Non-conventional Fishbone Instabilities

Ya.I. Kolesnichenko, V.V. Lutsenko, V.S. Marchenko, and R.B. White

November 2004
PPPL Report Disclaimers

Full Legal Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Trademark Disclaimer

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.

PPPL Report Availability

Office of Scientific and Technical Information (OSTI):

Available for a processing fee to U.S. Department of Energy and its contractors, in paper from:

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
Telephone: (865) 576-8401
Fax: (865) 576-5728
E-mail: reports@adonis.osti.gov

National Technical Information Service (NTIS):

This report is available for sale to the general public from:

U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
Telephone: (800) 553-6847
Fax: (703) 605-6900
Email: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/ordering.htm
Non-conventional Fishbone Instabilities

Ya.I. Kolesnichenko 1), V.V. Lutsenko 1), V.S. Marchenko 1), R.B. White 2)

1) Institute for Nuclear Research, Prospect Nauky 47, 03680 Kyiv, Ukraine
2) Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey, 08543, USA

e-mail contact of main author: yk@nucresi.freenet.kiev.ua

Abstract. New instabilities of fishbone type are predicted. First, a trapped-particle-induced $m = n = 1$ instability with the mode structure having nothing to do with the conventional rigid kink displacement. This instability takes place when the magnetic field is weak, so that the precession frequency of the energetic ions is not small as compared to the frequency of the corresponding Alfvén continuum at $r=0$ and the magnetic shear is small inside the $q=1$ radius [the case relevant to spherical tori]. Second, an Energetic Particle Mode fishbone instability driven by circulating particles. Third, a double-kink-mode instability driven by the circulating energetic ions. In particular, the latter can have two frequencies simultaneously: we refer to it as “doublet” fishbones. This instability can occur when the radial profile of the energetic ions has an off-axis maximum inside the region of the mode localization.

1. Introduction

The well-known fishbone instability is an $m = n = 1$ (m and n are the mode numbers) rigid kink displacement of the plasma core inside the $q=1$ radius, its frequency being either the precessional frequency of the energetic ions (ω_{pr}) or the bulk ion diamagnetic frequency (ω_{di}) [1–3]. However, recent experiments have shown that other types of fishbones are possible, too. In particular, fishbones with $n = 2 – 4$ were observed in experiments in the NSTX spherical torus [4]; fishbones with doublet frequency ($f_1 \sim 15$kHz and $f_2 \sim 20$kHz) but with the same mode numbers ($m = n = 1$) occurred in the ASDEX-U tokamak [5]. Thus, further development of the theory is required. One can see that there are, at least, two factors, which can lead to non-conventional fishbones. They are the weak magnetic field [in Spherical Tori (ST)] and non-monotonic profile of the safety factor, $q(r)$ (which can take place in both STs and tokamaks). In the present work, we study fishbone instabilities taking into account the mentioned factors. In particular, we will show that even the $m = n = 1$ fishbone mode in STs differs from that in CTs.

2. An $m = n = 1$ fishbone mode driven by trapped particles in spherical tori

In STs the magnetic field is lower whereas β (the ratio of the plasma pressure to the magnetic field pressure) is higher than in tokamaks. When β is very high, so that a considerable magnetic valley arises in the equilibrium magnetic field and Shafranov shift becomes very large, fishbone instabilities tend to be stabilized [6,7]. On the other hand, in many current experiments β is not so high, and therefore, the results of Refs. [6,7] are not applicable to them. Regimes with moderate (in the mentioned sense) β are subject to study in the present work. We restrict ourselves to the precession (high-frequency) branch of fishbones associated with the trapped energetic particles [1]. This instability has bursting character and can strongly affect the energetic ions.
The precession fishbones are an Energetic Particle Mode (EPM) associated with the perturbations of Alfvén type. Therefore, restricting ourselves to the case of the \(m = n = 1 \) perturbation, we can write the following equation:

\[
\frac{d}{dr} r^3 \left(\frac{\omega^2}{v_A^2} - k_2^2 \right) \frac{d\xi}{dr} = \frac{r^2}{r_s} \frac{d\beta_a}{dr} \Omega \ln(1 - \Omega^{-1}) \xi,
\]

where \(\xi \) is the plasma displacement, \(\omega \) is the mode frequency, \(k_2 = (q^{-1} - 1)/R \) is the longitudinal wavenumber, \(q(r) \) is the safety factor, \(R \) is the large radius of the torus, \(\Omega = \omega / \omega_D \), \(\omega_D = \omega_{pr} (\varepsilon_a, r_s) \), \(\varepsilon_a \) is the birth energy, \(r_s \) is the radius where \(q = m/n \), \(v_A(r) \) is the Alfvén velocity, \(\beta_a = 8p_a / B_0^2 \), \(p_a \) is the energetic ion pressure. The RHS of Eq. (1) describes the response of the energetic ions. It is obtained from Ref. [8].

Let us first recover the results of the conventional fishbone theory assuming that the system is on the margin of stability. In this case, the real and imaginary parts of Eq. (1) are

\[
\frac{d}{dr} r^3 \left(\frac{\Omega^2}{\Omega_A^2} - (1 - q^{-1})^2 \right) \frac{d\xi_1}{dr} = \frac{R r^2}{r_s} \frac{d\beta_a}{dr} \Omega \ln|1 - \Omega^{-1}| - \pi \xi_2 \),
\]

\[
\frac{d}{dr} r^3 \left(\frac{\Omega^2}{\Omega_A^2} - (1 - q^{-1})^2 \right) \frac{d\xi_2}{dr} = \frac{R r^2}{r_s} \frac{d\beta_a}{dr} \Omega (\pi \xi_1 + \xi_2 \ln|1 - \Omega^{-1}|),
\]

where \(\xi_1 = \text{Re} \xi, \xi_2 = \text{Im} \xi, \Omega_A = v_A /(R \omega_D) \). If \(\omega \) were vanishing, \(\xi(r) \) would be constant everywhere except for a region close to \(r_s \), which provides a possibility to satisfy the condition \(\xi(a) = 0 \), with \(a \) the plasma radius, by taking a step function \(\xi(r) = \xi_0 \eta(r_s - r) \), with \(\eta(x) = \int_{-\infty}^{x} \delta(x) dx \). On the other hand, for this \(\xi(r) \), it is possible to satisfy Eq. (2) at \(r < r_s \) for finite \(\Omega \) by taking \(\ln|1 - \Omega^{-1}| = 0 \) and \(\xi_2 \approx 0 \), which leads to \(\Omega = 0.5 \), in agreement with Refs. [1,8]. However, finite \(\Omega \) changes the structure of the mode because two local Alfvén resonances determined by the equation \(\omega = \omega_{AC}(r) \equiv k_{\|} v_A \) (the subscript “AC” means “Alfvén Continuum”) appear in the vicinity of \(r_s \), \(r_1 < r < r_2 \), see Fig. 1. The resonances are \(q_{1,2}^{-1} = 1 \pm \omega R / v_{As} \), where \(v_{As} \equiv v_A (r_s) \), from which it follows that the distance between the resonances is \(r_2 - r_1 \approx 2 \omega R / (v_{As} s) \), with \(s \) the magnetic shear at the \(q = 1 \) surface. In fact, \(r_2 - r_1 \) is the width of the double resonance layer in the case when the plasma is close to the margin of stability [the singularities at \(r_1 \) and \(r_2 \) will be removed when the terms proportional to \(\gamma = \text{Im} \omega \) will be added to Eqs. (2), (3), the spread of each resonance being negligible compared to \(r_2 - r_1 \) for small \(\gamma \)]. Note that when the longitudinal wavenumber at \(r = 0 \) can be approximated as \(k_2^{-1} (0) \approx \hat{s} / R \) and \(v_{As} \equiv v_A (0) \), the half-width of the resonance layer is \(\delta_{res} \equiv r_2 - r_1 \approx r_2 \omega / \omega_{AC} (0) \). The continuum damping arising from Alfvén resonances leads to a threshold beta of the energetic ions, \(\beta_{ac} \). The latter can be evaluated by considering Eq. (3) in the region \(r_1 < r < r_2 \). We assume that \(\xi_1 \) and \(\xi_2 \) are of
the same order in this region and take \(d\xi_2 / dr \sim \xi_2 / \delta_{res} \), \(d^2 \xi_2 / dr^2 \approx 0 \) [\(\xi_2(r) \)] can be approximated by a linear function because \(\delta_{res} / r_i \ll 1 \) and, in addition, the signs of \((\omega^2 - k_1^2 v_A^2)\) at \(r < r_1 \) and \(r > r_2 \) are different and, thus, the signs of the peaks \(\xi_2(r_1) \) and \(\xi_2(r_2) \) are different, too. Then we obtain \(\pi \beta_{ac} \approx (3L_\alpha / R)\omega_i (R\delta / v_A) \) (\(L_\alpha \) is the characteristic width of the radial profile of the energetic ions), which is in qualitative agreement with Refs. [1,8]. Numerical solution of Eq. (1) confirms this consideration, although it gives somewhat smaller mode frequency, see Fig. 2.

It is clear that Alfvén resonances are located close to \(r_s \) provided that \(\omega^2 / \omega_{ac}(0) \ll 1 \). However, this condition is difficult to satisfy when the magnetic field is weak because \(\omega^2 / \omega_{ac}^2(0) \propto 1 / B^4 \) (we used \(\omega \propto \omega_0 \)). Let us evaluate \(\omega / \omega_{ac}(0) \) in NSTX. We take \(r_s = 50 \) cm, \(\rho_a = v_a / \omega_a = 20 \) cm and \(v_a / v_A(0) = 3 \), where \(v_a \) and \(\omega_a \) are the birth energy and the gyrofrequency of the energetic ions, respectively. Then assuming \(\omega / \omega_0 = 0.3 \) we obtain \(\omega / \omega_{ac}(0) \approx 0.15 (\rho_a / r_s) (v_a / v_A) (q_0^{-1} - 1)^{-1} = 0.18 / (q_0^{-1} - 1) \). We conclude from here that, depending on \(q_0 \), in NSTX \(r_1 \ll r_s \), as shown in Fig. 1, or even one of the resonances (the left resonance) is absent. Therefore, the weak magnetic field may prevent the conventional precession fishbone mode. Another factor which tends to prevent the conventional fishbones in STs is a very small magnetic shear at \(r < r_s \).

An example of the calculated mode structure for an NSTX plasma with \(q_0 < 1 \) is shown in Fig. 3. This structure has nothing to do with the rigid shift; in addition, only one (very small) peak is seen at \(r \geq r_s \), although \(\omega \) is a little bit less than \(\omega_{ac}(0) \) and, thus, there are two local Alfvén resonances. Note that \(\gamma / \omega_\beta = 0.01 \) in both Fig. 2 and Fig. 3, but \(\beta_0 \) is higher in Fig. 3.

\[\text{Fig. 1. Qualitative plot of the normalized Alfvén continuum, } \tilde{\omega}_{ac} = \omega_{ac} / \omega_{ac}(0), \text{ and the normalized mode frequency, } \tilde{\omega} = \omega / \omega_{ac}(0) \leq \omega_\beta / \omega_{ac}(0), \text{ in CTs and STs. Notations: } \omega_{ac} = | k_v \parallel v_A |, r_1 \text{ and } r_2 \text{ are the points of the local Alfvén resonance.} \]

\[\text{Fig. 2. Radial structure of a fishbone mode in a conventional tokamak with } \beta_a(r) = \beta_0 \left(1 - r^2 / a^2 \right)^2, \beta_0 = 2.22 \cdot 10^{-3}. \text{ The calculated mode frequency is } \omega / \omega_\beta = 0.28, \]
which corresponds to \(\omega / \omega_{dc}(0) = 0.14 \), and the growth rate is \(\gamma / \omega_D = 0.01 \). The used parameters: the aspect ratio \(A=5 \), \(q^{-1} = 1 + 0.2 \cdot [1 - (r / r_s)^2] \), \(r_s = 0.5a \), \(a / \rho_a = 10v_a / v_A \).

![Fig. 3. Radial structure of a fishbone mode in the NSTX spherical torus for \(\beta_\alpha(r) = \beta_0 \{1 - r^2 / a^2\}^\frac{1}{2} \), \(\beta_0 = 8.82 \cdot 10^{-3} \). The calculated mode frequency is \(\omega / \omega_D = 0.485 \), which corresponds to \(\omega / \omega_{dc}(0) = 0.998 \), and the growth rate is \(\gamma / \omega_D = 0.01 \). The used parameters: \(A=1.27 \), \(r_s / a = 0.87 \), \(q = 0.8 \) for \(r < r_s \), and \(q = 0.8 + [1.9(r - r_s) / r_c]^2 \) for \(r > r_c \) with \(r_c = 0.6a \), \(a=67cm \).

3. Circulating-particle-induced fishbones with arbitrary \(m/n \)

As in the previous section, here we study the EPM fishbones. However, in contrast to the previous section, now we consider circulating-ion-induced fishbone instability, and moreover, we consider the mode with conventional radial structure. We assume that \(q(r) \) has an off-axis minimum, \(q_{\text{min}} \), although our results for \(\Delta_b << \Delta_m << r_s \) (\(\Delta_b \) is the orbit width of the energetic ions, \(\Delta_m \) is the mode width) will be applicable to a plasma with a monotonic \(q(r) \). Note that the circulating-ion-induced EPM fishbones were not considered yet (only the diamagnetic branch was studied [3]).

Thus, we consider a double kink mode characterized by a “top-hat” radial displacement, \(\xi(r) \), localized between two rational surfaces, \(r_{s1} < r < r_{s2} \), \(r_{s1} \) and \(r_{s2} \) being defined by \(q(r_{s1}) = q(r_{s2}) = m / n \). Then we can use the dispersion relation in a generic form similar to that in the case of monotonic \(q(r) \):

\[
i - \frac{\omega}{\omega_A} + \lambda_c + \lambda_h = 0, \tag{4}
\]

where \(\lambda_c \) and \(\lambda_h \) are the normalized negatives of the MHD potential energy and the energy associated with the energetic ions, respectively, \(\omega_A = |m| (|\hat{s}_1| + |\hat{s}_2|) v_A / |q_s R| \) or \(\omega_A = |m| (|\hat{s}_1| v_A / |q_s R|) \) when \(q(r) \) is monotonic.

Below we restrict ourselves to the case of \(\Delta_b << \Delta_m << r_s \). Then due to the condition \(\Delta_b << \Delta_m \) the particles crossing \(r_{s1} \) do not reach \(r_{s2} \) and vice versa. Therefore, we can easily generalize the energetic particle response calculated for the monotonic safety factor in Ref. [3] to the case of a non-monotonic \(q(r) \) (only particles crossing \(r_{s1} \) and \(r_{s2} \) mainly contribute to \(\lambda_c \)). On the other hand, due to the assumption \(\Delta_m << r_s \) we can take \(|\hat{s}_1| = |\hat{s}_2| \), \(d\beta_a / dr \big|_{r_1} = d\beta_a / dr \big|_{r_2} \), \(v_A(r_{s1}) = v_A(r_{s2}) \) and write Eq. (4) as follows:

\[
0 = D(\Omega^{cir}) \equiv -i \Omega^{cir} - \lambda_c - \pi_a F(\Omega^{cir}), \tag{5}
\]
where $\Omega^{cir} = \omega / \omega_1$, $\tilde{\lambda}_c = \lambda_c \omega_A / \omega_1$, $\omega_{si} = |\hat{s}_i| \nu_{bA} / (\omega_0 R_{si})$ with $i = 1, 2$,

$$\pi_a = -(2/3)m(m/n)^2 \left(v_A / v_a \right) (R / |\hat{s}|^3) d\beta_a / dr |_{n},$$

$$\pi F(x) = 10x - 8x^{3/2} \left(\tan^{-1} x^{-1/2} + \tanh^{-1} x^{-1/2} \right) + (1 + 3x^2) \ln[(1 + x) / (x - 1)].$$

Note that ω_1 approximately equals to the precession frequency of the trapped particles when $\hat{s} \approx q / 2$, and thus, $\Omega^{cir} \approx \Omega$ in this case. Equation (5) was analyzed by a Nyquist approach. An unstable solution was found for π_a exceeding a certain threshold magnitude.

The found fishbone mode exists due to the resonance $\omega = \nu(r)$, which leads to a characteristic frequency $\omega_1 \approx |k'_i(r_i)| \Delta v_{A}^0$ when $|k'_i(r_i)| = |k'_i(r_{i+1})|$. The latter is justified for $k_i(r)$ symmetric with respect to r_{min} in the region $r_{si} < r < r_{s1}$. However, in general, $|\hat{s}_1| \neq |\hat{s}_2|$ for a double kink mode with the finite width. For this reason, there are two, rather than one, characteristic frequencies, and one can expect that an instability with two frequencies with given m, n will exist. A corresponding Nyquist analysis confirmed this possibility.

4. Summary and conclusions

(i) The weak magnetic field and low shear inside the $q = 1$ radius are the factors which can lead to the $m = n = 1$ fishbone mode with the interchange-like radial structure. This will be the case when $q(0) < 1$ and $\omega_d \leq \omega_c(0)$. The latter condition can be satisfied, in particular, in NSTX.

(ii) It is shown that the circulating energetic ions can lead to an EPM fishbone instability (i.e., not only the low-frequency fishbones considered in Ref. [3] are possible in the presence of the circulating fast ions).

(iii) It is shown that when the profile of $q(r)$ is non-monotonic, a double-kink mode with $m = n = 1$ in the case of $q(0) < 1$ and $m / n \neq 1$ in the case of $q(0) > 1$ can be destabilized by the circulating energetic ions.

(iv) A new kind of the instability, which we refer to as “doublet” fishbones, is predicted. This instability is characterized by two frequencies and two growth rates, although it is relevant to the same double kink mode. It seems possible that the predicted “doublet” instability was observed in an ASDEX-U experiment reported in Ref. [5].

Details concerning fishbones in plasmas with a non-monotonic $q(r)$ can be found in the recent publication [9].

Acknowledgement. The work was supported by the U.S. Department of Energy Grant No. DE-FG03-94ER54271 and Sec. 3 of this work was carried out within the CRDF Project UP2-2419-KV-02 (expired on June 30, 2004).

External Distribution

Plasma Research Laboratory, Australian National University, Australia
Professor I.R. Jones, Flinders University, Australia
Professor João Canalle, Instituto de Fisica DEQ/IF - UERJ, Brazil
Mr. Gerson O. Ludwig, Instituto Nacional de Pesquisas, Brazil
Dr. P.H. Sakanaka, Instituto Fisica, Brazil
The Librarian, Culham Laboratory, England
Mrs. S.A. Hutchinson, JET Library, England
Professor M.N. Bussac, Ecole Polytechnique, France
Librarian, Max-Planck-Institut für Plasmaphysik, Germany
Jolan Moldvai, Reports Library, Hungarian Academy of Sciences, Central Research Institute for Physics, Hungary
Dr. P. Kaw, Institute for Plasma Research, India
Ms. P.J. Pathak, Librarian, Institute for Plasma Research, India
Ms. Clelia De Palo, Associazione EURATOM-ENEA, Italy
Dr. G. Grosso, Instituto di Fisica del Plasma, Italy
Librarian, Naka Fusion Research Establishment, JAERI, Japan
Library, Laboratory for Complex Energy Processes, Institute for Advanced Study, Kyoto University, Japan
Research Information Center, National Institute for Fusion Science, Japan
Dr. O. Mitarai, Kyushu Tokai University, Japan
Dr. Jiangang Li, Institute of Plasma Physics, Chinese Academy of Sciences, People's Republic of China
Professor Yuping Huo, School of Physical Science and Technology, People’s Republic of China
Library, Academia Sinica, Institute of Plasma Physics, People’s Republic of China
Librarian, Institute of Physics, Chinese Academy of Sciences, People’s Republic of China
Dr. S. Mirnov, TRINITI, Troitsk, Russian Federation, Russia
Dr. V.S. Strelkov, Kurchatov Institute, Russian Federation, Russia
Professor Peter Lukac, Katedra Fyziky Plazmy MFF UK, Mlynska dolina F-2, Komenskeho Univerzita, SK-842 15 Bratislava, Slovakia
Dr. G.S. Lee, Korea Basic Science Institute, South Korea
Institute for Plasma Research, University of Maryland, USA
Librarian, Fusion Energy Division, Oak Ridge National Laboratory, USA
Librarian, Institute of Fusion Studies, University of Texas, USA
Librarian, Magnetic Fusion Program, Lawrence Livermore National Laboratory, USA
Library, General Atomics, USA
Plasma Physics Group, Fusion Energy Research Program, University of California at San Diego, USA
Plasma Physics Library, Columbia University, USA
Alkesh Punjabi, Center for Fusion Research and Training, Hampton University, USA
Dr. W.M. Stacey, Fusion Research Center, Georgia Institute of Technology, USA
Dr. John Willis, U.S. Department of Energy, Office of Fusion Energy Sciences, USA
Mr. Paul H. Wright, Indianapolis, Indiana, USA