PPPL-4021 is available in pdf format (1.1 MB).
Fast Ion Effects on Fishbones and n=1 Kinks in JET Simulated by a Non-perturbative NOVA-KN Code
Authors: N.N. Gorelenkov C.Z. Cheng, V.G. Kiptily, M.J. Mantsinen, S.E. Sharapov, and the JET-EFDA Contributors
Date of PPPL Report: October 2004
Presented at: the 20th IAEA Fusion Energy Conference, 1-6 November 2004, Vilamoura, Portugal. The papers will be published by the IAEA as unedited proceedings in electronic format on CD-ROM and on the IAEA Physics Section web site as soon as possible after the conference.
New global non-perturbative hybrid code, NOVA-KN, and simulations of resonant type modes in JET [Joint European Torus] plasmas driven by energetic H-minority ions are presented. The NOVA-KN code employs the ideal-MHD description for the background plasma and treats non-perturbatively the fast particle kinetic response, which includes the fast ion finite orbit width (FOW) effect. In particular, the n = 1 fishbone mode, which is in precession drift resonance with fast ions, is studied. The NOVA-KN code is applied to model an n = 1 (f = 50-80kHz) MHD activity observed recently in JET low density plasma discharges with high fast ion (H-minority) energy content generated during the ion cyclotron resonance heating (ICRH). This n = 1 MHD activity is interpreted as the instability of the n = 1 precession drift frequency fishbone modes.