, and DJJ analytically from Eqs.(8)

and (10) (which give Can and Cnc, respectively), and also numerically, and com-

pare the analytic and numerical results. We also use these to compute � ef=�, and

from this, to understand the more global (in � and �) numerical results of Sec. III.

We have described the numerical prescription for computingD rr in Sec. II. Since

the particle energy E = H(z) is known at each point along an orbit, the pre-

scription for DEE is completely analogous. Computing DJJ is somewhat more

difficult, since it involves first computing J b � (2�)�1
H
d`Mvk at each point

along the orbit. (Here ` is the arc length along the field line the particle is on.)
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Moreover, when detrapping or retrapping occurs, there is a large discontinuous

jump in Jb by this definition, and a calculation of D JJ loses its significance. In

this work, the main focus is on � = h particles, since these are the ones produc-

ing the superbanana transport. We accordingly compute D JJ = hÆJ2bi=(2�i)i for

� = h particles, setting the run time �i of particle i to the smaller of total run

time T and its detrapping time, analogous to the manner in which � i was set for

computingDrr. The signature indication of this process being truly diffusive, that

hÆJ2bii(t) / t, is still met, but with less accuracy than for D rr. And while the

particles here are launched with a single value of J to compare with the local an-

alytic result (8), J broadens over the course of the measurement, along with the

particle  and well-depth, thus averaging over these variables. The phase mixing

needed for the numerical measurement is aided, however, by taking random initial

mode phases for each particle, rather than just from mixing from the particle initial

conditions, which sufficed for the global results of Sec. III.

In vk in the above definition for Jb, one may separate out the �0-dependent part

ofB, writingB = Bt( ; �)+2ÆB0 sin
2(�0=2). Then vk � �u(x;E; �) = �û[y�

sin2(�0=2)]
1=2, where � � vk=jvkj, û � 2(Æ�B0=M)1=2, and we define helical

well-depth parameter y � (E�e���Bt)=(2Æ�B0), equal to 0 for deeply-trapped

particles, unity for particles at the � = h=t boundary, and y > 1 for particles with

� = t; p. With this expression for vk, one has30 Jb( ; �;E; �) = ĴA(y), with

Ĵ �MûLh, Lh � d`=d�, equal to (2�)�1 times the distance across a ripple well,

and

A(y) �

I
d�

2�
[y � sin2(�0=2)]

1=2 =
4

�
[E(y1=2)� (1� y)K(y1=2)]: (9)

Here, K and E are the complete elliptic integrals of the first and second kind.

For the comparisons following, we will also need the bounce-averaged Lorentz

14



operator �CL. From Eq.(2), one finds30

�CLf =
�h
A0

(@yA@yf); (10)

with �h � �=(2Æ), and A0(y) � dA=dy = (2=�)K(y1=2).

Explicitly performing the summation
P

m
over modes in Eq.(8) with the pa-

rameters used for the numerical runs, in Fig. 7 is shown the analytic prediction for

Drr; DEE, and DJJ for the same �! scan shown earlier, for a range of individual

launch-values of well-depth y. Used here is spectrum S2, and �E = 0:6. DEE

and DJJ are in code units. The same plot but with �E = 0:0 looks almost the

same, but is symmetric about �! = 0, i.e., turning on �E has the effect, through

_�d 6= 0, of shifting the analytic D’s to the left, consistent with the numerical shift

seen in Fig. 6 in turning on �E , most evident there in the narrow central tokamak

peak, already discussed. The general form of the DEE;JJ curves in Fig. 7 can be

understood as follows. Each mode gives a qualitatively similar contribution, but

with the lower-frequency modes contributing at larger values of j�!j, in order that

!m in �lb / (!m � _�d) be the same. For each mode m, the contributing value of

j�lbj also increases as j�!j does. Since both �lb and !m vanish near �! = 0, both

DJJ � �l2b and DEE � !2m vanish there, with the quadratic form seen. For j�!j

large enough that �lb > zb, the factor J2�lb causes the D’s to fall off rapidly.

Fig. 8 shows the same analytic theory, but now for spectrum S1. All 3 D’s are

similar in form to their counterparts for spectrum S2 in Fig. 7. However, while

Drr is also comparable to Fig. 7 in magnitude,DEE in Fig. 8 is smaller by a factor

of about 2, and DJJ is smaller by a factor of about 25. Since DJJ is dominantly

responsible for the pitch-angle scattering yielding � an, one expects a much smaller

�ef effect from spectrum S1, as observed in Fig. 6. This smaller magnitude is

because for zb . 1, as is the case here, DJJ � J21 (zb) ' z2b=4 � k2k. The

relative ineffectiveness of turbulence with kk � k in producing velocity-space

15



versus radial changes has been noted earlier31,32,29 in a tokamak context.

A comparison of these analytic expressions with numerical runs is shown in

Fig. 9, for spectrum S2, �E = 0:6, as in Fig. 7, for a single initial well-depth

y = 0:15 , and a single initial � = 0:3�. One sees the central tokamak peak in both

Drr andDEE, but not inDJJ . This is because of the difference discussed above in

the way DJJ is computed — only � = h particles contribute to it, while as noted

earlier, the tokamak peak is due to untrapped particles. Removing these peaks,

one sees semiquantitative agreement between the analytic and numerical DEE;JJ

curves, rising from a small value near �! = 0, shifted due to _�d 6= 0 as noted, and

starting to fall of at large j�!j. A local smoothing over �! of the numerical values

yields still better agreement. The local (in �!) disparities are unsurprising, due to

sources of error noted above in both the analytic and numerical results.

The analytic and numerical Drr curves in Fig. 9, however, do not agree. Re-

moving the tokamak peak from the numerical curve, the analyticDrr is small com-

pared with the numerical curve, and different in �!-dependence. We attribute this

to the fact, noted in Sec. IV, that the analytic Drr only captures the direct portion

of radial transport, and not the indirect portion due to � ef , which here is dominant,

and whose form should resemble the velocity-related coefficients DEE;JJ , as it

does.

Finally, we assess the size of �an from these collisionless results in compari-

son with �. Since it is DJJ which mainly affects pitch-angle scattering, one has

�an=� ' DJJ
an =D

JJ
nc . Both DJJ

an and DJJ
nc may be computed numerically or the-

oretically, as already displayed for DJJ
an in the comparison in Fig. 9. The theo-

retical value DJJ
nc;th of DJJ

nc may be obtained using Eq.(10). One finds DJJ
nc;th =

1
2
dth(ÆJb)2i '

1
2
Ĵ2dth(Æy)2i ' �hĴ

2A=A0. For particles with y = 0:15, this

yields DJJ
nc;th = 2:02 � 10�13, compared with the numerical value DJJ

nc;num =
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0:72 � 10�13 from ORBIT. As noted earlier in connection with Fig. 9, several

sources of inaccuracy, especially in the numerical computation of D JJ , could pro-

duce this disparity, a factor of about 2.8.

Assuming, as is the case for the �!-scan for �E = 0 in Fig. 6, that the particles

are in the 1=� regime, one has D(�; �A = 0) = Dnc / 1=�. Assuming the

effect of turning on the spectrum is simply to replace � by � ef = � + �an in this

expression, one expectsD(�; �A)=Dnc ' 1=(1+�an=�) ' 1=(1+DJJ
an =D

JJ
nc ). In

Fig. 10a we plot the theoretically-evaluated factor on the right side of this equation,

for a set of values of y, with DJJ
an drawn from the curves in Fig. 7. DJJ

an and DJJ
nc

have a similar y-dependence, and as a result their ratio is only weakly dependent

on y. In Fig. 10b we plot the value on the left side of that equation, drawn from the

numerical results in Figs. 5 and 6. One notes that the analytic theory represents well

the variation of the numerical curve. The latter shows some additional finer-scale

oscillations, including the central tokamak feature, which have approximately the

same periodicity as those noted for CS1 in Fig. 4b. We ascribe these to particles

with � = t; p, not included in the present theory. Those with � = p can have larger

transit frequencies across the perturbations, and thus their resonance condition has

a shorter periodicity in �! .

VI. Discussion

We have seen that fluctuations can induce an appreciable anomalous collision-

ality �an, and thereby modify the radial transport, consistent with the � ef intuition.

The effect is larger for larger stellarator ripple, and for perturbations having larger

kk=k. For a conventional stellarator such as CS1, at fluctuation levels e�=T � :01

characteristic of drift turbulence, the modification of �ef and of the radial tranport

coefficients D can be an order unity effect for spectra like S2 with kk � k, con-
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sistent with what was found experimentally in Ref. 19. For spectra with k k � k,

such as in the simple model S1 of drift turbulence, the effect is smaller, around the

10% level for stellarators like CS1. Since DJJ � z2b for small zb, this effect might

be somewhat larger for a spectrum with larger hk�gi than used here. The effect is

smaller even for an S2-like spectrum for stellarators like QA1, designed to have

small ripple, so that one would would expect neither turbulence nor externally-

applied fluctuations to have an appreciable impact for these.

We also have seen that the fluctuations produce radial transport by 2 general

mechanisms, directly, by inducing extra radial drifts, and also indirectly, via mod-

ifications by �an of the velocity-space dependence of the distribution function f .

The indirect effect is most significant for ripple-trapped particles, while the direct

effect is captured by typical theories of drift turbulence in tokamaks, due mainly to

non ripple-trapped particles, and contributes in stellarators as well.

While one expects the indirect effect to be small for QA and quasi-helical (QH)

stellarators, conventional stellarators and those using the “quasi-omnigenous”(QO)

or “quasi-isodynamic”(QI) approach to transport optimization, 33{35 such as the

Wendelstein 7-X (W7-X) stellarator36 now under construction, have appreciable

ripple. Moreover, the considerable curvature and twisting present in stellarator

shapes produces much greater coupling among harmonics (m;n) in an eigenmode

than in tokamak eigenmodes,37 which may invalidate the small-kk assumption used

in the simple drift model S1. In W7-X, such distortion is especially large near the

sharp bends at the corners of the device’s pentagonal shape, just where marginally-

trapped particles, the dominant contributors to 1=� transport in a QO device, have

their turning points. For such devices, therefore, the �ef effect addressed here may

be significant.

The fluctuation spectrum has a species dependence, and therefore will have
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an effect on the ambipolarity condition determining the radial field E r( ). If the

spectrum has typical frequencies ! � 
bi, as is the case for ITG turbulence, �an

will be appreciable for ions but not electrons, while if instead ! � 
 be, as occurs

for ETG turbulence, electrons but not ions would be affected. The effect of this

on the fluxes depends on at which root38 of the ambipolarity condition the plasma

is. For a plasma at the ion root, the ions are typically in the superbanana regime

of Fig. 5, while electrons, typically in the 1=� regime, hold the ions in. Fluctua-

tions with ! � 
be will tend to reduce the electron (particle and heat) fluxes � e,

and thus also reduce the ion fluxes � i, by increasing Er at the radius in question.

(See Ref. 38 for a diagrammatic means of understanding this.) This is the basis for

the confinement enhancement observed in Ref. 19. On the other hand, since �e is

insensitive to Er, fluctuations with ! � 
bi will enhance jErj, but will leave the

fluxes approximately unchanged. At the electron root, for parameters like those

used in Ref. 38, fluctuations with ! � 
be will increase �e and �i, decreasing

the ambipolar value of Er, while those with ! � 
bi will have the opposite ef-

fect. In addition, there is the potential for jumping from one root to another within

the plasma column, which can generate a transport barrier.39 Such jumps can be

induced even by small changes in the fluxes, and thus, the modifications to trans-

port discussed here may be significant, and may be intentionally manipulated by

an externally-imposed spectrum.

Finally, at high plasma �, the perturbing modes will acquire a significant mag-

netic component. Essentially the same analysis as in Sec. IV applies for such

magnetic perturbations, but with modified expressions for h(z); h lm, which have

a stronger energy scaling: hlm � E0 for ES perturbations, � E1=2 for magnetic

“braiding”, and � E for perturbations of the magnetic ripple.29,40 While the �ef

effect from ES fluctuations is thus negligible for energetic ions, the magnetic coun-
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terpart could be significant.
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Figures

FIG. 1. Plots of (left) B(�; �) over the flux surface at  =  a=2 and (right) B(`)

along a field line for one poloidal transit, for each of the 3 configurations stud-

ied in the paper: (a)TOK1, (b)QA1, and (c)CS1. The slanting line indicates the

pitch of the magnetic field in these flux coordinates.

FIG. 2. Diffusion coefficientD(cm2=sec) versus central electron densityne0(cm�3)

for spectrum S1, Er = 0, for each of TOK1 (bottom), QA1 (middle), and CS1

(top).

FIG. 3. Scan of diffusion coefficient D versus perturbation amplitude �A, for

ne0 = 1013=cm3, �! = :03, and for each of TOK1, QA1, and CS1. (a)Full D

value. (b)Anomalous increment Dan to D from the curves in (a), equal to D

minus the value for �A = 0.

FIG. 4. Scan of diffusion coefficientD versus frequency amplitude �!, for TOK1,

QA1, and CS1. (a)Full D. (b)Anomalous increment Dan � D �Dnc.

FIG. 5. Scan of D versus density at �A = 0 for configuation CS1, for �E = 0

(upper curve) and �E = 0:6, manifesting both the 1=� regime at higher ne0,

and the superbanana regimes at lower ne0.

FIG. 6. Frequency scan of D for CS1, for (A)�E = 0, spectrum S1, (B)�E = 0,

spectrum S2, (C)�E = 0:6, spectrum S1, (D)�E = 0:6, spectrum S2. Fig. 6a

shows the full D, Fig. 6b shows the anomalous increment D an.

FIG. 7. Frequency scan of analytic theory for Drr; DEE, and DJJ for a range of

well-depth y < 1, and for spectrum S2, �E = 0:6. DEE;JJ are in code units.

FIG. 8. Frequency scan of analytic theory as in Fig. 7, but for spectrum S1.
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FIG. 9. Comparison of analytic and numerical calculations for spectrum S2, �E =

0:6, as in Fig. 7, for a single launch well-depth y = 0:15.

FIG. 10. (a)Frequency scan of theoretical prediction for 1=(1 + �an=�), for indi-

cated values of y. (b)Frequency scan of Drr(�A = 10)=Dnc, with data drawn

from Figs. 5 and 6.
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