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LETTER TO THE EDITOR

Finite pressure effects on reversed shear Alfvén

eigenmodes

G J Kramer, N N Gorelenkov, R Nazikian, and C Z Cheng

Princeton Plasma Physics Laboratory P.O.box 451 Princeton NJ 08543-0451 USA

E-mail: gkramer@pppl.gov

Abstract. The inclusion of finite pressure in ideal magnetohydrodynamic (MHD)
theory can explain the Reversed magnetic Shear Alfvén Eigenmodes (RSAE) (or Alfvén
cascades) that have been observed in several large tokamaks without the need to invoke
energetic particle mechanism for the existence of these modes. The chirping of the
RSAEs is cased by changes in in the minimum of the magnetic safety factor, qmin,
while finite pressure effects explains the observed non-zero minimum frequency of the
RSAE when qmin has a rational value. Finite pressure effects also play a dominant role
in the existence of the downward chirping RSAE branch.

Submitted to: Plasma Phys. Control. Fusion

1. Introduction

In advanced Tokamak scenarios with very weak or inverted magnetic shear profiles a

class of Alfvén eigenmodes can be excited in the weak shear region near the minimum

of the magnetic safety factor or q-profile. These modes are called reversed shear

Alfvén eigenmodes (RSAE) [1, 2] and have been reported in various tokamaks: JT-

60U [3, 4], Alcator C-mod [5], JET [6] (where they are called Alfvén cascades),

and TFTR [7]. These modes often appear in discharges that are designed to

study advanced plasma scenarios for future burning plasma experiments such as the

International Thermonuclear Experimental Reactor (ITER) and the Fusion Ignition

Research Experiment (FIRE).

One of the hallmarks of these modes is that their frequencies change on a fast time

scale: usually they chirp up in frequency from below one-third of the Toroidicity induced

Alfvén Eigenmode (TAE) [8] frequency to the TAE frequency on a ten to a hundred

millisecond time scale. This behavior is due to the decrease of the minimum value of

the magnetic safety factor, qmin, as reported in [9]. In fact, the RSAEs have been used

to monitor the evolution of qmin during the reversed shear phase of plasma discharges

[10].
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The mode structure of the RSAEs is close to a cylindrical mode with toroidal mode

number n and poloidal mode number m. For such a cylindrical mode the frequency at

a given qmin is given by

ω ≈ k‖VA = (m− nqmin)VA/qminR (1)

with VA the Alfvén velocity and R the major radius of the tokamak. When qmin is

rational, i.e. qmin = qnm = m/n, then the mode frequency is zero. The TAE gaps for

toroidal mode number n near qmin are located at qTAE = qnm ± 1/2n and the TAE

frequency is given by ωTAE ≈ VA/2qTAER. When qmin decreases from qnm, the mode

frequency chirps up almost linearly with qmin to the TAE frequency. Experimentally

however, the minimum frequency that is observed for the RSAEs at rational qmin-surfaces

is not zero but usually of the order of 20 to 40% of the TAE frequency (see experimental

results in [3, 4, 6]). We show that ideal magnetohydrodynamic (MHD) theory with finite

plasma pressure accounts for the frequency of the RSAEs at the rational qmin surfaces,

as well as the existence of down chirping modes.

These modes have been studied theoretically in the past. In one of the first papers to

explain these RSAEs it was concluded that i) the mode frequency follows the frequency

of the lower Alfvén continuum at the shear reversal point, and that ii) the only viable

option to explain the observed RSAEs is the energetic particle mechanism as presented

in [9]. More recently, it was shown that there are two complementary mechanisms

for establishing RSAEs: i) an energetic particle mechanism as described previously [9]

and a geometrical mechanism due to second order effects in the inverse aspect ratio

[11]. In [11], however, only the limiting case of zero plasma pressure and high toroidal

mode numbers was considered and only the coupling between three adjacent poloidal

harmonics was taken into account. This did not explain the non-zero RSAEs frequencies

that are observed at rational q-surfaces and the disappearance of the RSAEs when it

reaches the TAE gap as is sometimes observed. Moreover, the theory predicts that

downward chirping RSAEs only exist in the presence of an energetic particle population.

In this paper we will show that the RSAE can exist without energetic particle

effects, that the non-zero minimum RSAE frequency is caused by finite plasma pressure

effects and that the downward chirping RSAE can exist in ideal magnetohydrodynamic

(MHD) theory when the plasma-β is non-zero.

2. Simulation of RSAEs

For studying the behavior of the minimum RSAE frequency at rational qmin-surfaces

we have used the the nonvariational ideal MHD code NOVA [12] with the following

plasma geometry: major radius, R = 3.0 m, minor radius, a = 1.0 m, with a circular

cross section, and toroidal magnetic field, BT = 3.0 T. The used density, pressure, and

weakly reversed q-profiles are shown in fig. 1. The pressure profile was scaled to obtain

the requested volume-averaged β (〈β0〉) values.

In fig. 2 the normalized frequency of the RSAE (normalized to ω0 = VA(r/a =

0)/2Rq(r/a = 1) with VA(r/a = 0) the Alfvén velocity at the plasma center and
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Figure 1. Density, pressure, and q-profile that were used in the model plasma
simulations.
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Figure 2. The minimum RSAE frequency as function of the volume-averaged β for
n=1 to 5 at qmin = 2.0.

q(r/a = 1) the magnetic safety factor at the edge) is shown for toroidal mode numbers

between one and five when qmin = 2.0. From this figure it can be seen that the mode

frequency at integer-q values scales with the plasma pressure. Note also that there is a

difference in the minimum frequency for different toroidal mode numbers.

The variation of the RSAE frequency with qmin is shown in fig. 3 for an n = 3 mode

at 〈β0〉 of 0.01, 0.25 and 1.0%. The variation in qmin was obtained by adding a constant

offset to the q-profile with qmin = 2.0.

From fig. 3 it can be seen that the minimum RSAE frequency at qmin = 2 is obtained

for the lowest 〈β0〉. Not only the β-dependence of the minimum RSAE frequency is

visible but also the β-dependence of the TAEs to which the RSAE evolves when qmin

decreases. Note also that the minimum frequency of the RSAE is the lowest at the

lowest β while the TAE frequency is the highest for the lowest β [13].

The up chirping RSAE exists for all the different β values and at low β the frequency

is very close to the frequency for the cylindrical mode as given in eq. 1. The down-
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Figure 3. Normalized RSAE frequency as a function of qmin for an n = 3 mode
for volume-averaged β of 0.01, 0.25 and 1.0%. The dotted lines are the predicted
frequencies for a cylindrical mode at zero β. No eigenmode solutions were found in the
gaps of the curves for 〈β0〉 = 0.01 and 0.25%.

chirping RSAE does not exist when β is very low (0.01% in fig. 3) which is in agreement

with the results of ref. [11] where only plasmas with zero pressure were considered. When

β is increased (to 0.25%) the down chirping branch of the RSAE starts to appear in

ideal MHD theory with qmin slightly above a rational value (m/n). When β is increased

further, the range of qmin where the mode is chirping down becomes larger and at high

enough β the mode is observed over the entire range of qmin values (1.0% in fig. 3).

Thus, the downward chirping RSAE exist in ideal MHD theory when the plasma-β is

sufficiently high.

3. Analytical model

The theory as presented in [11] does not provide a solution for an eigenmode in the

case of a rational qmin because at low frequencies no potential well is formed. From

our simulations we have found that the non-zero minimum RSAE frequency depends on

the plasma pressure. Compressibility effects as discussed in [14] for beta-induced Alfvén

eigenmodes don’t play a role as we have found the RSAE at rational qmin values solutions
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when γ = 0. Thus the only posability for the RSAE to exist is allowing neighboring

harmonics to create an effective potential well trough toroidicity and pressure effects.

To demonstrate this we evaluate the eigenmode equation with pressure and toroidicity

effects and the following q-profile:

q(r) = qmin/(1− (r − rmin)
2/w2

q) (2)

where qmin is located at r = rmin and qmin/w
2
q is the second derivative of q(r) at qmin.

Under the assumption of radial localization of the mode structure near rmin (in the limit

of high m) the set of three coupled eigenmode equations becomes [15, 16]:

∂

∂x
Dm

∂

∂x
Φm −DmΦm + L+Φm+1 + L−Φm−1 = 0 (3)

∂

∂x
Dm+1

∂

∂x
Φm+1 −Dm+1Φm+1 + L−Φm = 0 (4)

∂

∂x
Dm−1

∂

∂x
Φm−1 −Dm−1Φm−1 + L+Φm = 0 (5)

with

Dm = ω2 − ω2
A0(n−m/q)2, (6)

L± = 2ω2(ε + ∆′)
∂2

∂x2
− ω2

A0

rβ ′

2ε
(−1± ∂

∂x
), (7)

x = (r − rmin)m/rmin, ωA0 = VA0/R the central Alfvén frequency, ε the inverse aspect

ratio, ∆′ the Shafranov shift parameter, and β ′ the radial derivative of β. From the

eigenmode equations (eqs. 3-5) and the expression for Dm (eq. 6) it can already be seen

that at q = qmin = m/n and r = rmin the mode with poloidal harmonic m dominates

because Dm = ω2 is much smaller than the absolute value of Dm±1 = ω2 − ω2
A0/q

2
min.

It is instructive to use a WKB analysis to demonstrate the exisitence of the eigenmode

solution:

Φm = exp(−i
∫

k(x) dx), (8)

with the radial wave number, k, much larger than the spatial variation of Dm. Using

eq. 4 we can express Φm+1 in terms of Φm at the mode location:

(k2 + 1)Φm+1 = L−
q2

ω2
A0

Φm (9)

and similarly, from eq. 5, Φm−1 can be expressed in terms of Φm at the mode location:

(k2 + 1)Φm−1 = L+
q2

ω2
A0

Φm. (10)

Substituting eqs. 9 and 10 into eq. 3 we obtain the (WKB) dispersion relation:

Dm(k2 + 1)2 − 2L+L−
q2

ω2
A0

= 0. (11)
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Figure 4. NOVA eigenmode solutions for the n = 3 RSAE at qmin = 2.0 for
(a) 〈β0〉 = 0.1% and (b) 〈β0〉 = 1.0%. Note the relative increase in the sideband
harmonics when β increases.

If we neglect the toroidal coupling term in the expression for L± (the first term in eq. 7

which is typically small), the dispersion relation becomes:

k2 = 2
q2ω2

A0

Dm
(
rβ ′

2ε
)2 − 1. (12)

One can see from this expression that wavelike solutions exist since at the bottom of

the potential well, Dm is proportional to ω2 and at sufficiently small frequencies k2 is

positive. We can see also from eq. 12 that the eigenmode frequency is proportional to

the plasma pressure as was found in the simulations. The above solution implies the

appropriate quantization condition:∫ x2

x1

k(x) dx = π (13)

where the integration boundaries (x1, x2) limits the domain where k2 is positive.

In practical cases, however, the WKB approximation is not satisfied near the

integration boundaries because k becomes the dominant scale length there. When we

search for WKB-eigenfrequencies, however, by integrating eq. 13, which can be done

despite the the singularities at the integration boundaries, we find that the WKB-

eigenfrequencies are proportional to β ′, which is similar to the simulation results (fig. 2).

We also obtain the same behavior of the WKB-eigenfrequencies with n, the lowest n

has the lowest frequency at constant β ′ and the frequency between two successive n’s

decreases with increasing mode number (fig. 2). Finally, the values we obtain for the

WKB-eigenfrequencies are of the same order of magnitude as found in the simulations.

To illustrate the importance of coupling between the dominant poloidal harmonic

and the sideband harmonics we show in figure 4 the NOVA solutions for an n = 3 RSAE

with qmin = 2.0 at 〈β0〉 is 0.1% and 1.0%. It can be seen that the sideband harmonics

increase relative to the main harmonic with increasing 〈β0〉 as was found above.
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4. Conclusion

In this paper we have shown that the up and down chirping RSAEs exist in ideal MHD

without having to invoke energetic particle mechanisms for the existence of these modes

when finite β-effects of the background plasma are taken into account. A finite plasma-

β also resolves the discrepancy between the expected zero frequency and the observed

non-zero frequency when qmin is at a rational value. This is accordance with experiments

where RSAE frequencies have been measured at rational q-surfaces between 20 and 40%

of the TAE frequency [3, 4, 6]. The minimum RSAEs frequency at rational q-surfaces

might be used as a measure of the plasma-β because it scales with the plasma pressure.

The down-chirping branch of the RSAEs is also found to exist in ideal MHD when β is

sufficiently large.
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