PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073

PPPL-3969 UC-70 PPPL-3969

Nonlinear Turbulence Simulations for NSTX H-modes

by

M.H. Redi, S. Kaye, W. Dorland, R. Bell, C. Bourdelle, S. Ethier, D. Gates, G. Hammett, K. Hill, B. LeBlanc, D. McCune, J. Menard, D. Mikkelsen, G. Rewoldt, and E. Synakowski

June 2004

PRINCETON PLASMA PHYSICS LABORATORY PRINCETON UNIVERSITY, PRINCETON, NEW JERSEY

PPPL Reports Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any any legal liability warranty, express or implied, or assumes or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its or favoring bv endorsement. recommendation, the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Availability

This report is posted on the U.S. Department of Energy's Princeton Plasma Physics Laboratory Publications and Reports web site in Fiscal Year 2004. The home page for PPPL Reports and Publications is: http://www.pppl.gov/pub_report/

DOE and DOE Contractors can obtain copies of this report from:

U.S. Department of Energy Office of Scientific and Technical Information DOE Technical Information Services (DTIS) P.O. Box 62 Oak Ridge, TN 37831

Telephone: (865) 576-8401 Fax: (865) 576-5728 Email: reports@adonis.osti.gov

This report is available to the general public from:

National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161 Telephone: 1-800-553-6847 or (703) 605-6000 Fax: (703) 321-8547 Internet: http://www.ntis.gov/ordering.htm

Nonlinear Turbulence Simulations for NSTX H-modes

<u>M. H. Redi</u>¹, S. Kaye¹, W. Dorland², R. Bell¹, C. Bourdelle³, S. Ethier¹. D. Gates¹, G. Hammett¹, K. Hill¹, B. LeBlanc¹, D. McCune¹, J. Menard¹, D. Mikkelsen¹, G. Rewoldt¹, E. Synakowski¹

¹Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08540 USA ²University of Maryland, College Park, MD 20742 USA ³Association Euratom-CEA, Cadarache, 13108 St-Paul-lez-Durance, France

Present evidence points to remarkably resilient electron temperature profiles in high density H-mode plasmas on NSTX [1], suggesting that the underlying electron thermal transport mechanisms respond in a highly nonlinear fashion to changes in the gradients. This paper uses measured plasma profiles (Fig. 1) as input to linear gyroknetic analysis to identify candidate microinstabilities that may be responsible for the electron thermal transport. The criteria for useful nonlinear microstability analyses are discussed along with necessary approximations and computational issues.

These studies have been performed with the massively parallel code GS2 [2]. The linear simulations are fully electromagnetic, follow electron as well as three ion species and include the complete electron response. Initial linear simulations were based on a model calculation of the current profile with central reversed shear, leading to no unstable linear drift modes in the plasma core. However, recent magnetic diffusion modeling indicates that the plasma q profile may not be reversed. Unstable microtearing modes are found in the plasma core at r/a=0.25, in the ion temperature gradient/trapped electron mode (ITG/TEM) range of wavevectors with $\gamma^{lin}\sim 0.02$ MHz (Fig. 2). Near the midradius, at r/a=0.65, the strongest modes are also microtearing modes as found previously [3]. *ExB* shearing appears sufficient to stabilize ITG/TEM modes near the edge, at r/a=0.80, where the ETG mode is also linearly unstable, $\gamma^{lin}\sim 1.0$ MHz [3].

Initial nonlinear simulations examine the case at r/a = 0.25 because low values of magnetic shear there limit the number of wavevectors and computational time required. The case at r/a = 0.65 is also of interest, as presently the q profile, and the magnetic shear are more reliably known at this location. Many linear gyrokinetic calculations were needed to determine the computational domain appropriate to treat the extended microtearing modes, which are coupled in the twisted flux-tube geometry.

Nonlinear microtearing simulations are complicated, compared to ITG mode simulations, by several new effects. First, three fields (electrostatic potential, parallel and perpendicular magnetic fields) rather than one must be included in the calculation. Second, the eigenfunction extent along the field line is longer than the typical ITG electrostatic eigenfunction, requiring five 2π periods at r/a = 0.65 and seventeen 2π periods along the field line at r/a = 0.25 to resolve all three field eigenfunctions. And finally this plasma exhibits a broad spectrum of weak, well converged unstable modes with tearing parity. These extend from $k_{\perp}\rho_s=0.1$ to 0.8 at r/a = 0.25 at 0.6 sec and from $k_{\perp}\rho_s=0.1$ to 1.0 at r/a = 0.65 at both 0.4 sec and 0.6 sec (Fig. 3). Well converged, unstable modes with odd and even parity are found at higher wavevectors, up to $k_1\rho_s < 2-3$ at r/a = 0.65 at 0.4 sec and 0.6 sec. At the earlier time, 0.4 sec, the modes, aside from $k_1\rho_s=0.1$, do not have tearing parity and the unstable mode growth rates at r/a = 0.25 are smaller, $\gamma^{lin} \sim 0.003$ MHz. Connor, et al. [4] have analytically examined the conditions for linear instability of the microtearing mode in the intermediate collisionality regime (for a large aspect ratio tokamak). For $\eta_{e}, \eta_{i} = \infty$, instability occurs only if $\partial_r T_i > \partial_r T_e$. This condition is satisfied at the core radii in Fig. 1 except for r/a = 0.25 at 0.4 sec. It is consistent with the stability analysis just described, though NSTX is low aspect ratio.

These considerations mean that nonlinear microtearing calculations require one to two orders of magnitude more cpu time and memory than typical nonlinear ITG mode simulations. Nonlinear calculations are therefore being pursued with ions and electrons only, and no impurities. The linear simulations originally included four species: electrons, deuterium ions, carbon impurities and high energy beam ions. Reduction of species to electrons and ions only at r/a=0.65 made little change in γ^{lin} other than a reduction by 10% at $k_{\perp}\rho=0.6$. The spectrum of converged, tearing parity, instabilities was unchanged at r/a=0.65 at 0.6 sec. The spectrum extent was reduced to $k_{\perp}\rho_s = 0.2$ to 3 for 0.25 r/a at 0.6 sec and to 0.1 to 1 for r/a=0.65 at 0.4 sec. Computational time required for ITG range computation was reduced to 16 sec from 37 sec. Similar changes with reduced species were found at r/a=0.25.

Nonlinear simulations are being carried out on the NERSC IBM SP supercomputer, which has the required large memory capacity. With 336 processors on 42 nodes with 8 processors per node, each processor has up to 4 GB of memory. The computational domain has 758 million meshpoints in a rectangular box (at the outside plasma midplane) with 15 ρ_s in the *x* direction and 63 ρ_s in the *y* direction. The nonlinear terms are evaluated on a grid with 243 points in *x* and 27 points in *y*, for 9 k_y modes greater or equal to zero, and 161 k_x

modes, after dealiasing. In terms of input variables to the nonlinear GS2 code, the rule for determining the number of k_x modes has been generalized: $N_x \leq N_y \cdot (nperiod-1) \cdot (2\pi rq'/q) \cdot L_x/L_y$ when more than one field period is needed to represent the necessary connections for the eigenfunctions. Here N_x is defined to be the integer part of the quantity $(n_x-1)/3$, n_x being the number of positive k_x modes. Also, $nperiod = (1+N_p)/2$, where N_p is the number of 2π field periods and L_x and L_y are the box dimensions.

What is the width of the NSTX microtearing mode? Simple reasoning leads to very large radial widths for the δB_{\perp} component of this mode at r/a=0.25. From Figs. 2 and 3, we can estimate $\langle k_x \rangle = \langle k_y \rangle \cdot (rq'/q) \cdot \Delta \theta$. With $\langle k_y \rangle = 0.5/\rho_s$, (rq'/q) = 0.15 and $\Delta \theta = 1.2$ radians, the radial width is $\Delta x = 2\pi/\langle k_x \rangle = 84\rho_s \sim 84\rho_i$. Near the core, $\rho_i = 0.017$ m, so that the radial width of the tearing mode ~ 1.4 m, greater than twice the plasma midplane minor radius, $2a_{mid}=1.2$ m. More detailed calculations are needed to properly answer this question.

Table I shows a comparison at 0.4 sec and 0.6 sec for three radii of the experimentally determined ion and electron thermal diffusivities and the linear microstability analysis of long and short wavelength drift modes. Initial conclusions are that low ion diffusivities may be a consequence of stabilized ion temperature gradient modes and that high electron diffusivities may be due to ETG in the outer regions of the plasma and to electron temperature gradient driven, microtearing modes in the plasma core. Nonlinear simulations are in progress for quantitative comparison and benchmarking the model to experiment.

*Supported by USDoE contract No. DE-AC02-76CH03073

[1] D. Gates, et al. Phys. Plas. 10, 1659 (2002).

[2] M. Kotschenreuther, et al. Comp. Phys. Comm. 88, 128 (1995).

[3] M. H. Redi, et al. 30th EPS, St. Petersburg, RU (2003) Vol. 27A, Paper P4.94

[4] J. W. Connor, S. C. Cowley, R. J. Hastie, Plasma Phys. Control. Fusion 32 (1990) 799.Table I. Comparison of observed transport coefficients to linear microstability analysis.

t=0.4/0.6s	χ	χ	ITG,µtearing	ETG
r/a=0.25	$< \chi^{neo}$	>> X	Stable ITG, unstable µtearing	stable
r/a=0.65	< χ ^{neo}	>> χ	Likely stable ITG, unstable µtearing ExB effect unknown on µtearing	unstable/ stable
r/a=0.80	< \chi_{neo}	>>	likely stable ITG	unstable

Fig. 1. Profiles from high density H-mode at 0.4 and 0.6 seconds. a) plasma electron temperature, b) ion temperature, c) electron density, d) EFIT derived q profile, e) q profile from magnetic diffusion.

Fig. 2 Real and imagninary components of electrostatic potential and magnetic field eigenfunctions for NSTX H-mode plasma at r/a=0.25 and 0.6 sec. Microtearing mode shows tearing parity in $A_{//}$ component. Mode eigenfunctions shown for seventeen 2π field period linear simulations and $k_{\perp}\rho_s=0.5$.

Fig. 3 Growth rate spectra for microtearing modes in NSTX H-mode at r/a=0.25 and 0.65 for 0.6 sec in the a) ITG and b) TEM wave vector ranges.

External Distribution

Plasma Research Laboratory, Australian National University, Australia Professor I.R. Jones, Flinders University, Australia Professor João Canalle, Instituto de Fisica DEQ/IF - UERJ, Brazil Mr. Gerson O. Ludwig, Instituto Nacional de Pesquisas, Brazil Dr. P.H. Sakanaka, Instituto Fisica, Brazil The Librarian, Culham Laboratory, England Mrs. S.A. Hutchinson, JET Library, England Professor M.N. Bussac, Ecole Polytechnique, France Librarian, Max-Planck-Institut für Plasmaphysik, Germany Jolan Moldvai, Reports Library, Hungarian Academy of Sciences, Central Research Institute for Physics, Hungary Dr. P. Kaw, Institute for Plasma Research, India Ms. P.J. Pathak, Librarian, Institute for Plasma Research, India Ms. Clelia De Palo, Associazione EURATOM-ENEA, Italy Dr. G. Grosso, Instituto di Fisica del Plasma, Italy Librarian, Naka Fusion Research Establishment, JAERI, Japan Library, Laboratory for Complex Energy Processes, Institute for Advanced Study, Kyoto University, Japan Research Information Center, National Institute for Fusion Science, Japan Dr. O. Mitarai, Kyushu Tokai University, Japan Dr. Jiangang Li, Institute of Plasma Physics, Chinese Academy of Sciences, People's Republic of China Professor Yuping Huo, School of Physical Science and Technology, People's Republic of China Library, Academia Sinica, Institute of Plasma Physics, People's Republic of China Librarian, Institute of Physics, Chinese Academy of Sciences, People's Republic of China Dr. S. Mirnov, TRINITI, Troitsk, Russian Federation, Russia Dr. V.S. Strelkov, Kurchatov Institute, Russian Federation, Russia Professor Peter Lukac, Katedra Fyziky Plazmy MFF UK, Mlynska dolina F-2, Komenskeho Univerzita, SK-842 15 Bratislava, Slovakia Dr. G.S. Lee, Korea Basic Science Institute, South Korea Institute for Plasma Research, University of Maryland, USA Librarian, Fusion Energy Division, Oak Ridge National Laboratory, USA Librarian, Institute of Fusion Studies, University of Texas, USA Librarian, Magnetic Fusion Program, Lawrence Livermore National Laboratory, USA Library, General Atomics, USA Plasma Physics Group, Fusion Energy Research Program, University of California at San Diego, USA Plasma Physics Library, Columbia University, USA Alkesh Punjabi, Center for Fusion Research and Training, Hampton University, USA Dr. W.M. Stacey, Fusion Research Center, Georgia Institute of Technology, USA Dr. John Willis, U.S. Department of Energy, Office of Fusion Energy Sciences, USA Mr. Paul H. Wright, Indianapolis, Indiana, USA

The Princeton Plasma Physics Laboratory is operated by Princeton University under contract with the U.S. Department of Energy.

> Information Services Princeton Plasma Physics Laboratory P.O. Box 451 Princeton, NJ 08543

Phone: 609-243-2750 Fax: 609-243-2751 e-mail: pppl_info@pppl.gov Internet Address: http://www.pppl.gov