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Fusion Reaction Rate in an Inhomogeneous Plasma

S.Son∗ and N.J. Fisch†

Princeton Plasma Physics Laboratory

Abstract

The local fusion rate, obtained from the assumption that the distribution is a local Maxwellian,

is inaccurate if mean-free-paths of fusing particles are not sufficiently small compared with the

inhomogeneity length of the plasma. We calculate the first order correction of P0 in terms of the

small spatial gradient and obtain a non-local modification of P0 in a shock region when the gradient

is not small. Use is made of the fact that the fusion reaction cross-section has a relatively sharp

peak as a function of energy.

PACS numbers: 51.10.+y
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I. INTRODUCTION

Transport coefficients are derived using the deviation of particle distributions from a

local Maxwellian through the so-called “Chapman-Enskog-Procedure” (CEP) [1–7]. CEP

correctly predicts the distribution f(E) when the spatial scale L of the plasma is larger than

the mean-free-path λE of an ion with energy E ( when λE ¿ L ).

For Coulomb collisions, the length λE is proportional to E3/2, so the assumption λE ¿ L

does not hold for high energy E. When λE
∼= L, the error permitted by CEP is as large as

the value predicted:

|fC(E) − f(E)

f(E)
| ∼= 1, (1)

where fC is first-order corrected distribution from CEP and f is the exact distribution [5].

CEP then fails to predict the distirbution function at high energy. It is even true that

|(fC(E) − f(E))/f(E)| → ∞ as E → ∞.

For convenience, let us define the “breakdown region” as the phase space where CEP fails

( as in Eq.(1) ). We define also a “breakdown particles” as the particles in that region. If

the breakdown region contains the phase space in which the occurrence of a physical process

is sensitive, such as the high energy limit above, CEP is not accurate to use for physical

quantities related to the process. Examples might include the electric heat conductivity, the

nuclear reaction rate and the ionization rate, all of which are sensitive to energetic particles.

In the case of the electric heat conductivity, electrons responsible for the heat transfer

are those with kinetic energies higher than the temperature. If their mean-free-paths are

larger than or comparable to the gradient scale length, CEP overestimates the actual heat

conductivity [6, 8–17]. In the case of the nuclear reaction rate, fusing ions have much higher

energies than the average ions [18]. If their mean-free-paths are not small compared to the

inhomogeneity length of a plasma, the fusion rate formula, P0(n, T ), from a local Maxwellian

assumption is only approximate.

In this paper, we consider the reaction rate change due to the particle-distribution de-

viation from a local Maxwellian in the presence of a spatial inhomogeneity. We identify a

region for which CEP is applicable. When CEP is valid, we calculate a modified form of the

fusion rate from P0(n, T ) to P0(n, T ) + δP (n,∇n, T,∇T, V,∇V ). When CEP is not valid,

we obtain a considerably different rate because of the non-local effects in a shock region.
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The paper is organized as follows. In Sec.II, basic physics are introduced for the fusion

rate and CEP. In Sec.III, P0(n, T )+ δP (n,∇n, T,∇T, V,∇V ) is calculated when the spatial

length scale is large. In Sec.IV, the shock region is studied as a special case when CEP

breaks down. In Sec.V and VI, a discussion and a conclusion are given.

II. BASIC EQUATION

A. Nuclear Reaction Rate

The reaction rate P in a plasma is determined by the distribution function f and the

cross-section σ:

P =

∫
f1(v1)f2(v2)σ(|v1 − v2|)|v1 − v2|dv1dv2, (2)

where P is in units of cm−3 sec−1, or events per unit time per unit volume. The cross-section

is proportional to the contact probability of two particles. It is virtually zero under classical

mechanics, and the barrier penetration is possible only through quantum effects. Two-body

quantum mechanics gives the contact probability, which is proportional to the amplitude of

the wave function at zero distance of fusing pair [18, 19]. The cross-section is given [18] as

σi,j(E) =
Si,j(E)

E
e−π(

EG
E

)1/2

, (3)

where EG = ZiZje
2/ri,j = 50(ZiZj)

2(2µij/mN) keV, ri,j = ~
2/2µZiZje

2, ui,j is the relative

mass, E is the relative kinetic energy, Si,j is a slowly varying function of energy, and mN is

in esu.

If the distribution function is a Maxwellian, the fusion rate can be written a function of

density n and temperature T only. Since a Maxwellian distribution decreases with energy,

and the cross-section increases with energy, there exists a maximum of the integrand in

Eq.(2) responsible for most of the reactions. The energy at the maximum, the so-called “

Gamow Peak”, is

EGp =
1

3
τijkbT, (4)
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where τij = 3(π/2)2/3(EG/kBT )1/3. The peak is much larger than the temperature of the

plasma in most cases [18]. The method of the steepest-descents can be used for the integra-

tion in Eq.(2), giving the local fusion rate [18]

P0(n, T )(
1

cm3 sec
) = ninjτij

2exp(−τij)[
16Si,j(T )ri,j

35/2π~
]. (5)

B. Chapman Enskog Procedure

We first summarize the Chapman-Enskog procedure [4]. To calculate transport coeffi-

cients, we solve the Vlasov equation with a collisional model:

Df

Dt
=

∂f

∂t
+ v · ∇f +

q

m
E · ∇vf = −C(f). (6)

If macroscopic quantities, such as the density and temperature, vary slowly compared to

the collision frequency, a perturbation expansion is possible [1–5]. To zeroth order, the

right hand side of Eq.(6) is zero, since the collision frequency is the fastest time scale. The

zeroth order solution is then local Maxwellian f0 = n(x)fM(m(v−u(x))2

2T (x)
). Note C(f0) = 0,

but Df0

Dt
6= 0, due to the parametric dependence. The next order equation will be

Df0

Dt
= −C(f1). (7)

An Euler equation will result if we take the conserved moments of Eq.(7), thereby imposing

constraints on the density, the temperature and the velocity, i.e.




∂n
∂t

+ ∇ · (nu) = 0

ρm
du
dt

= nqE −∇ · (nT Î)

3
2
ndT

dt
= −(∇u) : (nT Î)


 ,

where Î is the identity matrix and A : B = Σi,jAi,jBi,j. By using the above equations, Df0

Dt

can be simplified to

Df0

Dt
= fM [(

1

2

δv2

vt
2
− 5

2
)δv · ∇lnT +

1

vt
2
(δvδv − 1

3
δv2Î) : Ŝ)], (8)
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where vt =
√

T/m, and Ŝi,j = 1
2
( ∂ui

∂xj
+

∂uj

∂xi
). By solving Eq.(7) with Eq.(8) for the ions, we

obtain f1 and the rate from Eq.(2).

For the collision operator, we use the Landau operator:

Cr,s = A(r, s)Σk,p(
∂

∂v
)k ·

[∫
Ûk,p(~v − ~v′) · [ 1

ms

(
1

∂v′
s

)p − 1

mr

(
1

∂vr

)p]fr(v)fs(v
′)
]

d3v′, (9)

where Ar,s = 2π(q2
r/mr)(nsqs

2)lnΛ and Ûk,p(~v) = v2δk,p−vkvp

|v|3 is a tensor. We now compute

Ci,e and Ci,j. We linearize Ci,j and Ci,e around a local Maxwellian using fi = fM(1 + χ).

Fusing particles are much faster than average particles from Eq.(5), and they collide most

often with average particles, so we use vi À vj in computing Ci,j(χi). Thermal electrons are

much faster than the fusing particles, so we use ve À vi in computing Ci,e. The linearized

collision operator obtained from these assumptions is given as


 Ci,j(χ) = −A(i, j)[ fM

miv3 (L
2χ − 2v mi

mj

∂χ
∂v

)]

Ci,e(χ) = −B(i, e)( 2
vte

)3 1
me

∂
∂v

· [ T
Mi

fM
∂χ
∂vi

]


 , (10)

where L is the Lorenz collision operator, f1 = fMχ, vte is the electron thermal velocity,

and B(i, e) = (2
√

2/3
√

π)A(i, e). From Eq.(10), if (me/Mi)
1/2(EG/T )1/6 ¿ 1, then Ci,e

can be ignored compared with Ci,i for the particle with E = EGp. The derivation and

further explanation can be found in Appendix A. For several species of ions, simply ignoring

ion-electron collisions, we obtain

−ΣsCi,s(χi) = ΣsA(i, s)[
fM

miv3
(L2χ − 2v

mi

ms

∂χ

∂v
)]. (11)

III. THE REACTION RATE WHEN CEP IS VALID

For simplicity, we consider an one-component plasma in this section; the treatment can

be easily generalized to several components. We now solve Eq.(7) using Eqs.(8) and (10).

Two sources in Eq.(8) are the temperature gradient and the velocity shear, χh driven by the

temperature gradient, and χs by the velocity shear, so that


 χh(v) = τ(v)[−1

16
v2

vt
2 + 5

8
]v · ∇lnT

χs(v) = τ(v)(−1
10

)Σi,j(
vivj

vt
2 − 1

3
v2

vt
2 δi,j) : Ŝi,j


 , (12)
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where vt =
√

Ti/m is the thermal velocity, and τ(v) = 1
2π

(m/ne4)(1/lnΛ)mv3 is the collision

time of the particle with the velocity v. Note that χ increases with energy, and exceeds 1

as v gets large. As mentioned, this is a common limitation of the CEP.

In the case when the CEP is applicable, we can substitute χ into Eq.(2). By changing

the variable from v1 and v2 into V = (v1 + v2)/2 and v = v1 − v2, we obtain from Eq.(2)

P = n2

∫
[fM(V )fµ(v)(1 + χ1)(1 + χ2)σ(v)v] d3vd3V, (13)

where fµ is a Maxwellian distribution with mass µ.

For convenience, let us define 〈a(v)〉g =
∫

g(v)a(v)d3v, where g(v) is any spherically

symmetric function. We then note that 〈a(v)〉g = 0 if a(−v) = −a(v), 〈vxvy〉g = 0, and

〈2(vx)
2 − (vy)

2 − (vz)
2〉g = 0. Because χh is an odd function, and χs has the form χ(v) =

g(v)vxvy or χ(v) = g(v)(2v2
x − v2

y − v2
z), the first order correction to the rate in χ is zero.

The second order correction is not zero. To simplify the computation, we now make use

of the fact that most of the reactions occur when |v| À |V |, because the center-of-mass

energy is near T and the relative energy is near the Gamow Peak. Thus approximations

V ± v/2 ∼= ±v/2 and χ(V ± 2/v) ∼= χ(±v/2) can be used. The second order modification is

then

δP

P0

= −|∇lnT |2A + ŜO : ŜOB + (x2 + y2 + z2 − 1/2(xz + yz + xy))B′, (14)

where τ = 1
2π

(m/ne4)(1/lnΛ)m(vGp/2)3 is the collision time for a particle with the

Gamow peak energy ( or the velocity vGp =
√

EGp/m ), and A = τ 2(5/8)2(EGp/12m),

B = τ 2(1/102)(1/15)(EGp/4T )2, B′ = 4/3B, x = ∂ux

∂x
, y = ∂uy

∂y
, z = ∂uz

∂z
, ŜO(i, j) =

Ŝ(i, j) − Ŝ(i, j)δi,j is the off-diagonal element of the velocity shear matrix, and P0(n, T ) is

given in Eq.(5). We assumed τi,j < 10 with τi,j in Sec. II.

We note from Eq.(14) that the rate modification mostly comes from the temperature

gradient. If the shear effect is as big as the temperature-gradient effect, the macroscopic

velocity would have to be as large as the Gamow peak velocity, which is unlikely. We note

also that, in comparison with the local fusion P0, the temperature gradient reduces the

fusion rate and the velocity shear increases the rate. Most fusion reactions occur when two

fusing particles have V ∼= 0 and a large relative energy v ∼=
√

2EGp/µ; In this case, they
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f_M(1 + \chi_h)

f_M(1 + \chi_h)

f_M(1 + \chi_s)
f_M

FIG. 1: fM , fM (1 + χs), fM (1 + χh).

fuse with nearly opposite velocities v1
∼= −v2. Note that χh(v)χh(−v) = −(χh(v))2 < 0

and χs(v)χs(−v) = (χs(v))2 > 0. Since χh is an odd function of v, whenever χh has an

abundance of density in a particular region of phase space, there will be a dearth of density

in the corresponding opposite region ( −vx ,−vy, −vz). Since the reaction rate is proportional

to the product of oppositely traveling particles, χh always offsets each other to make the

reaction rate reduced. A similar argument can be applied to χs with the opposite effect.

See Fig.(1).

Most of the fusion reactions occurs with the particles in the region near the Gamow Peak.

CEP breaks down if χ is larger than or comparable to 1 in this region, rendering Eq.(14)

invalid, Although this equation has then limited applicability, it serves as a check whether

a local Maxwellian or CEP can be used. For example, consider a plasma with physical

parameters Z = 1, n = 1014 cm−3, m1 = m2 = O(1), T = 50 eV, and EGp = 500 eV. For

this plasma, τ = 0.2 × 10−3, and CEP is valid only when ∇lnT < 0.01 cm−1.

IV. SHOCK REGION WHEN CEP BREAKS DOWN

Consider the shock region in Fig.(2). In Region 2 (|x| < L), the density and the temper-

ature change from n0, T0 to n1, T1 while maintaining the Euler equilibrium, nT = Const.

Of interest here is when λ(T ) < L < λ(EGp). The distribution function in Region 2 can not

then be obtained from CEP perturbation, but must be obtained instead from the solution

to
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 X = -L X= L

n

T

Region 2Region 1 Region 3

FIG. 2: The shock region.

vx
∂fE

∂x
= −C(x, fE), (15)

where C(x) depends on x because of n(x) and T (x). We estimate the rate in Region 2

without solving Eq.(15) by the following argument. If L ¿ λ(EGp), energetic particles from

Region 1 cannot be relaxed quickly enough while traversing Region 2, and so it still has

the memory of the temperature and the density in Region 1. Particles from Region 3 act

similarly in Region 2. Therefore, in Region 2, the particle distribution function f2 can be

considered as a Maxwellian with temperature T0 when vx > 0 and a Maxwellian with T1

when vx < 0:

f2(v) =




f1(v)(vx > 0)

f3(v)(vx < 0)




, (16)

where f1 and f3 are the particle distribution functions in Region 1 and Region 3. We can

then put f2 in Eq.(16) into Eq.(2), The rate between g and f particles in Region 2 is then

R ∼= 1

2

∫
dv3

1dv3
2σ(|v1 − v2|)|v1 − v2|[fT0(v1)gT1(v2) + fT1(v1)gT0(v2)], (17)
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where fT0 , gT0 and fT1 , gT1 are Maxwellian with temperatures T0,T1. After integrating over

the center-of-mass coordinate, the rate is the same as the rate given in Eq.(5) with the

effective temperature and the effective density given as




1
TE1

= m1+m2

(
m1
T0

+
m2
T1

)
1

T1T0

1
TE2

= m1+m2

(
m2
T0

+
m1
T1

)
1

T1T0

nE =
√

n0n1

2




. (18)

The total rate is then

PT = P (TE1, nE) + P (TE2, nE), (19)

where P (TE1, nE) is the reaction rate between particles f1 from Region 1 and particles g3

from Region 3, and P (TE2, nE) is the reaction rate between particles f3 from Region 3

and particles g1 from Region 1. PT (TE, nE) is quite different from the local fusion power

P0(T (x), n(x)) in Eq.(5). We now check how P0 differs from the true rate PT in Region 2.

We note that when nT = Const, P0 in Eq.(5), as a function of T , has a maxima at τi,j = 8,

at which Tm = 0.13EG from

dP

dT
=

1

T
(
1

3
τij − 8

3
)P. (20)

For D-T plasma, Tm
∼= 15 KeV. For convenience, we identify three cases: T0 <

Tm < T1, Tm < T0 < T1, T0 < T1 < Tm. Instead of T, a dimensionless parameter

a = (8/3)3(2/π)2(T/EG) will be used for simplicity. Note am = 1 at Tm.

We consider reactions involving equal-mass ions such as D-D when a0 < 1 < a1. In

Fig.(3), P/P0 is drawn in Region 2 when a0 = 0.5, a1 = 1.3. The actual fusion power

is larger than P0 in the entire region. This comes from the fact that TE = (T0 + T1)/2,
√

2nETE = n0T0(T0 + T1)/2
√

T0T1 > n0T0. P0 underestimates the actual fusion power.

We now consider the case when there is a big mass difference between the fusing particles,

such as P-Boron-11. Since (m1/T0) >> (m2/T1) or (m1/T0) << (m2/T1), it is true that
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FIG. 3: Pt
P0

in region 2 for m1 = m2 and m1 = 1, m2 = 11 when a0 = 0.5, a1 = 1.5.
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1.8
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 P
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 -1 < x / L < 1 

 m1=1, m2=11 
m1 = m2 

FIG. 4: Pt
P0

in region 2 for m1 = m2 and m1 = 1, m2 = 11 when a0 = 0.3, a1 = 0.8.

TE1
∼= T0, TE2

∼= T1. Then, PT = 1
2
[(T0/T1)P (T0) + (T1/T0)P (T1)]. See Fig.(3) for a case in

which P0 underestimates the true rate in the entire region.

We also consider a case when a0 < a1 < am. The local fusion power usually under-

estimates the actual rate in the region near x/L = −1 and overestimates near x/L = 1.

However, it is possible that the local fusion power can underestimate the rate in entire

Region 2 as shown in Fig.(4).

The same analysis can be applied to the case where am < a0 < a1, but λ(T ) < L < λ(EGp)

is not easy to satisfy. Except for very limited cases, λ(T ) < λ(EGp) < L or L < λ(T ) <

λ(EGp), so the estimation method in this section cannot be applied.

V. DISCUSSION

In a DT inertial confinement fusion, a detonation front [20–22] is a supersonic shock

front. The following is a rough comparison of the width of the shock front with the mean
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free path of an ion at Gamow-Peak energy thereby to determine whether the non-locality

is important. In a detonation scenario of DT fuel [22], an electron wave with Te = 8 KeV

heats ions to the ignition temperature Ti = 5 KeV [21]. Roughly, the mean free path of a

3.5 MeV alpha particle and that of a deuterium with the energy E is given as




λα = 0.1462 × 1018 T 1.5
e

neλ

λ(E) = 0.67 × 1013 E2

neλ


 , (21)

where T and E in eV, and ne in cm−3. Then λ(E)/λα is

λ(E)

λα

= 4.56 × 10−5 E2

T 1.5
e

. (22)

Assuming Ti
∼= 5KeV, we note that EGp = 28.4 KeV and λ(EGp)/λα

∼= 0.1. The width of the

shock front is the same order as the mean free path of the Gamow-Peak ions L(EGp), because

it is much smaller than λα. The non-local effect in Sec. IV is then important. However, for

the internal structure of the shock, we used the simple static isobaric configuration. A more

refined study [7, 23] should be carried out especially for the fast igniter scheme [22, 24–26].

In P-Boron-11 [21], the ion temperature Ti & 100 KeV must be much hotter than the

electron temperature Te
∼= 30 KeV to overcome the bremsstrahlung losses [27]. The oper-

ating regime of a detonation waves in P-B-11 fuel is quite narrow [21]. The plausibility of

the existence of this region is called into question due to the reduced reactivity compared

with the old data [28]. However, as shown in this work, the non-locality of fusing particles

can enhance the fusion power as much as 100% in some region. We note that λ(EGp) is not

much smaller than λα and might be larger than the width of the shock front because the ion

temperature is above 100 KeV. Therefore, by having a sharp front, the fusion rate might be

higher than the theoretical prediction, and a detonation wave might be possible. It is then

important to study P-B-11 with inclusion of the non-locality effect.

For the case of the nuclear reaction rate, the non-locality effect has been generally ignored.

The reason is that the nuclear reaction rate is usually slow compared to the other physical

processes involved in astrophysical plasmas [29] and laboratory fusion devices. Even a sudden

change of the plasma parameters for a short period of time can be simply ignored. But with
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the increasing interest in ICF, this very short period becomes quite important, especially in

the shock front, because the possibility that the detonation depends on the characteristic

of the shock. A thorough analytical formulation has not apparently been carried out yet.

Some treatment has been made to take into account the non-locality from Chapman-Enskog

procedure or other method [7, 23], whose primary interest is particle flux or current. We need

however the detailed information about the distribution at Gamow peak, and no formalism

has been developed for this purpose to our knowledge.

VI. CONCLUSION

In this paper, the modification of the fusion reaction rate due to plasma inhomogeneities

was calculated. If an energetic particle with the Gamow-Peak velocity travels a sufficient

distance to see the spatial inhomogeneity before being collisionally damped, the reaction

rate formula P0(n, T ) should be changed considerably.

The modification δP (n,∇n, T,∇T, V,∇V ) has been calculated using the Chapman En-

skog procedure when the inhomogeneity is small. In the presence of a temperature gradient,

the local fusion rate overestimates the actual fusion rate. In the presence of a velocity

shear, the local fusion rate underestimates the actual rate. CEP also serves as a criteria to

determine when the perturbation procedure breaks down.

The case when δP/P0
∼= O(1) is given in the shock region, and a qualitative description

has been made. The modification to fusion rates can be large, and the local fusion power

formula can underestimate or overestimate the actual rate.

We would like to thank Dr. John Krommes for useful discussion. This work was supported

by the U.S. DOE under contract AC02-76CH0-3073.

Appendix [5]

A. Electron-Ion Collisions and Ion-Ion Collisions

We compare the magnitude between Ci,e and Ci,i when Ei
∼= EGp in order to check whether

the linearization doesn’t omit the important terms. From vGp =
√

1
3
τij(T/µ) ¿ vte, where

vte is the thermal velocity of the electron, the ratio of the drag on an ion by the electrons

to the drag by the ions is
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νi,e

νi,i
= 1.78 × 10−2m−1/2(

E

T
)3/2, (23)

where m is the ion mass in esu, and E is the energy of the ion. According to Eq.(23), Ci,e

can be ignored for the energetic ion if E < T × (102/1.78)2/3. We impose this condition to

the particle with E = EGp, and we obtain EG/T < 1200. For D-T plasma, it happens when

the temperature is hotter than 100 eV. As shown in the linearized version, we can ignore

ion-electron collisions as long as T À EG/20003. This is a much stronger condition than

T > 100 eV. We indeed omitted some important physics when we linearized it around a

Maxwellian, but not seriously. The above analysis is consistent with an ordering between

collision operators:

Ce,e, Ce,i : Ci,i : Ci,e
∼= 1 : (

m

M
)1/2 :

m

M
. (24)

Therefore, we can ignore Ci,e compared to Ci,i.

B. Ion-Electron Collision Operator Ci,e

If thermal electrons are much faster than the ions so that vi ¿ vthe, Û can be approxi-

mated as Ûk,p(~ve − ~vi) ∼= Ûk,p(ve) − Σq(vi)q · ∂Ûk,p(ve)

∂vq
. Using this, Ci,e becomes

Ci,e
∼= −Ai,eΣk,p(

∂

∂v
)k ·

∫ [
Ûk,p(ve) − Σq(vi)q · ( ∂

∂v
)qÛk,p(ve)

]
·

[
1

mi

(
∂fi

∂v
)pfe − 1

me

(
∂fe

∂v
)pfi

]
d3ve.

(25)

Keeping only the largest term in order O(me/mi), the expression becomes

Ci,e(fi(v)) = −Ai,eΣk(
∂

∂v
)k ·

[
~Mk + ~Nk + ~Lk

]



~Mk = Σp
1
Te

fi〈Ûk,p(ve) · (ve)p〉
~Nk = −Σp,q

1
Te

fivq · 〈(( ∂
∂ve

)qÛk,p(ve)〉
~Lk = Σp

1
mi

(∂fi

∂v
)p · 〈Ûk,p(ve)〉


 ,

13



where 〈〉 denote the Maxwellian integration with respect to the electron velocity. Since

〈∂Ûk,p(ve)

∂ve
·ve〉 = aδk,p, 〈Ûk,p〉 = −aδk,p, and 〈Ûk,p(ve)·ve〉 = 0 where a = −8π

3
(2π)−3/2

√
me/Te,

Ci,e is finally given

Ci,e(fi) = −Bi,e(
2

vte

)3 1

me

∂

∂v
· [vifi +

T

Mi

∂(fi)

∂vi

], (26)

where Bi,e = (2
√

2/3
√

π)Ai,e.

C. Ion-Ion Collision Operator Ci,j(χi)

By using f i = (1 + χi)f i
m, where f i

m is a Maxwellian of the species i, we obtain the

linearized Landau operator

Ci,j(χ
i) = −Ai,jΣk,p(

∂

∂v
)k ·

[
f i

m(v)

∫
[f j

m(v̄)Ûk,p(v − v̄) · ( 1

mi

∂χi

∂vp

− 1

mj

∂χj

∂v̄p

)]d3v̄

]
. (27)

The integral Ĥ(v) =
∫

f j
m(v̄)Ûk,p(v − v̄) can be set as Ĥk,p = aj(v)(δk,p − ~vk~vp) + bj(v)~vk~vp

where bj(v) and aj(v) can be obtained from




aj(v) = 1
2
[Σk,pĤk,p − b(v)]

bj(v) = Σk,p~vk · Ĥk,p · ~vp

Σk,pĤk,p = 2
v
g( v√

2vt
)




, (28)

where g(x) = 2
π

∫ x

0
e−t2dt. From this, a(v) and b(v) is


 a(x) = 1

vtj

1
x3 [(x

2 − 1)g( x√
2
) +

√
2
π
xe−

1
2
x2

]

b(x) = 1
vtj

2
x3 [g( x√

2
) −

√
2
π
xe−

1
2
x2

]


 , (29)

where x = v/vtj, and vtj =
√

T/mj. After substituting Eqs.(29),(28) into Eq.(27), then

Eq.(27) becomes

14



Ci,j(χi(v)) = −Ai,jΣk,p
∂

∂vk

·
[
fm(Ĥk,p · 1

mi

∂χ

∂vp

− ~Jk(v))

]
, (30)

where ~Jk = Σp

∫
fm(v̄)Ûk,p(v − v̄) · ( 1

m
∂χ̄
∂v̄p

)d3v̄. For x À 1, bj can be ignored compared

to aj. The last term is for momentum conservation. Since high energy particles can be

considered as test particles due to their small number and the momentum conservation is

not important, this term can be ignored. Mathematically, if one solves CEP without the

last term and substitutes the solution into it, the last term is shown to be small compared

to [fmv · lnT ] and other terms. We then obtain the final expression

Ci,j(χi(v)) = −Ai,jΣk,p
∂

∂vk

·
[
fm · Ĥk,p · 1

mi

∂χ

∂vp

]
, (31)

where Ĥk,p = 1
v
(δk,p − ~vk~vp). After linearizing Eq.(31), we obtain Eq.(10).
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