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An expression determining how variations in the pressure-gradient and average

magnetic shear affect ballooning stability for a stellarator equilibrium is presented.

The procedure for determining the marginal stability boundaries, for each field line,

depends only on the equilibrium and a single ballooning eigenfunction calculation.

This information is sufficient to determine if increasing pressure-gradient is stabiliz-

ing or destabilizing and to predict whether the configuration possess a second stable

region.
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An economically viable fusion reactor must sustain high-pressure, stable equilibria. It is

often predicted that the short wavelength pressure-driven instability, the ballooning mode,

will be the instability that limits the obtainable plasma stored energy. This letter will

present an expression describing how ballooning stability will vary as an arbitrary three-

dimensional equilibrium is varied and predicts whether a configuration will possess a second

stable region, in which equilibria may possess arbitrarily large pressure-gradients and not be

limited by ballooning instability. The technique depends on a two-stage approach. Initially,

the method of profile variations is used to construct families of neighboring magnetostatic

equilibria [1, 2]. Subsequently, a perturbation approach is employed to estimate the effect

these variations have on the ballooning eigenvalue.

Second stability is the paradoxical phenomenon where increased pressure-gradient can

stabilize ballooning modes. The effect of second stability has long been known in the (ax-

isymmetric) tokamak community [1], but it is not clear how the (non-axisymmetric) stel-

larator will behave. The three dimensional geometry of stellarators gives rise to increased

complexity in equilibrium and stability calculations. Indeed, the complexity requires equi-

librium and stability studies to be performed numerically at significant computational cost,

a fact which highlights the importance of this work: that analytic predictions of stability

can be derived.

An equilibrium is obtained when the Lorentz force balances the pressure-gradient force,

J × B = ∇p. The equilibrium is determined by the plasma boundary, the pressure pro-

file, and an additional profile quantity such as the current density or rotational-transform.

The rotational-transform, ι-, measures the pitch of the magnetic field lines as they twist

around the torus. By considering a small displacement, of the form ξ(x) exp(−iωt), from an

equilibrium, linear stability is determined by an eigenvalue equation, −ω2ρξ = F(ξ), where

F = J× δB + δJ×B−∇δp. If this equation allows a growth rate such that ω2 < 0, the

perturbation will grow.

To study ballooning modes, the WKB eikonal representation ξ = ξ̂ exp[inS] is employed

[3, 4], where n is the (large) toroidal mode number, k = ∇S(x) is the wave vector, and

to lowest order in 1/n it is assumed that k ·B = 0. The stability condition reduces to an

eigenvalue problem, the ballooning equation, which is local to a field line and simpler to solve

numerically. Of primary importance is the boundary between stable and unstable equilibria:

the marginal stability boundary.
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In this letter we consider how the stability of an arbitrary equilibrium will vary, as the

equilibrium itself is varied. In particular, an analytic expression for how the ballooning

growth rate, of a selected field line with given radial wave vector, depends on small varia-

tions in the pressure-gradient, δp′, and rotational-transform-gradient (the average magnetic

shear), δ ι-′, is derived. This expression allows the marginal stability boundary for the se-

lected field line in the given equilibrium to be determined immediately, and can also predict

the existence, or otherwise, of the second stable region.

Recent work on the topic of second stability has indicated that some stellarator configu-

rations do possess second stability [5], and that some do not [6]. The question thus arises :

what property of the configuration determines whether a second stability region will exist?

The ‘brute-force’ approach is to numerically compute an equilibrium and solve the bal-

looning eigenvalue equation. The pressure is then increased and the process repeated. This

process is tedious and imparts little insight. More importantly perhaps, is that this method

cannot ascertain if whether, beyond a region of instability, there lies a second stable region.

A better approach, the method of profile variations, was introduced by Greene & Chance

[1] for axisymmetric configurations. They considered variations in the pressure-gradient and

average shear at a selected magnetic surface in the equilibrium. The pressure-gradient and

average shear have a crucial impact on ballooning stability, as the presence of pressure-

gradients in regions of unfavorable curvature is the cause of ballooning instability, while

shear is the dominant stabilizing mechanism. The equilibrium itself is then adjusted to

preserve force balance, and a family of semi-analytic neighboring equilibria is constructed.

For each such constructed equilibrium, the ballooning equation may be re-solved numerically

(exactly) and marginal stability diagrams constructed. Such diagrams are widely used to

study tokamak stability, and recently the analysis has been extended to stellarator geometry

[2, 7]. This method eliminates the need to re-compute the equilibrium, and illuminates the

role of the local magnetic shear.

The mechanism for second stability was determined to be that pressure induced variations

in the parallel current, J‖ = J · B/B2, cause variations in the local shear, which may

strengthen the stabilizing force in regions of unfavorable curvature. A related pressure-

induced stabilization phenomenon that should be mentioned, is when increased pressure

alters the geometry of the configuration [8–10]. While this mechanism can modify the

stability properties, it is generally a smaller effect, as is verified by brute force equilibrium
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reconstruction and stability analysis [11].

In this letter we build upon the method of profile variations and make the realization that

it is not necessary to re-solve the ballooning equation for the semi-analytically constructed

equilibria. Whether ballooning stability will improve or degrade as the pressure-gradient is

increased can be inferred from information obtained directly from the original equilibrium.

An expression for how the ballooning eigenvalue depends on variations in the pressure-

gradient and average shear is derived.

Following Hegna & Nakajima [2], hereafter HN, we consider an equilibrium expressed

in Boozer coordinates (ψ, θ, ζ), being the toroidal flux function, the poloidal angle and the

toroidal angle respectively [12]. In these coordinates, the magnetic field takes the form

B = ∇ψ ×∇(θ − ι-ζ) = G∇ζ + I∇θ+ h∇ψ (1)

where ι-(ψ) is the rotational transform, G(ψ) and I(ψ) are the poloidal current outside

and the toroidal current inside the surface ψ, and the function h(ψ, θ, ζ) is related to the

pressure-induced parallel-currents, the Pfirsch-Schlüter currents. Given this representation

of the magnetic field, it is the coordinate transformation x(ψ, θ, ζ) which implicitly defines

the equilibrium.

Employing the angle variables α = θ − ι-ζ and η = ζ, where α labels the field line and η

labels position along the field line, the leading order solution for the fluid displacement ξ is

governed by an ordinary differential equation along the field line [4]

∂ηP∂ηξ +Qξ = γRξ, (2)

where γ = −ω2 is the local eigenvalue and the ballooning coefficients are given by [2]

P =
B2

gψψ
+ gψψL2, (3)

Q = 2p′
√
g(G + ι-I)(κn + κgL), (4)

where R =
√
g2P , p′ = dp/dψ is the pressure-gradient, gψψ = ∇ψ · ∇ψ,

√
g is the Jacobian,

κn, κg are the normal and geodesic curvatures and L is the integrated local shear

L =

∫ η

ηk

dη′s(η′). (5)

The local shear is written

s = ι-′ +
∂

∂η

(
Ggψθ − Igψζ√

ggψψ

)
, (6)
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where gψθ = eψ · eθ and gψζ = eψ · eζ . This is an Sturm-Liouville eigenvalue equation with

boundary condition ξ(±∞) = 0. To determine stability, it is necessary to determine the

largest eigenvalue γ. In the following, we will solve the ballooning equation for a prescribed

equilibrium and determine the unstable eigenvalue and its eigenfunction. Subsequently, this

eigenfunction will be used to determine the stability properties as a function of variations in

the plasma profiles. It should be emphasized in this procedure that only this one ballooning

eigenvalue equation need be solved.

To study the effect of increasing pressure-gradient we follow HN, who applied the method

of profile variations to stellarators, and introduce variations in the pressure-profile p(ψ) and

rotational-transform profile ι-(ψ), at a selected surface ψ = ψb, of the form

p̄(ψ) = p(ψ) + µ δp(y), (7)

ῑ-(ψ) = ι-(ψ) + µ δ ι-(y), (8)

where µ is a small expansion parameter and barred quantities include the effect of the

variations. The auxiliary variable y = (ψ − ψb)/µ is used to ensure that the variations in

the pressure-gradient and average shear are O(1), whereas the variation in the pressure and

rotational-transform are O(µ). The rationale for imposing such variations is that it is the

pressure-gradient and shear, rather than the pressure and rotational-transform, that directly

influences ballooning stability. In the following, the notation δp′ = dδp/dy, δ ι-′ = dδ ι-/dy

(but p′ = dp/dψ, ι-′ = d ι-/dψ) is used.

All physically relevant quantities are similarly varied. The variations are constrained

by requiring that the system satisfy ∇p = J × B and that the magnetic field strength be

undisturbed to lowest order. The coordinate transformation is written x̄ = x(ψ, θ, ζ) +

µ δx(y, θ, ζ), with basis vectors

ēψ = eψ + ∂yδx, (9)

ēθ = eθ + µ ∂θδx, (10)

ēζ = eζ + µ ∂ζδx. (11)

For consistency, both G and I are varied similarly to p and ι-, and h requires order unity

variations. The O(1) quantity in the basis vector variations is ∂yδx, which is expanded in a

basis defined by the magnetic field

∂δx

∂y
= CB +D

B×∇ψ

B2
+M

∇ψ

gψψ
. (12)
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Expressions for C,D and M are provided by HN. The term D is particularly relevant and

it is determined by the equation ∂ηD = δ ι-′∂ηDι-′ − δp′∂ηDp′ with

∂ηDι-′ =
1∮

1/gψψ

(
1

gψψ
−

∮
1

gψψ

)
, (13)

∂ηDp′ =
V ′(G + ι-I)∮

1/gψψ

(
λ

gψψ

∮
1

gψψ
− 1

gψψ

∮
λ

gψψ

)
, (14)

where 4π2
∮
Q ≡ ∮

dθ
∮
dζQ is the flux surface average, λ is the ratio of the Pfirsch-Schlüter

current to the pressure-gradient λ = −(J‖ −
∮
J‖)/p′V ′, and V ′ is the average Jacobian.

From Eqn.(6), it can be shown that the local shear has O(1) variations and takes the form

s̄ = s+ δ ι-′ + δ ι-′∂ηDι-′ − δp′∂ηDp′ , and the integrated local shear is written

L̄ = L + δ ι-′L ι-′ + δp′Lp′ (15)

where L ι-′ = η +Dι-′ and Lp′ = −Dp′.

As far as the ballooning equation is concerned, it is only the local shear, and of course p′

and ι-′, that is altered by the variations. In particular, the normal and geodesic curvatures

κn = [(b ·∇)b ·∇ψ]/gψψ and κg = [(b ·∇)b ·B×∇ψ]/B2, as defined by HN, are unchanged

to lowest order, since from Eqns(9–11) the variations in the unit vector in the direction of

the magnetic field b = ( ι-eθ + eζ)/| ι-eθ + eζ | and ∇ψ = (eθ × eζ)/
√
g are O(µ).

Due to the localized nature of the ballooning equation, it is sufficient to restrict attention

to the single surface ψ = ψb. As such, Eqn.(15) is exact. Also, the analytic variations

Eqn.(7,8) are of such a form that δp′ and δ ι-′ are zero order, O(1), in µ. It follows that the

δp′2, δp′δ ι-′ and δ ι-′2 terms appearing in L̄2 and elsewhere are also O(1), and it is consistent

to keep all these terms. In fact is it necessary to keep the δp′2, δp′δ ι-′ and δ ι-′2 terms to

capture the essence of the second stable region.

All the information required to solve the ballooning equation for the perturbed system is

now known; however, rather than solve for the eigenvalue numerically, we can make further

progress analytically. The profile variations alter the coefficients of the eigenvalue equation,

and eigenvalue perturbation theory is applicable. Note that the following perturbation

analysis is distinct from the Greene & Chance construction of neighboring equilibria and

does not depend on the formal expansion parameter µ. For small variations δp, δ ι-, the
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perturbed eigenvalue is written

δγ =
∂γ

∂p′
δp′ +

∂γ

∂ ι-′
δ ι-′

+
∂2γ

∂p′2
δp′2 +

∂2γ

∂p′∂ ι-′
δp′δ ι-′ +

∂2γ

∂ ι-′2
δ ι-′2. (16)

Using the shorthand notation, 〈ξ1|F |ξ2〉
∫
ξR ξdη =

∫
ξ1Fξ2dη, the first order derivatives

are given by

∂γ

∂p′
= 〈ξ|∂ηδPp′∂η + δQp′ − γδRp′|ξ〉, (17)

∂γ

∂ ι-′
= 〈ξ|∂ηδQ ι-′∂η + δQ ι-′ − γδR ι-′|ξ〉. (18)

To calculate the second order derivatives, it is required to determine the first order variations,

δξp′ and δξ ι-′, in the eigenfunction, which are solved from

B δξp′ =
∂γ

∂p′
R ξ − [∂ηδPp′∂η + δQp′ − γδRp′] ξ, (19)

B δξ ι-′ =
∂γ

∂ ι-′
R ξ − [∂ηδP ι-′∂η + δQ ι-′ − γδR ι-′ ] ξ, (20)

where B = [∂ηP∂η +Q− γR]. The second order derivatives are then given by

∂2γ

∂p′2
= 〈ξ|∂ηδPp′2∂η + δQp′2 − γδRp′2 |ξ〉
+ 〈ξ|∂ηδPp′∂η + δQp′ − γδRp′|δξp′〉
− ∂γ

∂p′
(〈ξ|R|δξp′〉 + 〈ξ|δRp′|ξ〉) , (21)

∂2γ

∂p′∂ ι-′
= 〈ξ|∂ηδPp′ι-′∂η + δQp′ι-′ − γδRp′ι-′|ξ〉
+ 〈ξ|∂ηδPp′∂η + δQp′ − γδRp′|δξ ι-′〉
+ 〈ξ|∂ηδP ι-′∂η + δQ ι-′ − γδR ι-′|δξp′〉
− ∂γ

∂p′
(〈ξ|R|δξ ι-′〉+ 〈ξ|δR ι-′|ξ〉)

− ∂γ

∂ ι-′
(〈ξ|R|δξp′〉+ 〈ξ|δRp′ |ξ〉) , (22)

∂2γ

∂ ι-′2
= 〈ξ|∂ηδP ι-′2∂η − γδR ι-′2|ξ〉
+ 〈ξ|∂ηδP ι-′∂η + δQ ι-′ − γδR ι-′|δξ ι-′〉
− ∂γ

∂ ι-′
(〈ξ|R|δξ ι-′〉 + 〈ξ|δR ι-′ |ξ〉) . (23)

In the above equations, δPp′ = 2LLp′, δP ι-′ = 2LL ι-′, δPp′2 = L2
p′, δPp′ι-′ = 2Lp′L ι-′ , δP ι-′2 =

L2
ι-′ , δQp′ = 2

√
g(G + ι-I)(κn + κgL) + 2p′

√
g(G + ι-I)κgLp′, δQ ι-′ = 2p′

√
g(G + ι-I)κgL ι-′,
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δQp′2 = 2
√
g(G+ ι-I)κgLp′, and δQp′ι-′ = 2

√
g(G+ ι-I)κgL ι-′. Throughout we use R =

√
g2P ,

Rp′ =
√
g2Pp′ , Rι-′ =

√
g2P ι-′, . . .

These derivatives depend only on the initial equilibrium and the unperturbed eigenvalue–

eigenfunction pair. Once they have been calculated, the influence of pressure-gradient and

average shear variations on ballooning stability is known, and the marginal stability bound-

ary, defined by γ + δγ = 0, may immediately be determined from Eqn.(16). Furthermore,

noting that positive γ indicates instability, and that increasing pressure-gradient corresponds

to δp′ < 0, the following criteria are obtained:

criterion (1) For a small increase −δp′, the eigenvalue γ will increase if ∂γ/∂p′ < 0 and

decrease if ∂γ/∂p′ > 0.

criterion (2) A second stable region is indicated if ∂2γ/∂p′2 < 0.

To consider a realistic stellarator equilibrium, we use the VMEC [13] code to compute

an equilibrium. To solve the ballooning equation, we adopt a finite difference method, as

described by Sanchez et al. [14]. The eigenfunction is represented by a discrete set of

(2N + 1) points ξi equally spaced along a selected field line on the ‘full-grid’ according to

ηi = −η∞ +(i− 1)∆, with the grid-spacing ∆ = η∞/N chosen to give about 100 grid points

along the field line per poloidal transit, with the boundary conditions ξ1 = ξ2N+1 = 0, and

where η∞ is chosen sufficiently large to contain the mode (several poloidal transits). The

equation to be solved becomes a set of 2N − 1 linear equations of the form

Pi+ 1
2

∆

(ξi+1 − ξi)

∆
−
Pi− 1

2

∆

(ξi − ξi−1)

∆
+Qiξi = γRiξi.

Here, Qi and Ri are calculated on the full-grid at ηi, whereas Pi+ 1
2

is calculated on the

half-grid ηi + ∆/2. This is a matrix equation, Mξ = γξ, where M is tri-diagonal. The

largest eigenvalue and its eigenfunction are then solved using standard numerical routines

[14]. The same finite difference approximation is suitable for calculating what amounts to

be inner products appearing in Eqns.(17–23) and the matrix inversion in Eqns.(19,20).

Shown in Fig.(1) is the stability diagram for a three field period, quasi-poloidal stellarator-

tokamak hybrid studied by Ware et al. [5]. The ratio of plasma pressure to magnetic pressure

is β = 2.41%. The VMEC representation of the equilibrium contains the harmonics n = 0, 7

for m = 0 and n = −7, 7 for m = 1, 12, where 100 radial surfaces have been used, and

the Boozer coordinate representation contains the harmonics n = 0, 56 for m = 0 and

n = −56, 56 for m = 1, 103. For this diagram, the symmetric field line α = 0 on the
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ψ = 0.1 surface has been selected, with the ‘ballooning-angle’ ηk = 0. The marginal stability

curve obtained by re-solving the perturbed eigenvalue equation exactly (that is numerically)

at 200 × 200 points on the (δ ι-′, δp′) space is compared to the stability curve obtained

from Eqn.(16), which required a single eigenvalue equation to be solved. The quantitative

agreement between the semi-analytic expression Eqn.(16) and the numerical value is very

good, particularly considering the large variation in (δ ι-′, δp′) ∼ ( ι-′, p′). The small difference

in these curves is due to higher order corrections, O(δp′3), . . . ,O(δ ι-′3), to the eigenvalue

estimate.

The eigenvalue perturbation theory is valid for discrete (non-degenerate) eigenvalues and

as such the theory is valid only for the unstable spectrum (though discretization will elim-

inate the continuous spectrum). This problem may be avoided by adjusting the pressure-

gradient using the method of profile variations to find an unstable eigenmode. The stability

diagram may then be based on this point.

The analysis is completely general and applicable to axi-symmetric devices such as toka-

maks, where it is known that shaped configurations possess stronger second-stable regions.

The method has been applied to a variety of stellarators with similarly satisfactory results

to that presented here. The analysis presented in this letter may be of great benefit to stel-

larator optimization routines and future stellarator designs, existing stellarator experiments,

and also to the study of micro-instabilities which employs a similar eikonal approach.

We thank Andrew Ware, Steve Hirshman, Raul Sanchez and Neil Pomphrey for as-

sistance. This work was supported in part by U.S. Department of Energy Contract No.

DE-AC02-76CH03073 and grant No. DE-FG02-99ER54546.
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CAPTION FIGURE 1 : Comparison of stability boundary obtained from the exact eigen-

value solution (solid) with that obtained from Eqn.(16) (dotted). The location of the original

(unstable) equilibrium surface is indicated with a +.
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FIG. 1:
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