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Princeton, New Jersey

Abstract

Particle kinetic effects involving small spatial and fast temporal
scales can strongly affect MHD phenomena and the long time behav-
ior of plasmas. In particular, kinetic effects such as finite ion gyro-
radii, trapped particle dynamics and wave-particle resonances have
been shown to greatly modify the stability of MHD modes. Here, the
kinetic effects of trapped electron dynamics and finite ion gyroradii are
shown to have a large stabilizing effect on kinetic ballooning modes in
low aspect ratio toroidal plasmas such as NSTX. We also present the
analysis of TAEs destabilized by fast NBI ions in NSTX experiments
and TAE stability in ITER due to α-particles and MeV NNBI ions.

1 Introduction

Most studies of global phenomena are based on the MHD model. The funda-
mental shortcomings of the MHD model are: (a) based on the Ohm’s law the
plasma is frozen in the field lines and moves across the magnetic field with
E×B drift and the parallel electric field is vanishingly small due to plasma
resistivity; (b) the plasma pressure changes adiabatically according to the
adiabatic pressure law; and (c) the gyro-viscous tensor that contains finite
particle gyroradius effects is ignored. The Ohm’s law and adiabatic pressure
law are appropriate only if the frequency, ω, and perturbation wavenumber,
k, satisfy the ordering assumptions that ωci >> ω >> ωb, ωd for both
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electrons and ions and L > k−1 >> ρi, where ωci is the ion cyclotron fre-
quency, ωb is the bounce (or transit) frequency, ωd is the particle magnetic
drift frequency, L is the plasma and magnetic field scale length, and ρi is
the ion gyroradius. These assumptions can break down for many critical
plasma phenomena in toroidal plasmas. For example, thermal particle ki-
netic effects have been shown to affect the stability of the ballooning modes
[1, 2, 3, 4]. Moreover, fast ion kinetic effects have been shown to destabilize
the Toroidicity-Induced Alfvén Eigenmode (TAE) [5, 6, 7] and modify the
nature of internal kink modes (fishbones and sawtooth stabilization).

In this paper we present kinetic effects on the stability of kinetic bal-
looning modes (KBMs) and TAEs. We first show that the combined kinetic
effects of trapped electron dynamics and ion finite Larmor radii (FLR) can
greatly stabilize the ballooning modes. Then, we show that TAEs can be
destabilized by resonant interaction with energetic ions in NSTX and ITER.

2 Kinetic ballooning modes

The ballooning instability which results from the release of free energy asso-
ciated with nonuniform plasma pressure with a gradient in the same direc-
tion as the magnetic field curvature is one of the most serious instabilities
in magnetically confined plasmas. To study the kinetic effects on ballooning
modes, we consider ve >> ω/k‖ >> vi, where ve is the electron thermal
speed and vi is the ion thermal speed. This condition is satisfied for high
temperature plasmas in most toroidal fusion devices because the frequency
of KBMs is on the order of ion diamagnetic drift frequency and the temper-
ature of electrons and ions are of the same order. Then, relative to the wave
motion along the ambient magnetic field lines electrons move very rapidly
with either transit or bounce motion depending on the particle pitch angle.
However, ions move very slowly with respect to the parallel wave motion
and their parallel dynamics can be considered as static. Moreover, electron
and ion motions perpendicular to the magnetic field lines are very different if
k⊥ρi ∼ O(1); the electron perpendicular motion is essentially the combina-
tion of E×B and magnetic drift motion because of small gyroradii, but the
ion perpendicular motion is governed by the E×B, magnetic drifts as well
as the polarization drift due to finite gyroradii. The difference in electron
and ion perpendicular motions causes charge separation. In order to main-
tain charge quasi-neutral a parallel electric field (δE‖) must be produced to
accelerate (or decelerate) electrons to positions where there is excess charge.
A δE‖ can easily accelerate (or decelerate) untrapped electrons to change its



density distribution. However, it is relatively harder to change the trapped
electron density distribution by δE‖ because of their rapid bounce motion
along the field lines. Thus, a δE‖ enhanced by a factor of 1 + O(ne/neu),
where ne and neu are the total electron density and the untrapped electron
density, respectively, will be produced to move the untrapped electrons to
maintain charge quasi-neutrality. The δE‖ will then drive an enhanced par-
allel current which can greatly increase the stabilizing field line tension over
the value expected from the MHD theory just like the high-pressured water
in a hose increases the tension of the hose.

A set of kinetic eigenmode equations has been derived for KBMs from
the gyrokinetic equations by considering ve >> ω/k‖ >> vi, but allowing
full ion gyroradius effects [8]. To obtain an analytical understanding of the
KBM stability, we also consider the limits: ω ∼ ω∗ � ωd for both electrons
and ions, where ω∗ is the particle diamagnetic drift frequency, k⊥ρi � 1, and
βi, βe < 1. For large aspect ratio with ε = r/R << 1 (r is the minor radius
and R is the major radius), the trapped electron density is much smaller
than neu and ne/neu ∼ 1 + O(

√
ε), and the critical β (βc) for the first

(second) KBM stability is larger (smaller) than the ideal MHD threshold
βMHD

c by a factor proportional to
√

ε [2, 8].
In the small aspect ratio limit, neu/ne ∼ O(B/2Bmax) << 1, where

Bmax is the maximum B along a field line, the KBM eigenmode equation is
approximately given by [8]
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2, and 〈ω̂de〉 is the bounce-averaged

electron magnetic drift frequency evaluated at its thermal energy.
Note that the coefficient of ne/neu in Eq. (2) is positive and thus Sc > 1.

For ne/neu >> 1 and bi ∼ O(1) or β ∼ O(1), the ne/neu term is much



larger than unity, and Sc >> 1. Physically, Sc is related to the perturbed
parallel current, given by δJ‖ ' i∇2

⊥∇‖ (ScΦ) /ω, which gives rise to an
enhanced stabilizing field line tension due to an enhanced δE‖ resulting
from the combined kinetic effects of trapped electron dynamics, ion FLR
and magnetic drift motion. The local dispersion relation is given by

ω(ω − ω∗pi)
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At marginal stability the critical β for the KBM is given by

βc ' Scβ
MHD
c − ω(ω − ω∗pi)RcLp

V 2
A

, (4)

where βMHD
c = k2

‖RcLp is the ballooning instability threshold based on the
ideal MHD theory, Rc is the radius of the magnetic field curvature and Lp

is the pressure gradient scale length. For ηi = 0, ω = ω∗i at the marginal
stability. Then, the second term on the right hand side of Eq. (4) vanishes
and βc = Scβ

MHD
c is enhanced over the ideal MHD threshold by Sc. For

ηi 6= 0, ω > ω∗pi at the marginal stability, thus ω(ω − ω∗pi) > 0 and the
second term on the right hand side of Eq. (4) reduces the βc. However, Sc

is also modified by the ω value at the marginal stability.
For small aspect ratio with r/R ∼ O(1), the fraction of trapped electron

population is much larger than the untrapped fraction and neu/ne ' 1 −√
1− (R− r)/(R + r) ' (R − r)/2(R + r) << 1. Then, the first stability

βc of the KBM is enhanced over βMHD
c by O(ne/neu). For an aspect ratio

of R/r = 1.5 as in NSTX, βc can be a factor of neu/ne ' 10 larger than
βMHD

c and we expect the KBM to be stable in the finite magnetic shear
region. However, if NSTX has a reverse shear, then the KBM is expected to
be unstable around the radial location of the minimum safety factor, where
the magnetic shear is very weak.

2.1 KBM stability in large aspect ratio (ŝ− αp) equilibrium

Numerical studies of high-n (n is the toroidal mode number) KBMs based
on the gyrokinetic eigenmode equations have been performed for circular
cross section tokamaks [1, 2] by employing the (ŝ − αp) analytical model
equilibrium where ŝ = rq′/q is the magnetic shear, αp = −2P ′Rq2/B2

0 , q

is the safety factor, P is the plasma pressure, B0 is the averaged magnetic
field intensity over a flux surface. We choose the fixed parameters to be
bθ = k2

θρ
2
i /2 = 0.1, εn = Ln/R = 0.1, where Ln = (dlnni/dr)−1, ŝ = 0.5,
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Figure 1: Critical β of the first (dash curve) and second (solid curve) stability of
the kinetic ballooning mode versus the inverse aspect ratio ε = r/R for a large
aspect ratio (ŝ − αp) equilibrium for the fixed parameters: bθ = 0.1, εn = 0.1,
ŝ = 0.5, q = 1, ηe = ηi = 0, Te/Ti = 1. For β values between these two curves ideal
ballooning modes are unstable.

q = Te/Ti = 1, ηi = dlnTi/dlnni = 0, ηe = dlnTe/dlnne = 0. Then,
ω∗pi = (1 + ηi)ω∗i, and ω∗pe = (1 + ηe)ω∗e. Figure 1 shows βc of the first
and second stability boundaries for KBMs versus ε, which demonstrates the
stabilizing effect of trapped electrons. It is clear that for small ε both the
increase in βc from the ε = 0 case for the first stability boundary and the
reduction in βc from the ε = 0 case for the second stability boundary are
proportional to

√
ε, which represents the trapped electron density fraction.

2.2 KBM stability for NSTX equilibrium

The stabilization kinetic effect on KBMs is more effective in small aspect
ratio toroidal devices such as NSTX. To study KBMs in NSTX, we choose
the baseline NSTX equilibrium parameters: R = 0.86m, minor radius of the
last magnetic surface is a = 0.68m (R/a = 1.27), the last magnetic surface
ellipticity is κ = 1.63 and triangularity is δ = 0.417, the vacuum magnetic
field at the geometrical axes is B0 = 0.3T . For simplicity we choose constant
temperature with Te = Ti = 1keV so that ηi = ηe = 0, which eliminates
the temperature gradient driven modes. The central electron density is
ne0 = 2.9× 1013cm−3, the central beta is β0 ≡ 2P (0)/B2

0 = 38%, and the
volume-averaged beta is 2〈P 〉/B2

0 = 9.1%. The q-profile is non-monotonic
and has negative shear inside the qmin = q(r/a = 0.3) = 0.93 surface, where
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Figure 2: (a) The KBM frequency and growth rate (normalized by ωA0 =
VA(0)/q(0)R) versus r/a for n = 12 for the baseline NSTX equilibrium. Also
shown are the MHD ballooning mode growth rate and ion diamagnetic drift fre-
quency. (b) The critical beta for the n = 12 KBM and the ideal MHD ballooning
mode for the baseline NSTX equilibria with aspect ratio R/a = 1.27. Also shown
are the NSTX β and q profiles. The KBM is unstable for β inside the βcrKBM

closed curve and the ideal ballooning modes are unstable for β > βcrMHD .

r2/a2 ≡ Ψtor, and Ψtor is the toroidal magnetic flux normalized to zero at
the magnetic axis and unity at the plasma edge.

The high-n gyrokinetic eigenmode equations are solved by employing
the HINST code [9]. Figure 2(a) shows the dependence of the KBM growth
rate and real frequency (normalized by ωA0 = VA(0)/q(0)R) on r/a for
the baseline NSTX equilibrium for n = 12. The KBM is unstable in the
range of 0.28 < r/a < 0.4, which is much smaller than the unstable region
(r/a < 0.45) of the ideal MHD ballooning mode, whose growth rates are also
shown in Fig. 2(a). Note that at marginal stability the KBM real frequency
equals the ion diamagnetic drift frequency ω∗i, consistent with our previous
studies [1, 2]. The KBM growth rate is much smaller than the MHD growth
rate. Also, when the KBM is unstable, its real frequency is smaller than the
local ω∗i, and the most unstable KBM occurs near r/a = 0.33.

Figure 2(b) shows the marginal stability boundary for KBMs and ideal
MHD ballooning modes in the local β and r/a plane for n = 12. To compute
βc for each flux surface, we construct new equilibria by varying ne(0) (or
β(0) while keeping other equilibrium quantities and profiles fixed. For the
baseline NSTX equilibrium the plasma β is larger than βc for unstable ideal
MHD ballooning modes in a very broad region ( r/a < 0.46) as shown in
Fig. 2(b). However, the stability boundary for KBMs forms a closed curve
and KBMs are stable outside this closed curve. For the NSTX baseline



equilibrium KBMs are unstable from r/a = 0.28 to r/a = 0.37 with the
most unstable region near the zero shear surface at r/a ' 0.3. Note that the
HINST calculations do not find unstable KBMs up to β(0) = 1. Because the
average β for the NSTX equilibrium is 〈β〉 = 9.1% and the experimentally
achieved values are about a factor of three larger, we expect full stabilization
of KBMs in high β NSTX discharges.

3 TAE instabilities

TAEs can be destabilized by resonant interaction with energetic ions. The
TAE frequency is ω ∼ VA/2qR, where VA is the Alfvén velocity. TAEs can
resonate with energetic particles with velocity Vh ∼ VA and are destabilized
by the energetic particle phase space gradient (pressure gradient and positive
energy gradient). For slowing-down energy distribution, fast particles can
drive TAEs when nq(Vh/VA) ≥ (rLh/Rρh), where ρh and Lh are the hot
ion gyroradius and pressure gradient scale lengths, respectively. Theories
and experiments have confirmed that large amplitude TAEs can lead to
expulsion of fast ions, degrade ignition margin and produce localized heating
or damage on plasma facing components. In burning plasmas TAEs can
be destabilized by 3.5 MeV α-particles and can cause premature loss of α-
particles from the confinement system. However, TAEs can be unstable only
if the fast particle drive overcomes bulk plasma damping effects of electron
and ion Landau damping, radiation and continuum damping.

We will address the TAE stability in NSTX and in the proposed ITER
experiments. For NSTX we present TAE experimental results and compare
them with the theoretical analysis. For ITER we present TAE stability
analysis and summarize the parameter domain where TAEs are expected to
be unstable due to α-particles and MeV NNBI ions. The stability of TAE-
type modes is analyzed by employing global kinetic-MHD stability codes,
NOVA/NOVA-K codes [10, 11, 12].

3.1 TAEs in NSTX

NSTX is an excellent device for studying TAE stability relevant to burning
plasmas because 1 < vb/VA < 3 in NSTX (in ITER 1 < vα/VA < 2, where
vα is the alpha birth velocity). TAE modes have been observed in NSTX
even for modest NBI power [13]. Because of low aspect ratio the toroidal
coupling effect is strong. The Alfvén continuum gap is wide open across the
minor radius and a broad spectrum of TAEs can exist [14] for each toroidal
mode number n. Figure 3(a) shows a broad spectrum of TAEs observed
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Figure 3: (a) TAE spectrum observed in the NSTX shot 108530. (b) TAE spectrum
computed by the NOVA/NOVA-K codes for the NSTX shot 108530 at 0.267 sec.

with several frequencies for each n for the NSTX shot 108530. The plasma
parameters for this shot are B0 = 0.434T , R = 87cm, a = 63cm, ellipticity
ε = 1.74, triangularity δ = 0.5, and the deuterium neutral beam is injected
co-tangentially to the plasma current (but counter to the toroidal field) with
an injection energy of 80 keV and total NBI power of 3.2 MW for two beam
lines. TAEs are most commonly present in the early phase of the discharge,
during the current ramp (with one NBI beam) and when the density is low
(2 − 3 × 1013cm−3 on axis). A variety of modes in the frequency range
from 20 to 150 kHz with toroidal mode numbers from n = 1 to n = 6
are commonly observed in beam heated discharges. Higher n modes are
generally associated with higher frequencies, possibly related to increased
Doppler shift due to toroidal plasma rotation. However, the mode spacing
is not nearly as uniform. In addition to the more commonly observed quasi-
continuous TAEs, bursting TAEs (indicated by vertical dashed lines) are also
observed after the second beam is injected at 0.21 sec. These bursting modes
are associated with fast neutron drops, Hα micro-bursts, and 5− 10% fast
ions hitting the wall. Each burst consists of multiple modes with n ranging
2 - 5 with a dominant mode being n = 2 or 3. From the bursting mode
amplitude modulation one sees beating of multiple modes, but the bursting
fluctuation is dominated by a single frequency mode with mode growth and
decay times approximately 50 - 100 µs.

To understand the observed TAE spectrum we perform the
NOVA/NOVA-K calculation for the NSTX discharge at 0.267 sec and the



results are shown in Figure 3(b), which shows a very rich TAE frequency
spectrum of unstable TAE modes and the radial extent of TAEs for n = 1−5
modes. In Fig. 3(b) the dotted mark on each horizontal bar indicates the
radial location of the maximum amplitude of the TAE poloidal harmon-
ics and the bar shows the radial width that the amplitude of the TAE
poloidal harmonics is at least one-half of the maximum amplitude. Note
that for each n there are multiple TAEs. To compute the TAE spectrum
for the NSTX discharge, the NSTX equilibrium is constructed by ignor-
ing the toroidal rotation effect and choosing the plasma profiles modeled
by the TRANSP code, qa = 11.4, ne(0) = 2.54× 1013cm3, β(0) = 21.4%,
〈β〉 ∼ 2.88%. Because the plasma toroidal rotation velocity is significant
with Vrot(0) ' 170 km/s at 0.27 sec and has a peak profile with half width
at r/a = 0.5, the frequencies shown in Fig. 3(b) are those computed by the
NOVA code that uses the Doppler-shifted frequency f = fTAE + nfrot(r),
where frot(r) = Vrot(r)/2πR is the radial dependence of the toroidal rota-
tion frequency, Vrot is the toroidal rotation velocity versus r/a =

√
Ψ, and

Ψ is the poloidal flux normalized to zero at the magnetic axis and unity at
the plasma edge. For Vrot = 100km/s and R = 1m, we have frot ' 16kHz.

From Fig. 3 we compare the TAE frequencies obtained from the NOVA
calculations with the NSTX observations at 0.267 sec. Note that from the
NOVA calculations the n = 1 mode frequency is about 50kHz which is
about 15kHz higher than the NSTX result. For n = 2 there are 3 unstable
TAEs with frequencies being 72kHz, 88kHz, and 102kHz which are con-
sistent with the observed frequency range of 90− 100kHz. For n = 3 there
are 2 unstable TAEs with frequencies being 99kHz and 103kHz which are
consistent with the observed frequency range of 102− 120kHz. For n = 4
there are 5 unstable TAEs with frequencies ranging from 88kHz to 147kHz,
consistent with the observed frequency range of 110 − 135kHz but not as
good as the other n cases. For n = 5 there are 5 unstable TAEs with fre-
quencies ranging from 110kHz to 155kHz which are also consistent with
the observed frequency range of 115− 140kHz. Thus, considering the un-
certainty in the measurement of the plasma profiles and the effect of plasma
rotation, the theoretical results are reasonably consistent with observations.

The growth rates of these TAEs are computed by feeding these Doppler-
shifted frequencies into the NOVA-K code. To model the beam ion distri-
bution we assume a slowing down distribution in energy, multiplied by a
weighting factor fλ (λ) = (4/∆λ

√
π)e−λ2/∆2

λ , where λ = v2
⊥/Bv2 and ∆λ is

the pitch angle width and is chosen to be from 0.25 to 0.5. These n = 1− 5
TAEs with peak amplitude located around

√
Ψ < 0.9 are destabilized by

the NBI ions. The calculated linear growth rates are about one percent of
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real frequency (γ/ω) versus the toroidal mode number with α-particle drive only
(squares), and with both NBI ion and α-particle drives (diamonds).

the real frequency for βh(0) ' 13%.

3.2 TAEs in ITER

The TAE stability in ITER has been studied by employing the perturbative
NOVA-K code [15]. The equilibrium plasma profiles of the ITER nominal
discharge are calculated by the transport code TRANSP and are shown in
Fig. 4(a). Other plasma parameters are: R = 6.2m, a = 2m, B0 = 5T ,
Ti0 = 19.5keV , Te0 = 23.5keV , and β0 = 6.7%. The deuterium negatively
charged neutral beam injection (NNBI) power is PNBI = 33MW at 1MeV
injection energy and is applied tangentially aiming at the magnetic axis so
that the beam ion β peaks at the center. Also note that by choosing a flat
electron density profile for this ITER equilibrium TAEs will be less unstable
than for equilibria with a more peak density profile.

The dependence of γ/ω (γ is the growth rate) on the toroidal mode
number for TAEs is shown in Fig. 4(b). Note that for each n there are more
than one TAE and most TAEs are stable. The range of unstable n-values
spans from 7 to 12 when both α-particle and beam ion drives are included.
If only the α-particle drive is included, TAEs are near marginal stability.
As a measure of how close TAEs are to the marginal stability we note that
the growth rate from alphas plus beam ions for n = 10 is ∼ 1.5% of the
real frequency. However, when the damping effect from thermal particles
is included, γ/ω is reduced to 0.2%. The damping is strong at the plasma
center due to the ion Landau damping and at the plasma edge due to the
trapped electron collisional damping.

The calculations also show that the more the beam is directed off-axis



vertically the stronger the beam ion drive is. This is because during the
on-axis beam injection, the beam ion beta builds up near the plasma center,
where the ion Landau damping is very strong. With the off-axis beam
injection the region of strong beam ion beta gradient shifts outward to the
middle of the minor radius, where the TAE modes are located. Thus, for
the off-axis beam injection at 0.55m the instability drive increases to γ/ω =
0.4% (from 0.2% for the on-axis beam injection case). For the higher ion
temperature case, Ti0 = 25.3keV , the α-particle destabilization of the TAE
is enhanced due to higher βα0 ' 1.33%. However, the n = 10 TAE is still
marginally stable if only the α-particle drive is included. However, including
the beam ion drive the total instability drive is strong enough to destabilize
TAEs with γ/ω increased to 0.55% for the most unstable mode. Finally, the
contribution to the TAE drive from alphas or beam ions is much smaller than
the TAE real frequency (typically at ∼ 1− 3%), and thus the perturbative
approach employed by the NOVA-K code should be adequate.

4 Summary

In summary, we have presented kinetic effects on MHD type modes by con-
sidering (1) the stabilization of KBMs by the combined effect of trapped
electron dynamics and ion FLR, and (2) the destabilization of TAEs in
NSTX by fast NBI ions and in ITER by α-particles and MeV NNBI ions.

It is difficult to model the kinetic modifications to MHD phenomena
mainly because of the disparate scales between kinetic physics and MHD
phenomena: global scale MHD phenomena are generally studied using the
MHD framework, while microscale kinetic phenomena are described with
kinetic theories. To accommodate the advantages of both MHD and kinetic
models, we have developed a nonlinear kinetic-fluid model for modeling ki-
netic effects to MHD phenomena [16]. The model consists of single-fluid
equations coupled with gyrokinetic or full Vlasov descriptions for all parti-
cle species via pressure tensors. In the linear limit, we have shown that the
kinetic-fluid model properly retains key physics of both thermal and ener-
getic particles for global MHD modes. The kinetic-fluid model is a natural
extension of the previously developed kinetic-MHD model [17], which has
been successfully employed to build global linear and nonlinear kinetic-MHD
codes [11, 18] for modeling fast ion driven modes.
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