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A survey of the dependence of power balance on input power, shape, and plasma current was

conducted for neutral beam heated plasmas in NSTX.  Measurements of heat to the divertor

strike plates and divertor and core radiation were taken over a wide range of plasma conditions.

The different conditions were obtained by inducing an L-mode to H-mode transition, changing

the divertor configuration [lower single null (LSN) vs. double-null (DND)] and conducting a

NBI power scan in H-mode.  Up to 70% of the net input power is accounted in the LSN

discharges with  20% of power lost as fast ions,  30% incident on the divertor plates,  10%

radiated in the core, and  10% radiated in the divertor.  In contrast, the power accountability in

DND is 85-90%. A comparison of DND and LSN data show that the remaining power in the

LSN is likely to be directed to the upper divertor.
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Introduction

One of the features of the small major radius specific to spherical tokamak designs is

the likelihood of high heat flux to divertor target surfaces.  This paper presents results from a

recent power balance scaling experiment on National Spherical Torus Experiment (NSTX). [1]

An accounting of power balance is needed to properly understand the operation of the divertor

so that successful designs can be proposed for future experiments.  For this experiment, NSTX,

a low aspect ratio spherical torus, was operated at Ip = 0.6-1.0 MA, Bt = 0.45 T in lower single-

null, (LSN) and double-null diverted (DND) configurations.  In this paper, the discussion is

limited to a scan of injected power from 1 to 6 MW, with Ip = 0.8 MA in LSN and DND H-

mode plasmas.  H-mode plasmas were chosen because they are routinely produced in NSTX

and the good confinement properties represent desirable operating scenarios in high power,

long-pulse reactors.   Typical discharge conditions of the long-pulse LSN H-mode discharges

are shown in Figure 1, generally having occasional large type I ELM’s. accompanied by newly

observed continuous, small amplitude ELM’s, dubbed type V.  [2]

A scan of the input heating power was achieved by changing the number of neutral beam

sources, while keeping NBI power, plasma current and shape constant.  Central electron density

was held in a fairly narrow range between 4.0 and 4.7 101 3 cm-3. Each beam source provides

2.0 MW of injected power when operated at 90 kV.  Power scans with finer resolution were

obtained by modulating the pulse-width in a 50% duty cycle.  To allow thermal equilibration,

discharges had to have a minimum of 100 ms H-mode duration.  Divertor D , D  profiles and

ion saturation currents measured by the lower divertor tile Langmuir probes suggest that the

NSTX inner divertor is detached and the outer divertor is attached.  [3]  Previous results of heat

flux scaling experiments in H-mode LSN diverted configuration in NSTX with 4.5 MW of

heating power has reached 10 MW/m2, accounting for more than 80% of the power to the SOL.

Extrapolation of the temperature rise yields a tile temperature in excess of the 1200°C limit after

3 s. [4]

In single-null diverted H-mode discharges on DIII-D, the power accountability is more

than 85%.  Core plasma radiation accounted for < 18% with the rest flowing through the scrape-

off layer to the inboard and outboard divertors.  The total power to the divertor (the power to the
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plates plus the divertor radiation) was split roughly with an in:out ratio of 1:1.3. Of the power

entering the outboard divertor, 75% leaves as direct heat flux to the divertor target plates with the

remainder radiating in the divertor gas.  At the inboard divertor, however, 75% of the power left

as radiation with the rest as divertor target plate heat flux and charge exchange losses. The in/out

ratio remained constant over a range of injected power and plasma current and even as divertor

conditions changed due to gas puffing. [5]

A preliminary study of power loading, using Langmuir probe data, was recently reported

in the MAST device. [6]  The in/out power split in DND discharges was quite high (1 : 9), but

qualitatively consistent with NSTX and other devices operating in double-null configurations.

Diagnostics

Power leaving the plasma is measured by a 16-channel core plasma tangentially viewing

bolometer array on the plasma midplane that uses AXUV photodiodes. [7]  The reduction in

sensitivity of the diodes to photons with less than 30 eV [8] is addressed by examining the

electron temperature profile assuming that the energy of the emitted photons is equal to the

electron energy.  The sensitivity constant to the radiated power from the plasma edge is

increased to compensate for the reduction in the responsivity, with this adjustment having the

effect of increasing the total radiated power by 30-50%.  Edge diagnostics include two CCD

cameras for filtered visible light detection in the divertor and center stack regions [9] and a

divertor infrared (IR) camera for divertor heat flux measurements.  These are micro-bolometer

cameras viewing in the 7-13 µm wavelength range, with a 30 Hz frame rate and a 25 ms thermal

e-folding time. [10]   Recently a “JET style” [11] 4-channel divertor bolometer array was

installed, consisting of a 4 µm gold foil on a 20 mm mica substrate that is able to tolerate

repeated baking cycles up to 160°C.

Results

The input power is calculated using the EFIT equilibrium reconstruction code [12, 13]

and is defined as PNB = PNBI + POH - dW/dt, where POH = Ohmic power and dW/dt = time

derivative of stored energy in both the poloidal field and the plasma.  Approximately 60-70% of

the input power is accounted for, with 15-23% of power lost as fast ions -- prompt CX, bad
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orbits, and shine through, 23-37% incident on the divertor plates, 9-14% radiated in the divertor,

and  3-11% radiated in the main plasma.

The radiation from the main plasma is quite low, never exceeding 350 kW and

accounting for 3-11% of the input power.  This results from the very hollow nature of the

radiated power profiles, as shown in Figure 2(a), a consequence of carbon being the principal

impurity.  No peaked radiation profiles indicative of metallic impurity accumulation are

observed in any condition.  Because the emission is primarily from C+ to C+3, which emits in the

10-40 eV range, the radiating region is located at the low-density (1-2 101 3/cm3) edge of the

NSTX plasma, typically 3 cm inside the separatrix calculated by EFIT.  Using a coronal

equilibrium model, with a reduced Te to account for transport, the carbon concentration at the

edge required to emit even this modest amount is calculated to be as high as 10%, so the low

total radiation from the main plasma is reasonable for a device with graphite plasmas-facing

components.  This high edge carbon concentration is confirmed with CXR measurements,

Bremsstrahlung, and spectroscopy using AXUV diodes filtered with thin metal windows.

Perhaps more surprising is the fact that the total radiated power decreases by almost a

factor of 3 with increasing input power.  This can be seen in Figure 2(b) with the obvious

exception of the points with the net input power of 1 MW.  These two discharges are

distinguished from the remainder in that at the time of interest (from .3 - .34 seconds) the stored

energy in the magnetic field is increasing substantially, accounting for about 60% of the input

power.   For the remainder of the points, the increase in magnetic stored energy is only a few

percent of the input power.   The principal trend towards decreasing radiated power in the main

plasma with increasing input power cannot be explained by density changes, either on average

or in the edge region where the carbon is radiating.  Thomson scattering density profiles show

that in this range of input power, the line-averaged density varies in a narrow range: from 4 to

4.5 101 3/cm3 and the edge density only between 1.7 and 2 101 3/cm3.  There is no discernable

trend towards lower density inside this range, and if there were, it would still account for only a

25% drop in radiated power, not a factor of three.  A possible source of error is the assumptions

necessary to volume integrate the midplane bolometer data.  Values for , the poloidal flux

function are obtained from EFIT equilibrium reconstructions and the midplane data is projected
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along poloidal flux contours, assuming that the radiated power is a constant along a surface of

constant- .  Though a good assumption in the plasma core, it is often a poor one for the plasma

edge where the bulk of the radiation originates.  The radiated power profiles are not symmetric

on NSTX with in/out ratios along the same  -surface seen as high as 10:1.  An example of a

preponderance of radiation coming from the inboard side for a 4 MW NBI shot is seen in

Figure 2(a).

The largest fraction of the input power flows through the scrape-off layer to the inboard

and outboard divertors.  Peak heat flux to the outer divertor strike plates scales with injected

power and is as high as 7 MW/m2 with 6 MW and is typically 3-4 times the peak heat flux to

the inner divertor.  The area-integrated total heat to the divertor represents about 30-45% of the

input power and rises generally linearly with input power as shown in Figure 3. Note however

that the peak heat flux was observed to increase non-linearly with NBI power, similar to that

found in prior experiments. [4]  This was found to result from the edge temperature, which

increases with NBI power and tends to shrink the SOL width,  so the heat flux increases rapidly

compared to the total heat to the plates.   In LSN discharges, the in/out power split shows that

75-80% of the heat incident on the outer strike plate,  i.e., the ratio is 1:4.   Like the total radiated

power, again the exception is the low input power shots, where this ratio is about 1:15.  In DND

discharges the power split is approximately 1:9, similar to the MAST results mentioned

previously.

The measured surface brightness from divertor bolometry increases linearly with input

power and reaches about 0.28 MW/m2 at 6.3 MW of input power.  This is about 20% of the

heat flux to the inner divertor plate and 20 times less than the heat flux to the outer divertor

plate.  Because the radiated flux is so much less than the heat flux to the plates, it does not

appear that the divertor radiation can significantly compensate for the strong in/out asymmetry

in the divertor plate power, i.e., partly equalizing the power flow between the divertor plates as

was observed in DIII-D. [5]  Because the divertor bolometer has only horizontally viewing

channels,  the major radius of the radiating volume is not directly measured, and only an

estimate of the total power can be gleaned from the surface brightness.  Using the assumption

that the emitting volume is located mid-way between the “X” point and the outboard strike
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point, the power radiated in the divertor is calculated to be 10-15% of the input power,  as shown

in Figure 3.  Because the total power scales with the major radius of the emitting volume, were it

located at the inboard strike point, the power radiated in the divertor would be decreased by a

factor of two.

Fast ion losses were not directly measured, but were calculated using the TRANSP code,

showing that a significant fraction (10-20%) of input power is lost due to three processes:

• beam shine-through to the neutral beam armor (40% of the fast ion losses),

• prompt CX (10%), which is distributed primarily to the outer wall

• and bad orbit losses (50%), distributed primarily to the RF antenna limiter

Discussion

A number of observations suggest that the remainder of the power is likely to be found

in the upper divertor region.  An abbreviated power scan in otherwise similar DND discharges

shows about 50-60% of the lost power flowing to the divertors (assuming up/down symmetry)

and about 85% total power accountability.   This was calculated by doubling the power radiated

in the divertor and the heat to the strike plates to account for the upper divertor region.  Another

indication is that EFIT’s drsep parameter, the position of secondary x-point (in the upper

divertor), as projected along a poloidal flux contour to the midplane, was about 1.2 cm away

from the primary x-point.  Previous LSN discharges (with a drsep value near 2 cm) showed 60-

70% of loss power flowing into the lower divertor. [3]  If the drsep parameter is reduced to the

point where it approaches the width of the SOL power flux at the midplane, then heat and

particles can flow into the upper divertor area as well.  We note that the power accountability for

the LSN discharges improved when the plasma current was increased, which is believed to

reduce the width of the SOL power flux at the midplane.

A simple way to estimate the magnitude of this effect is to compare divertor data in

DND and LSN plasmas.  Ideally, the power to the divertor (strike plates and/or radiating

neutrals) in the DND configuration should be half the power measured in the corresponding

LSN configuration.  If the power is reduced by less than 50%, it likely indicates that substantial

power flows to the region of the secondary x-point.  The divertor bolometers consistently

recorded a 40-50% drop in radiated power in the DND plasmas, i.e., only a minor shortfall.
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The main indication came from the heat to the divertor plates, which showed only a 25-30%

decrease in DND.  This suggests that nearly 50% of the divertor heat flux observed in the lower

divertor might well be incident on the upper divertor plates.  A composite plot of these

measurements and calculations is shown in Figure 4, where the power to the upper divertor was

estimated by compensating for the for power flow to the upper divertor by multiplying the heat

to the divertor plates by 1.5, and the radiated power in the divertor by 1.1.  As the figure shows,

the power accountability for the LSN discharges is brought into the 80-90% range as well.

In summary, we account for the power in the DND configurations and find it to be

nearly equal to the net input power.  The power accountability in LSN configuration is only 60-

70%, but we postulate that the remaining power flows to the upper divertor due to a projected

separation between the primary and secondary “X” point that is comparable to the power flux

SOL width, i.e., drsep  dPF
SOL.  An additional IR camera will be installed to view the upper

divertor region to measure the power balance as a function of drsep.  The uncertainty in the

volume integration of the radiated power in the divertor will be addressed by using a CIII filter

on a newly installed divertor visible camera to determine the radial distribution of the radiated

power.  Also, additional divertor bolometer channels will ascertain the vertical extent of the

divertor radiation.  Finally the existing ultra-soft X-ray system can be used to assess the

poloidal asymmetry in the radiated power from the main chamber .
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Figure Captions

Figure 1.  Operating conditions for the LSN power scan in H-modes.  The plasma current is in
amperes, the Injected power is in MW, and the D  signal is in arbitrary units.  This plasma (shot
#112499) had a nominal NBI power of 6 MW and a plasma current of 0.8 MA.   The H-mode
transition occurred at 0.22 sec and the first type I ELM occurred at 0.34 sec.

Figure 2.  (a) Time evolution of the radiated power density profile from the mid-plane bolometer
for a 4 MW NBI discharge (shot #112498). (b) Total radiated power from the main plasma as a
function of input power.  Input power is Ohmic Heating + injected power  – the time derivative
of the stored energy (kinetic plus magnetic.)  The power density measurement  error is
dominated by systematic contributions, which are estimated to be less than ±10%.  The volume
integration depends on an assumption of poloidal symmetry.  Given the in/out profile
asymmetry, this error could be greater than 50%.

Figure 3.Total heating power incident on both the inner and outer lower divertor plates is shown
by the ’s The estimated error resulting from the analysis technique is ±15%.  Surface
integrated radiated power flux in the lower divertor is shown by the ’s.  Systematic errors in
measuring the flux are less than 10%.  However, because of uncertainties in the radial location
of the emitting layer, the error in surface integration could reduce  the total divertor radiated
power by as much as 50%.

Figure 4. Incremental contributions to the total accounted power for the H-mode power scan in
LSN, including the estimate of power to the upper divertor region. The open squares ( ) depict
the heat flow to the divertor plates.  The increment between the ’s and the ’s represent the
divertor radiation.  The increment between the ’s and the triangles ( ) is due to radiation from
the main plasma and the energy expended in orbit losses is shown by the increment between the

’s and the ’s .  The ’s represent the total accounted power.
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Figure 1
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Figure 3.
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Figure 4.
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