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We report observations of asymmetric optical pumping of argon ions accelerating in a magnetic 

field gradient. The signature is a difference in the laser-induced-fluorescence (LIF) emission 

amplitude from a pair of Zeeman-split states. A model that reproduces the dependence of the 

asymmetry on magnetic-field and ion-velocity gradients is described. With the model, the 

fluorescence intensity ratio provides a new method of measuring ion collisionality. This 

phenomenon has implications for interpreting stellar plasma spectroscopy data which often 

exhibit unequal Zeeman state intensities.   
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In a laser- induced-fluorescence (LIF) measurement of the ion velocity-space distribution 

function (ivdf) in a plasma, the frequency of a narrow-linewidth, tunable laser is scanned across 

an absorption line of an ion in the plasma and fluorescent emission from the excited state meas-

ured as a function of laser frequency. 1,2   The Zeeman effect due to a magnetic field creates sev-

eral absorption lines between the initial lower and upper states; each Doppler-broadened line is 

pumped at slightly different frequencies by a particular polarization of the incident photons, i.e., 

linearly polarized π  lines and circularly polarized +/-σ  lines. In this letter, we describe observa-

tions of up to a factor of 2.5 difference in the amplitude of the LIF signal from Zeeman sublevels 

pumped with right- and left-circularly polarized photons for argon ions accelerating along a 

weakening magnetic field. This effect should be considered in many situations, such as 

interpretation of resonant scattering observed in the solar corona. 3 ,4  In stellar coronas or in 

laboratory plasmas, the magnetic field and plasma velocity may change rapidly; strongly affect-

ing the Stokes V spectrum (the wavelength dependent amplitude difference between Zeeman 

split σ  lines)3 and its interpretation. 

A tunable diode laser at 668.614 nm pumps an Ar II metastable level. The resulting 

442.70 nm fluorescence radiation is measured with a photomultiplier detector.5 An LIF-signal 

versus laser- frequency measurement allows the ion temperature to be determined from the 

linewidth, the bulk ion flow speed along the laser from the line shift, and the magnetic field 

strength from the Zeeman splitting. The Zeeman splitting of the Ar II absorption transition is 

composed of three separated line clusters (σ +, π , σ -) containing a total of 18 transitions.6  

Until now, the only way to determine plasma density with LIF (for plasmas in which 

Stark broadening is negligible) has been to relate the plasma density to the intensity of the emit-

ted fluorescent light with an absolutely calibrated light-collection apparatus and a known inci-
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dent laser power. In this work, we demonstrate that the asymmetry in the +/- σ LIF signals from 

Zeeman sublevels is a strong function of the ion collisionality and therefore an uncalibrated LIF 

system can provide remote measurements of the local plasma density for highly ionized plasmas. 

The experiments were performed in the Magnetic-Nozzle-eXperiment (MNX) facility 

(see Fig. 1). A 4-cm diameter, steady-state helicon plasma flows along a magnetic field formed 

by a Helmholtz-coil pair. The plasma exits the main discharge chamber through a coaxial 2-cm-

i.d., 3-cm-thick magnetic nozzle coil used to control the magnetic-field gradient, and then flows 

through an electrically floating, 0.5-cm-diameter plasma-limiting aperture and into the expansion 

region (ER). 7  At low neutral pressures, an electric double layer forms in the vicinity of the 

plasma-limiting aperture and accelerates the ions out of the source at supersonic velocities, along 

the weakening magnetic field and into the ER.7,8,9 The linearly polarized laser beam is passed 

through a quarter-wave plate to create either right- or left-circularly polarized light and then 

propagates along the plasma axis from the ER towards the plasma source. Presented in Fig. 2 are 

LIF measurements obtained using both left- and right-circularly polarized light. In each measure-

ment, a low-energy (LEP) ion population and a high-energy (HEP) ion population (kinetic en-

ergy ~ 20 eV) are evident.7 The LEP is the result of local ionization of neutral argon; the HEP 

consists of argon ions accelerated through the aperture. The amplitude of the σ+ component in 

the HEP is ~2 times higher than the σ- component, yet the σ+ and σ- signal amplitudes for the 

locally produced LEP population are equal. The six Doppler-broadened components of each of 

the σ clusters are shown as vertical lines in Fig. 2, scaled according to their statistical weights.6  

As a function of the magnetic-nozzle field strength, BN, the σ + and σ- LIF signal ampli-

tudes (A+ and A-, respectively) 2.9 cm downstream of the nozzle midplane (z = 2.9 cm) are 

shown in Fig. 3. The asymmetry ratio R, R A A+ −≡ , increases with BN to R ~ 2.2 at BN = 1700 
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and then decreases slightly for larger values of BN.  R > 1 can arise from either enhanced absorp-

tion/fluorescence from the σ+ ion LIF sequence or suppressed absorption/fluorescence from the 

σ- sequence. In a recent study we demonstrated that, in helicon plasmas, the LIF intensity for Ar 

II is proportional to the square of the electron density times the square root of the electron 

temperature (ne
2Te

0.5).9 The solid line in Fig. 3 is a linear fit to ne
2Te

0.5 measurements versus the 

nozzle field strength at z = 7.0 cm in the expansion region. That the scaling of the σ+ LIF inten-

sity versus the nozzle field strength is nearly identical to that of the ne
2Te

0.5 measurements indi-

cates that R > 1 arises because of a depletion of ions in the initial state of the σ - sequence. 

Measurements at large values of BN (BN = 2223 G, and PM = 0.6 mTorr) also indicate that the 

parallel ion kinetic energy increases from 13 eV at z = 2 cm to roughly 18 eV at z = 7 cm. Thus, 

as the ions move from a strong magnetic field in the nozzle coil to the weaker magnetic field in 

the ER, the σ- Zeeman-split states for the accelerating ions become less populated than the σ+. 

A number of possible explanations for the asymmetry in LIF intensities can be excluded. 

Creation of a spin-polarized beam by the longitudinal Stern-Gerlach effect10,11  is implausible 

given the very small (~ 1.0×10-5 eV) energy splitting of these two σ clusters. The absence of any 

asymmetry in the LIF intensities from the σ clusters of the LEP ions rules out creation of a spin 

polarized beam by the transverse Stern-Gerlach effect arising from the field gradients at the end 

of the solenoidal field. The magnetic- field-strength-dependent Hanle effect can enhance the 

absorption of particular ion or atomic transitions. (In the Hanle effect, the energy of a Zeeman 

sublevel that increases with increasing magnetic field strength can equal the energy of a Zeeman 

sublevel that decreases with magnetic field – thereby creating a degeneracy between the two 

states).12 However, magnetic fields above 10 T would be required to obtain a level crossing be-

tween the initial 3d4F7/2 state and the closest other ion states. Differences in the optical depth for 
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the wavelengths correspond ing to the peak of each of the σ clusters could also lead to an 

asymmetry in the LIF signal intensity. However, the measured absorption for each circular 

polarization over the entire 2–m length of the plasma was less than 1%. We also considered the 

Babcock procedure employed by stellar spectroscopists in which circularly polarized emission 

intensities from two thermally broadened, closely spaced, Zeeman-split σ lines are measured 

simultaneously at a wavelength slightly offset from the unshifted line.13 The difference in emis-

sion intensity is then directly proportional to the strength of the magnetic field at the point of 

measurement. In contrast, in our experiments the entire lineshape of each Zeeman sublevel is 

measured and the peak intensities compared. Thus, although this effect gives a result similar to a 

Babcock-type measurement and could therefore be misinterpreted as evidence of a stronger than 

actual magnetic field in an astrophysical measurement, the physics responsible for the difference 

in signal intensities is not the same. We also note that the LIF intensity measurements presented 

here have been normalized to the instantaneous laser power and to rule out any bias in the 

polarizing optics, the magnetic field direction was reversed and the measurements repeated. For 

both directions of the magnetic field, the LIF signal of the higher frequency σ+ HEP cluster was 

consistently larger than that of the σ- HEP cluster  while those of the LEP stayed equal . 

Other groups have demonstrated that saturation of an absorption line used for LIF can be-

gin at laser intensities comparable to those used in these experiments (I ~ 1 W/cm2). 14  We 

hypothesized that if the interaction time between the laser and the ions was different for ions in 

the initial σ+ state compared to those in the initial state for the σ- transition sequence, the LIF 

signal from the two transition sequences could differ. For example, if upstream of the observa-

tion volume, ions in the initial σ- state were in resonance with the laser for more time than ions 

in the initial σ+, the population of σ- state ions in the observation volume could be depleted – 



Revised October 18, 2004 

 6 

yielding a smaller LIF signal for that transition compared to the σ+. Fig. 4 presents a schematic 

view of how the resonant interaction times would differ for ions in different Zeeman split states 

that accelerate through a magnetic- field gradient. The solid curve represents the decreasing mag-

netic field, the arrows indicate the direction of the ion velocity (and acceleration) and the laser-

beam propagation. Close to the magnetic nozzle (at location a), the magnitude of the Zeeman 

shift of the σ lines relative to laser frequency at which the trans ition would appear in the absence 

of a static magnetic field (shown as a thick vertical line) is larger than further from the magnetic 

nozzle (at location b). Because the ions are accelerating towards the laser, the entire transition 

sequence shifts to a lower laboratory-frame frequency. Note that for measurements made at loca-

tion b, when the laser is tuned to peak of the σ− line (dashed vertical line in Fig. 4), the σ- state 

ions at the upstream location a are also pumped by the laser. Therefore, as the σ- state ions travel 

along the laser beam towards the measurement location their Zeeman and Doppler shifts can can-

cel – for appropriate velocity and field gradients – and the σ- state ions are pumped by the laser 

for a much longer time than the σ+ state ions. 

Absorption out of the ith state of HEP ions is described by14 

0
( ) ( ) ( ) ( , , )

4
ij

i i i

Bd
N z N z d L I z t

dt
ν ν ν

π
+∞

− = ∫ ,                               (1) 

where we have assumed that the HEP metastable ions are created in the nozzle region by electron 

impact excitation of ground state ions and travel into the ER.7 Ni(z) is the density of the ith 

Zeeman sublevel of state 3d4F7/2 at location z in the experiment. Bij is the Einstein coefficient for 

absorption to the jth sublevel of the state 4p4D5/2, where j = i ± 1 for σ transitions. For Bij we use 

the zero magnetic- field value, Bij 12 2 -18.037 10 m (Js)E≡ = × . I(z, ν, t) = I0δ(ν−ν0)  is the laser 
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intensity at frequency νo and ( )( )i i DL W Tν πα= ( )( )2*exp DTν ν α− −  is the thermally 

broadened lineshape of the ith Zeeman sublevel, where Wi is the statistical weight of the ith line, T 

the ion temperature, mi the ion mass, and 2 22D B o ik m cα ν= . In the laboratory frame, 

* [ ( )][1 ( ) / ]I i B z V z cν ν ν ν α− = − + − , where νI is the natural frequency of the absorption transi-

tion, αi is the Zeeman shift for the ith sublevel,6 B(z) is the magnetic field in kGauss and V(z) is 

the ion velocity. The factor of 1-V(z)/c accounts for the Doppler shift of the line. 

The length of time, tr, before reaching the measurement location that ions may remain in 

resonance with the laser15 is governed by the time between collisions for ions with background 

neutrals, electrons, and other ions: tr ≡ 1/νi, where νi is the total ion collision frequency. Rewrit-

ing Eq. (1) in terms of the travel distance of the resonant ions, ∆z = V(z)/νi, yields the fraction of 

ions pumped out of the initial LIF state:  

2[ ( ( ))(1 ( ) / )]
( ) 1

4 ( )

B z V z co I i
z Ti i D
z zi D

N z WE
e dz

N V zT

ν ν α
α

π πα

− + −
−

−∆
∆

= ∫ .                   (2) 

The LIF signal at zo for a laser tuned to νo is proportional to the fluorescent emission due to laser 

pumping of the remaining fraction of initial state ions summed over the six sublevel transitions: 

2[ ( ( ))(1 ( ) / )]
6 6

0
1 1

( )
( ) ( ) (1 ) ( )

B z V z cI i o o
Ti o D

o i o i o o
ii i

N z
A z A z M e I d

N

ν ν α
α δ ν ν ν

− ± −
−∞± ±

= =

 
 ∆

= ∝ − − 
 
  

∑ ∑ ∫  (3) 

Eq. (3) describes the LIF intensity from σ+ or σ– ion states including any depletion of those 

states due to changing Zeeman and Doppler shifts for ions accelerating along the laser beam in a 

magnetic field gradient before they reach the measurement location. Note that the ratio of A+/A- 
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predicted by Eq. (3) has no free parameters. To numerically integrate Eq. (3), we approximated 

the parallel ion flow and magnetic- field-strength gradients with fits to the measured ion flow and 

magnetic field values: ( ) 267.2 7490 m/sV z z= + and 2 3 /2( ) (1 ( /3.0) )  kGNB z B z −= + , with z in 

cm. The measured plasma parameters: ne = 107.5 10×  cm-3, Te = 6 eV), ion temperature, Ti = 0.2 

eV, and neutral pressure of 0.7 mTorr in the expansion region were used to calculate the limits of 

integration. For these parameters, the total ion collision frequency is dominated by the fast ion on 

background neutrals collision rate16 and is therefore independent of the electron temperature. 

Measured and calculated values of R as a function of BN are shown in Fig. 5 for the oppo-

site magnetic field orientation used to obtain the data of Fig. 3. The total ion collision frequency, 

based on the measured plasma parameters and calculated using the collision cross-sections given 

in Ref. [16], is νi = 2.2 x 105 s-1. R curves are shown for νi, 10νi and νi /10. Also shown in Fig. 5 

are the measured and predicted parallel inferred ion temperature ratios (Tσ+/Tσ-) based on the 

measured HEP linewidths. The enhanced interaction of σ- state ions with the laser distorts the 

measured parallel ivdf and affects the parallel ion temperature values obtained from Maxwellian 

fits. By varying the value of the laser frequency used in Eq. (3), a predicted ivdf measurement, 

and therefore a predicted value of Tσ+/Tσ- is obtained. The predicted R values for the ion collision 

frequency based on the measured plasma parameters are in excellent agreement with the 

measurements. The dependence of Tσ+/Tσ- on magnetic nozzle field strength is generally consis-

tent with the model predictions. The divergence between the measured and predicted values of 

Tσ+/Tσ- above 1 kG is due to difficulties in fitting the highly asymmetric distributions predicted 

by the model for large BN. The peak in R at a specific value of BN is accurately reproduced by the 

numerical calculations (at large BN the Doppler and Zeeman shifts are no longer commensurate). 

Factor of ten variations in νi yield predicted R values that are clearly at odds with the measure-
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ments. The measured dependence of R on z (not shown) also agrees with the model, e.g. R > 1 

and R increases with distance from the aperture as the effects of the field and velocity gradients 

increase. When the ion acceleration region did not overlap with the magnetic field gradient 

(accomplished by moving the aperture), R = 1 was observed in all cases. 

Asymmetry in LIF emission from σ states of argon ions was observed and attributed to 

the combined effects of magnetic- field and ion-velocity gradients. This phenomenon should be 

considered in both laboratory and stellar plasmas where, for example, turbulence can generate 

the requisite gradients. In stellar plasmas, the intensities of Zeeman-split absorption lines in ions 

accelerating away from the surface of stars, illuminated by continuum radiation from the photo-

sphere below, frequently exhibit similar asymmetries.3,4 With the model described here, such 

measurements of could provide additional information about the plasma conditions in those stel-

lar atmospheres. Additionally, an uncalibrated LIF system can provide a non- invasive measure-

ment of νi, and therefore the plasma density, in highly ionized plasmas. 

This work was supported by U.S. Department of Energy Contract DE-AC02-76-CHO- 

3073 and EPSCoR Laboratory Partnership Program grant ER45849. 
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Figure Captions 

Fig. 1. (a) Schematic of MNX. (b) Scanning mechanism for the LIF collection optics allows 12 

lines-of-sight (LOS) axial points in the ER. (c) Axial magnetic field strength near the nozzle coil. 

Fig. 2. LIF signal for right (σ-) and left (σ+) circularly polarized laser light versus difference be-

tween laser frequency and natural frequency of the absorption line at  z = 2.9 cm for BHelicon = 

465 G, BN = 1995 G, P = 550 W, and neutral pressures of 0.6 mTorr and 0.23 mTorr in the 

source and ER, respectively.  

Fig. 3. The individual σ+ and σ- peak LIF amplitudes at z = 2.9 cm versus nozzle magnetic field 

strength for P = 580 W, BH = 465 G, PM = 0.6 mTorr.  

Fig. 4. Changes in absolute frequency of absorption lines due to Zeeman and Doppler shifts as 

ions accelerate through a magnetic field gradient (solid curve). 

Fig. 5. Measured (solid squares) and predicted (solid (νi), dashed (10νi), and dashed-dot line 

(νi/10)) values of R versus BN at z = 2.9 cm for P = 750 W, BH = 582 G, and PM = 0.7 mTorr. 

Also shown are the measured (solid circles) and predicted values (solid line) for Tσ+/Tσ-. 
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