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Abstract

Magnetohydrodynamic (MHD) surface waves on liquid gallium are studied theoretically and

experimentally in the small magnetic Reynolds number limit. A linear dispersion relation is derived

when a horizontal magnetic field and a horizontal electric current is imposed. No wave damping is

found in the shallow liquid limit while waves always damp in the deep liquid limit with a magnetic

field parallel to the propagation direction. When the magnetic field is weak, waves are weakly

damped and the real part of the dispersion is unaffected, while in the opposite limit waves are

strongly damped with shortened wavelengths. In a table-top experiment, planar MHD surface

waves on liquid gallium are studied in detail in the regime of weak magnetic field and deep liquid.

A non-invasive diagnostic accurately measures surface waves at multiple locations by reflecting an

array of lasers off the surface onto a screen, which is recorded by an Intensified-CCD camera. The

measured dispersion relation is consistent with the linear theory with a reduced surface tension

likely due to surface oxidation. In excellent agreement with linear theory, it is observed that surface

waves are damped only when a horizontal magnetic field is imposed parallel to the propagation

direction. No damping is observed under a perpendicular magnetic field. The existence of strong

wave damping even without magnetic field suggests the importance of the surface oxide layer.

Implications to the liquid metal wall concept in fusion reactors, especially on the wave damping

and a Rayleigh-Taylor instability when the Lorentz force is used to support liquid metal layer

against gravity, are discussed.

PACS numbers:
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I. INTRODUCTION

The effect of a magnetic field and electric current on the dynamics of liquid metals with

a free surface facing a vacuum or a non-conducting fluid (e.g. air), is a century-old problem,

studied first by Northrup1. However, the progress in their understanding has been very

limited, especially in the laboratory. Recently, a new interest has arisen in this problem:

electrically conducting liquids, such as liquid lithium or liquid salt (Flibe), are proposed as

the material facing the burning plasma in fusion reactors, directly handling the heat flux and

breeding tritium from neutrons2–5. The liquid is typically under extreme mechanical and

thermal stresses due to the required fast flows and the high heat flux on the free surface2.

In addition, a typical magnetic fusion reactor uses a strong magnetic field (on the order of

10 Tesla) to confine plasma. Often, an electric current is driven in the conducting, plasma-

facing material by either induction or an externally supplied voltage. The existence of a

magnetic field and current adds complexity to the already turbulent nature of such free-

surface flows. In addition, unstable plasma modes can be coupled to free-surface modes of

liquid wall6. A comprehensive understanding of dynamics of such liquids in magnetic fields

and with applied currents becomes crucial for the success of this new application.

A first step towards this goal is to understand the physics of magnetohydrodynamic

(MHD) surface waves in a static pool subject to an externally applied magnetic field and a

current parallel to the unperturbed surface. The past work on the subject, including theory

and experiment, has been very limited. Murty7 studied linear waves when the externally

applied magnetic field and current are in the same direction. An instability due to the

pinch force (the Lorentz force directed inward to the fluid) was found, consistent with the

phenomena described by Northrup1 when only the current was imposed. Similar instabilities

in a current-carrying cylinder along an axial magnetic field were also studied8,9.

The first serious theoretical effort on a more general case, where the magnetic field has

an arbitrary angle with current was made by Shercliff10. When the resultant Lorentz force is

upward and is larger than gravity, the surface becomes unstable, as in the Rayleigh-Taylor

instability. Earlier experiments had observed this instability11,12. Shercliff also found that

a magnetic field and current introduces anisotropy in the propagation of surface waves. In

addition, Sherclif estimated the effects of ohmic damping when the waves propagate parallel

to the magnetic field. A similar theoretical study13 was performed earlier on the subject but
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using more involved calculations. In both these studies, the magnetic field generated by the

current was ignored so that the pinch instability was absent in the analysis.

Another assumption used by Shercliff was that the fluid velocity is two-dimensional,

restricted to the plane spanned by the vertical (gravity) and the vector of wave propagation.

This assumption was relaxed only more than 20 years later by Shishkov14 and Korovin15.

While the former author did not elaborate on the consequences, the latter author claimed

that the resultant dispersion relation and damping rate are significantly different except for

some special cases.

Experimentally, there have been almost no quantitative studies of wave propagation and

damping when a magnetic field or current is imposed parallel to the free surface. Experiments

that we referred to earlier1,11,12 focused on the pure growing mode due to the pinch force.

The only published experiment found16 used a magnetic field oscillating in time to simulate

a perfectly conducting liquid metal facing to DC field.

Herein we report a detailed theoretical and experimental study of the propagation and

damping of MHD surface waves on liquid gallium. We begin in Sec.II with a detailed

derivation of the linear dispersion relation when both magnetic field and current are parallel

to the free surface. It is found that the 2-D assumption made by Shercliff10 does not

impact the result, in contrast to the claims of Korovin15. In Sec.III and IV, we describe the

experimental apparatus and results in detail. The dispersion relation and damping rates

are measured and compared to the linear theory. Implications to the application of a liquid

metal first wall in fusion reactors are discussed in Sec.V, followed by conclusions in Sec.VI.

II. LINEAR THEORY OF MHD SURFACE WAVES

A. Basic assumptions and governing equations

A flat layer of liquid metal with a free surface is assumed to be at rest sitting on top of a

non-conducting wall with large horizontal dimensions compared to the layer thickness, h. We

define a Cartesian coordinate system as shown in Fig.(1), where surface waves are assumed

to propagate along the x direction with a wavevector k = (k, 0, 0). Following Shercliff10, the

externally imposed magnetic field and electric current are homogeneous and parallel to the

free surface at rest: B0 = (B0x, B0y, 0) and j0 = (j0x, j0y, 0). Here, the subscripts 0 and 1
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denote equilibrium values and oscillatory values in the wave, respectively.

An internal pressure profile, p0(z), is set up to maintain static equilibrium (V0 = 0) by

∂p0

∂z
= −ρg + j0xB0y − j0yB0x, (1)

where ρ is the mass density of liquid metal and g = 9.8 m/s2 is the gravitational acceleration.

Here, the magnetic field generated by the current flowing internally in the liquid metal, Bself,

which is on the order of µ0j0h is assumed to be negligible compared to the imposed B0. (µ0

is magnetic permeability of the vacuum and, by assumption, the liquid metal.) Ignoring the

self-B field enforces the equilibrium Lorentz force, j0 × B0, to be directed only vertically

in the z direction, eliminating the pinch instability7 discussed earlier. We note that this

assumption is valid in the applications for fusion reactors, where the external magnetic field

is typically strong and the needed external current, if any, is small. Assuming j0 ∼ ρg/B0, an

estimate is given by Bself/B0 ' µ0j0h/B0 ' µ0ρgh/B
2
0 ' 3×10−7 for the typical conditions2

of ρ=500 kg/m3 (lithium), h=5 mm, and B0=10 Tesla. This assumption is also well satisfied

in the experiments reported later in this paper where no external current is imposed.

An important parameter characterizing dynamics of the liquid metal layer is the magnetic

Reynolds number, Rm = µ0V h/η where V is a characteristic velocity and η is the electrical

resistivity. For the present problem on surface waves in a static liquid metal layer, an

appropriate choice for V is the phase velocity Vph = ω/k, where ω is the angular frequency.

For typical parameters available in the experiments described later, Rm ∼ 10−2 � 1. In

this small Rm limit, the wave-induced magnetic field is negligible, resulting in the so-called

electrostatic approximation to Faraday’s law, ∂B1/∂t = −∇ × E1 ≈ 0, so the perturbing

z

xy

liquid metal

solid wall

free surfaceh

FIG. 1: The coordinate for surface wave analysis. The waves are assumed to propagate along x

direction while the magnetic field and current are homogeneous and parallel to the free surface:

B0 = (B0x, B0y, 0) and j0 = (j0x, j0y, 0).
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electric field must take the form E1 = −∇φ, while Ampere’s law simply reduces to ∇·j1 = 0.

In addition, the corresponding wave-Lorentz force is negligible, i.e., j1 ×B0 � j0 ×B1. As

a result, linear waves in the liquid metal layer at rest (V0 = 0) are well described by a set

of incompressible, inviscid but resistive MHD equations,

ρ
∂V1

∂t
= j1 × B0 −∇p1 (2)

−∇φ+ V1 × B0 = ηj1 (3)

∇ · j1 = 0 (4)

∇ · V1 = 0 (5)

where V1 and p1 are the perturbed velocity field and pressure, respectively. In the momentum

equation, the linearizing condition to ignore the convective derivative terms ρ(V1 ·∇)V1 can

be shown to be ka � 1, where a is the amplitude of the surface displacement. ka is the

wave ”steepness.” The linear theory is thus valid when the waves are not steep; effects like

breaking waves are inherently non-linear phenomena where the steepness becomes infinite.

Finally, note that every oscillatory quantity, f(t, x, z), can be assumed to take the form of

f(z) exp[i(ωt − kx)], where f(z) is a function of only z. The boundary conditions shall be

discussed in the next section.

B. Solving velocity and current fields

To satisfy the incompressibility condition, Eq.(5), the velocity field can be assumed to

take the following shape

V1(x, z) = y × ∇ψ(x, z) + V1y(x, z)y, (6)

so that V1x = ∂ψ/∂z and V1z = −∂ψ/∂x. (Unlike Shercliff10, we include V1y for the sake of

completeness.) Using Eq.(6), Ohm’s law, Eq.(3) or

ηj1 = −∇(φ−B0yψ) + V1zB0xy − V1yB0xz, (7)

must satisfy Eq.(4) to yield

η∇ · j1 = −∇2(φ−B0yψ)− ∂V1y

∂z
B0x = 0. (8)
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Since ∂p1/∂y = 0, the y component of Eq.(2) simply becomes ρ∂V1y/∂t = (j1 × B0)y =

j1zB0x, where j1z is supplied by Eq.(7). Solving for V1y yields

V1y = −∂(φ−B0yψ)

∂z

B0x

iρηω +B2
0x

. (9)

Hence Eq.(8) is rewritten to a simple form of

∂2Φ

∂z2
= K2Φ

where Φ ≡ φ−B0yψ and K2 ≡ k2(1− iB2
0x/ρηω) ≡ k2(1− iα). Solving the above equation

using the insulating boundary condition (j1z|z=−h = 0) or equivalently j1z|z=−h ∝ V1y|z=−h ∝

∂Φ/∂z|z=−h = 0, yields the solutions for Φ

Φ ≡ φ−B0yψ = C cosh[K(z + h)] exp[i(ωt− kx)] (10)

where C is a constant.

A second equation is obtained through the y component of the curl of Eq.(2), ρ∂(∇ ×

V1)y/∂t = [∇ × (j1 × B0)]y, which reduces to

ρ
∂∇2ψ

∂t
= B0x

∂j1y

∂x
=
B2

0x

η

∂V1z

∂x
= −B

2
0x

η

∂2ψ

∂x2

by using Eq.(7). Therefore, we again have

∂2ψ

∂z2
= K2ψ,

which can be solved by using the boundary condition V1z|z=−h = −∂ψ/∂x|z=−h = 0 to yield

ψ = A sinh[K(z + h)] exp[i(ωt− kx)] (11)

where A is a constant. With solutions for Φ and ψ given by Eqs.(10,11), the velocity and

current fields are known through Eqs.(6,7,9), except the constants A and C:

V1 =
∂ψ

∂z
x− 1

B0x

∂Φ

∂z

(
1− 1

1− iα

)
y − ∂ψ

∂x
z (12)

ηj1 = −∂Φ

∂x
x−B0x

∂ψ

∂x
y − ∂Φ

∂z

1

1− iα
z. (13)
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C. Free-surface boundary conditions

Let z = δ(t, x) = δ exp(i(ωt − kx)) represent the wavy free surface of the liquid metal.

By definition,
∂δ

∂t
= V1z|z=δ ≈ V1z|z=0 = − ∂ψ

∂x

∣∣∣∣
z=0

where “≈ ”represents linear approximation, again satisfied for small wave steepness. Thus

δ = A
k

ω
sinh(Kh) exp[i(ωt− kx)]. (14)

The second boundary condition on the free-surface is that the current must be confined

within the liquid metal, i.e.,

(j0 + j1|z=0) · n̂ = 0, (15)

where n̂ is the unit normal vector of the free surface. Let f = z − δ, then we have

n̂ = ∇f/|∇f | = iA
k2

ω
sinh(Kh) exp[i(ωt− kx)]x + z.

Taking the first order of Eq.(15), we have j0xnx + j1z = 0 which becomes C = iAj0xKη/ω,

leading to

Φ = iA
j0xKη

ω
cosh[K(z + h)] exp[i(ωt− kx)]. (16)

D. Dispersion relation

Without losing generality, let the ambient pressure above the liquid metal be zero, which

must balance with the pressure right underneath the surface plus a force due to surface

tension,

p1|z=0 +
∂p0

∂z

∣∣∣∣
z=0

δ + T
∂2δ

∂x2
= 0,

where T is the surface tension coefficient. Thus, using Eq.(1), we have

p1|z=0 = A
k

ω
sinh(Kh)(ρg − j0xB0y + j0yB0x + k2T ) exp[i(ωt− kx)].

Applying this to the x component of Eq.(2),

ρ
∂V1x

∂t
= −∂p1

∂x
− j1zB0y, (17)

at z = 0 yields the dispersion relation for MHD surface waves

ρω2 = (ρg + j0yB0x + k2T )
k2

K
tanh(Kh), (18)
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where K2 = k2(1− iα) and α = B2
0x/ρηω.

A few observations on the above dispersion relation, Eq.(18), are in order. First, setting

B0 = j0 = 0 recovers the usual surface wave dispersion relation in neutral fluid,

ρω2 = (ρg + k2T )k tanh(kh).

Second, the added imaginary component, α, due to the magnetic field along the propagation

direction, will cause the surface wave to damp due to ohmic heating. A transverse magnetic

field has no effect at all on the waves, because the perturbing motion does not bend field

lines. The wave damping shall be discussed in detail in the later sections. Third, the

second component of Lorentz force in the vertical direction, j0xB0y, does not appear in the

dispersion relation. The reason for the disappearance can be found in Eq.(17) where the

second term on the right hand side, −j1zB0y, cancels the j0xB0y term contained in the first

term, −∂p1/∂x. Since the perturbed current, j1z, arises because of the waviness of the free

surface when a uniform current, j0x, flows along the propagation (x) direction, this is a

special effect due to the free surface facing a non-conducting fluid or vacuum. However, this

effect leads to an instability (Rayleigh-Taylor instability) when the Lorentz force is used

to put a liquid metal layer up against gravity in applications like in fusion reactor2. The

detailed implications shall be discussed in Sec.V.

E. Shallow and deep liquid limits

It is useful to take some limits for the obtained dispersion relation. The shallow liquid

limit, defined as kh� 1, simplifies the dispersion relation by using tanh(Kh) ≈ Kh to

ρω2 = (ρg + j0yB0x + k2T )k2h,

The damping effect does not appear to first order in kh. Intuitively, the waves damp by

ohmic dissipation of energy put into bending magnetic field lines. But, in the shallow limit,

fluid motion in the vertical direction is suppressed, so waves do not store energy in bending

field lines, and hence are not damped.

The opposite limit, or the deep liquid limit, kh� 1 and thus tanh(Kh) ≈ 1, leads to the

dispersion relation,

ρω2 = (ρg + j0yB0x + k2T )
k√

1− iα
. (19)
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When B0x is weak so that α � 1 and (1 − iα)−1/2 ≈ 1 + iα/2, and if we assume that ω is

real and k is complex, k = kr + iki (kr � ki), the real and imaginary parts of Eq.(19) give

ρω2 = (ρg + j0yB0x + k2
rT )kr (20)

ki = − B2
0xωkr

2η(ρω2 + 2Tk3
r)
, (21)

respectively. The convective damping rate is given by Eq.(21), which reduces to simple

ki = −(α/2)kr if T = 0. A small shortening of the wavelength enters in second order in α.

Here it is appropriate to provide a heuristic derivation of the damping rate Eq.(21). The

ohmic dissipation is estimated as

ηj2 ' η

(
vB

η

)2

=
v2B2

η
,

where v is the characteristic fluid velocity. Then the wave energy decays as

∂

∂t

(
1

2
ρv2

)
= −B

2

η
v2,

which leads to

a(t) = a0 exp

[
−B

2

ρη
t

]
since v = ∂a/∂t = ωa. Setting t = x/vph = kx/ω in the above equation leads to a(x) =

a0 exp(−kix), where

ki = −B
2k

ρηω
.

This is consistent with Eq.(21) within a factor of 2 when the surface tension is ignored.

When B0x is strong so that α� 1, the dispersion relation relaxes to a different form,

ρω2 = (ρg + j0yB0x + k2T )
k√
2α

(1 + i). (22)

If ω is set to be real and T = 0 for simplicity,

ρω2 = (ρg + j0yB0x)kr

√
2

α

ki = −kr,

which predicts that a strong magnetic field along the propagation direction shortens the

wavelength, and, more importantly, leads to strong damping of surface waves within one

wavelength. Note that the values of α are typically larger than unity in the fusion reactor

application for parallel propagating waves while α � 1 in the experiments reported in the

next section.
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F. Summary of linear theory of MHD surface waves

A short summary on theory of the linear MHD surface waves with horizontal magnetic

field and current is in order before describing detailed experimental apparatus and results.

In the small magnetic Reynolds number limit or when the induction is negligible and the self-

field due to imposed electric current is small, the wave dispersion is given by Eq.(18). Only

the component of the Lorentz force with parallel B and perpendicular j contributes to the

dispersion (this is due to a cancelling of j0x by j1z, which arises to keep the current confined

to the gallium surface). As a result, a magnetic field perpendicular to the propagation

direction affects neither the wavelength or damping of surface waves. A parallel magnetic

field damps waves in liquid with depth on the order of a wavelength and deeper. In liquid

much shallower than one wavelength, vertical fluid motion is suppressed and the waves no

longer bend field lines, leading to no damping. For the damped waves, the damping efficiency

depends on the dimensionless parameter, α = B2
0x/ρηω, and the waves are weakly damped

when α� 1 and strongly damped when α� 1.

Next, experimental studies of MHD surface waves in a table-top device are described in

detail. The experiments do not cover the full parameter regimes in which the theory is valid.

More specifically, the experiments are limited to the cases when no current is imposed and

α� 1 in the deep liquid limit. The small magnetic Reynolds condition is always satisfied.

III. EXPERIMENTAL APPARATUS

We have constructed an experiment to study the properties of liquid gallium surface waves

in an applied magnetic field. Figure 2 illustrates the major components of the experimental

apparatus: the gallium tank, wave driver and paddle, magnetic field coils, and surface diag-

nostics. A non-invasive diagnostic measures the the waves by reflecting multiple laser beams

off the surface and onto a screen, which is filmed by a camera. A PC-based Labview program

with a National Instruments PCI-1671E board controls the experiment by controlling the

magnetic field strength, gathering data, gating the wave driver, and digitizing the images

from the camera. Below we briefly describe each component of the above experimental ap-

paratus; a more detailed discussion of the experimental setup, including photographs, can

be found in one of the author’s Bachelor thesis.17.
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A. Gallium tank

Gallium, which melts at about 30 C, is an ideal metal for table-top liquid metal studies.

It has a low melting point, is believed to be non-toxic, and the oxidation is confined to a

skin layer. Other candidate metals suffer some serious drawbacks. Mercury, which was used

by brave experimentalists of the 1950s and 1960s18,19, is highly toxic and has a high vapor

pressure; today it would require prohibitive safety measures. Liquid lithium has potential

applications to fusion reactors, and thus begs its own research2. However, liquid lithium is

Side view:

CuHot plate

plexiglass

wave

driver

ICCD

Camera

screen

laser

beams

laser

optics

wedge

Coils
Top view:

Gallium tank

Water tank

FIG. 2: Experimental setup for study of MHD surface waves in liquid gallium: top view (top panel)

and side view (bottom panel).
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not an easy-to-handle metal for a table-top experiment because it is reactive with water and

air. Liquid sodium, another alkali metal, has similar properties as lithium and is yet more

reactive20.

Approximately 1400 cc of gallium is held in a square plexiglass tank which has a side

length of 37.8 cm and a height of 5 cm. The depth of the gallium layer is about 0.9 cm,

which satisfies the condition for the deep liquid limit for the most cases in our experiments

except the lowest frequencies. The size of the tank is constrained by the cost of gallium, but

must be large enough to minimize boundary effects. The gallium tank sits in a larger water

tank, which serves as a heat reservoir.

One might suppose that to minimize the effect of side boundaries, the tank must simply

be wider than both gallium’s capillary length (about 0.35 cm), and the characteristic length

of viscous boundary layers. However, the capillary boundary effects are more pernicious,

and, in fact, the tank must be made as wide as possible. The gallium generally does not

wet the plexiglass walls evenly, and ths non-uniform meniscus at the boundaries scatters the

single incident k-vector and creates non-planar waves, and interference, downstream. Thus,

in contrast to larger water wave experiments (with flumes less than meter wide and tens of

meters long), this small gallium experiment is nearly square in aspect ratio.

The end boundary also needs special attention. Since our aim was to observe traveling

waves, one possibility is to find some boundary at the far end that simulates an infinite

tank, like impedance matching on a transmission line. Reflections from the end boundary

(opposite the side from which waves are driven) complicate the patterns on the surface, and

the 7-point laser diagnostic we used does not adequately resolve the counter-propagating

waves. In the end, it is found that the best way to make a precise measurement of the

wave is to use transient data, taken before reflected waves could return to the measurement

location.

B. Wave driving hardware

The paddle design is another way in which this experiment deviates from larger hydro-

dynamics experiments. While those experiments use large paddles hinged to the bottom

or large wedges to drive waves, early tests we conducted in water and gallium found that

wedge-type wave drivers caused splashing if the wedge angle is large (45◦). For the experi-
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ments reported here, we used a wedge with a smaller angle of 31◦ or an edge of 1/16 inch

copper sheet. Unlike the wedge-type paddles, which drive waves by moving volumes of fluid,

this kind of paddle pulls up and down on the surface with surface tension. Both paddles

were about 34 cm wide, about 90% of the width of the tank. To drive planar waves with a

single k, it is very important to have uniform contact along the length of the paddle. When

setting up experiment runs, it was important to optimize the planarity of the waves, which

we checked using the laser diagnostic described below.

The paddle motion is driven in by the wave driver, an electro-mechnical device (Me-

chanical Vibrator SF-9324 from Pasco Scientific) similar to a speaker, but more robust and

magnetically shielded. The input sinuisoid comes from a signal generator, gated by the ex-

periment control, through a power amplifier. Prior to experiments using gallium, the wave

driving hardware was tested using water with and without magnetic field. It was found that

the driven waves in water were not affected by presence of a magnetic field, confirming that

the wave driving hardware is insensitive to the magnetic field.

C. Magnetic field coils

In our experiment we have used two pairs of “L-2” coils in a magnetic mirror configuration

to provide a relatively uniform, DC magnetic field. The coils, of outer diameter 49.8 cm,

are separated by 50.8 cm. Currents of up to 500 A create a field of up to B0 = 400 Gauss at

the center in between the coils. Because the gallium tank sits in the midplane of the coils,

there is no vertical component to the magnetic field at the liquid surface.

D. Laser surface diagnostic

To measure the surface waves, we reflect lasers off the surface and onto a screen filmed

by an Intensified CCD (charge-coupled device) camera (by ITT Corp.). A passing wave

distorts the local angle of the gallium surface and perturbs the laser spot on the screen from

its flat-surface position. When the wave amplitude a is small, the deflection of the laser spot

is proportional to the slope of the passing wave; the diagnostic thus directly measures the

wave steepness ka, where k is the wavenumber. Measuring the relative phases of multiple

points on the surface determines the wave number k, and whence a.
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The experiment, once configured, is triggered off of a camera gating pulse. Thus, the

camera frames correspond to exactly the same points in time in each experiment, confirming

that the experiments are highly repeatable. A similar technique was implemented in a recent

experiment on (non-MHD) surface wave in mercury21.

The diagnostic consists of a laser rail, on which the laser (2 mW, He-Ne by Uniphase

Model 1101P), and associated optics are mounted, a screen near the gallium surface, and

an ICCD camera. Following optics to focus the laser spot on the surface, a diffracting beam

splitter (a dot-matrix projection head from Edmunds Optics) splits the laser beam into a

diverging matrix of beams, and a mask blocks all but the central row of up to 7 beams. The

resultant beams lie in a plane, whose intersection with the plane of the gallium surface is a

line parallel to the direction of wave propagation.

The camera takes 60 frames per second (de-interlaced), which are digitized by a National

Instruments NI-1407 series frame grabber board and saved to disk. The image intensification

hardware on the camera allows for controlled gating of the exposure time; typically, gate

widths of 100 µs to 1 ms were sufficient to freeze the laser spot in each frame.

We now present a way to map the laser spot measurements back to the wave motion,

valid for small-amplitude waves and diagnostic laser beams that come in close to vertical.

Figure 3(b) shows a picture of the laser reflection in the x-z plane for waves propagating in

the x-direction.

Figure 3(a) shows a schematic picture of a laser reflecting from a flat surface at x0 and

intersecting the screen at the position r0. When a wave passes, the angle of the surface

changes and the laser spot shifts to r0 + ∆r. We now correlate the motion of the spot on

the screen, ∆r(t), with the motion of the free surface δ(x, t) = a sin(kx− ωt).

The angle of incidence of the laser beam, θ0, will be a different value for each of the

7 incident laser beams, because the beams diverge from one another. It will however, be

treated as small; the largest incident angle was 4 degrees. We discuss below how to precisely

calibrate the θ0’s from a few simple, in situ measurements. The flat-surface position of the

laser spot on the screen is r0 = x0 + d tan(−θ0), where d is the distance of the screen from

the gallium surface.

In general, a passing wave not only changes the angle that the ray reflects off at, but

also changes the position where the ray intersects the surface, and thus the surface point

that the laser samples. However, this effect can be neglected in the first order, as discussed
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FIG. 3: Laser reflection from the fluid surface: (a) flat surface; (b) surface with waves.

below. In this first approximation of small θ0 and wave amplitude, the laser always reflects

off the surface at the point (x, z) = (x0, 0). The surface normal at this point due to traveling

waves is n(t) = ∇(z − δ(x, t)) = [ka cos(kx0 − ωt), 0, 1]. (The laser rays also have a finite

component in the y-direction. However, the projection of the incident and reflected rays

onto the x− z-plane does not depend on it.) Let θ be the inclination of the surface normal.

tan θ(t) = ka cos(kx0 − ωt)

With this definition of θ and θ0, simple geometry shows that the angle of reflection is

2θ − θ0. Thus, the motion of the spot on the screen will be

∆r(t) ≈ d tan(2θ − θ0)− d tan(−θ0)

≈ 2dka cos(kx0 − ωt), (23)

if θ ∼ ka� 1 and θ0 � 1. The factor kx0 affects the phase of the laser motion on the screen.

15



Since the reflection positions {x0} can be precisely calibrated, it is possible to experimentally

measure k by comparing the phases of the 7 laser spots.

We now discuss the lowest order corrections to these formulae. First, in the expression

above we have used small-angle approximations for the tangent; thus corrections to the above

formula will be proportional only to second-order products of ka and θ0. We also introduce

errors by assuming that the reflection always occured at (x0, 0). The next approximation of

the reflection point is [x0 − δ(x0, t)θ0, δ(x0, t)]. The small shift of the reflection position has

two effects: first, there will be a correction to the surface normal, and second, the laser will

reflect from a different surface height. The former can be evaluated from a Taylor expansion

of the surface normal about x0:

nx ≈ nx0 +
∂nx0

∂x

∣∣∣∣
x0

(x− x0)

The correction to the above formula (23) is therefore of order kaθ0, since taking the derivative

of δ is proportional to k and the position shift is of order aθ0. This correction, then enters

at the same order as the corrections to tangent. Next, the second finite amplitude effect

changes the total distance the laser travels, shifting the position of the spot on the screen

by about 2δ(t) tan θ0 ≈ 2aθ0. Comparing this to our linear formula (23), we can see the

correction is of order a/d, which is small in our setup: a ∼0.1 mm while d ∼10 cm.

E. Calibrations

To calibrate the laser diagnostic, first the beam splitter was carefully characterized to

determine the inter-beam divergence. Once this is known, a few still frames taken with

the laser in place in the experiment is sufficient to calibrate the angle θ0 of each ray and

the height of the screen, to better than 1%. The first still frame is taken with the screen

moved intersect the beams on the way to the gallium. The second is taken with the screen

in its normal position, so that the laser beams intersect the screen after reflecting off the

flat gallium surface. The difference in laser spots between the two frames is only due to

the path of the lasers between the plane of the screen and the plane of the gallium surface.

From knowledge of the inter-beam divergence and these measurements, one can determine

the height of the screen, the angle θ0 of each laser, and the location on the surface that each

laser measures. Finally, a still frame taken of a grid of points in place of the screen maps
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pixels to real-world units and in principle allows for correction of any optical distortion in

the camera optics. (We did not, however, observe any distortions in our optical setup.)

F. Procedures for data analysis

The camera takes images of the laser spot motion, which are digitized and saved. For

analysis, an IDL (Interactive Data Language) program was written to find the laser spots

in each frame, by finding the regions with the brightest points. The location of the spot is

determined consistently by a mass-weighted average of the light intensity over a small region

containing the spot, after removing background light. The error in the location of the spot

center is assigned to be 1 pixel (since the centroid is determined more accurately than this).

As mentioned before, because we can control the camera shutter gating, we can gate for a

short enough time so that the laser spots do not smear in the frames.

After finding the lasers in each frame, a time series of spot motion is assembled at each

surface location. It is found that a sinusoid is an excellent fit to each time series, consistent

with the Eq.(23). From the fitting parameters, we can find the frequency, relative phase of

the spots, and the amplitude of the spots motion, from which we find ka at each surface

location.

IV. EXPERIMENTAL RESULTS

Descriptions of experimental results are divided into two sections: wave propagation and

wave damping, which correspond to the real and imaginary parts of the dispersion relation,

respectively, as exemplified by Eqs.(20) and (21) in the deep liquid and weak magnetic field

limits. Discussions are included in each section following the descriptions of results.

A. Wave propagation without magnetic field

Figure 4 shows an example of the measured movements of 7 reflected laser spots on the

screen as functions of time. We focus on waves in the early times after the initiation before

they are reflected from the end boundary to minimize the effects due to standing waves (see
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FIG. 4: Examples of measured movements of reflected laser spots on the screen as functions of

time (diamonds). Solid lines indicate fitted curves to the measurements (see text).

Sec. III.B). The movement of each reflected laser is fitted to the function of

∆r(t) =
1

2

(
tanh

t− t0
τ

+ 1

)
∆r0 sin(ωt− p) + c, (24)

where all parameters except t are fitting parameters. Here t0 represents the arriving time of

the waves at each laser and ∆r0 is related to the wave amplitude by Eq.(23),

∆r0 = 2dka. (25)

The fitting is performed by a nonlinear fitting procedure provided by the IDL package,

and the fitted curves are shown by solid lines in Fig.4. The wave frequency f = ω/2π is

accurately determined the fitting and is 10.13 ± 0.03 Hz for the example given by Fig.4.

The wave phase p is fitted linearly with position x as shown as the solid line in Fig.5(top),

and the slope of the line determines the wavenumber, k, or equivalently the wavelength, λ,

which is 2.20± 0.01 cm for the example given by Fig.4. Consequently, the wave amplitude

at each laser is determined by Eq.(25) since all other quantities (∆r0,d,k) are known. The

obtained amplitudes are shown in Fig.5(bottom).

In order to measure the dispersion relation of the MHD surface waves, the driving fre-

quency is varied from about 4 Hz to about 12 Hz. The lower frequency is limited by the

size of the gallium tank which can only accommodate few wavelengths at lower frequencies.

The upper frequency is limited by the time resolution of frame acquisition rate of 60 Hz.

While there is no Nyquist frequency per se, because the waves are monochromatic and the
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FIG. 5: The wave phase (top) and amplitude (bottom) as functions of x for the example given by

Fig.4. The uncertainty of each point is smaller than the symbol size.

wave frequency is approximately known, the fitting routine used still requires good time

resolution to converge.

The measured dispersion relation with no imposed magnetic field is shown in Fig.6 as

diamonds, which is compared with theoretical predictions by Eq.(18) with j0y = B0x = 0,

ρω2 = (ρg + k2T )k tanh(kh), (26)

using the published value of surface tension coefficient22 (solid line). Agreement is found

between experiment and theory only for the low frequencies, but not for high frequencies.

The measured wavelengths are shorter than predicted values for a given driving frequency.

However, an ad hoc surface tension coefficient, lowered by a factor of 2.5, agrees fairly well

with the experiment at all frequencies.

The apparent reduction of surface tension is likely due to a thin oxide layer formed on the

gallium surface. The oxide layer becomes visible when a clean liquid gallium is exposed to

air for a few hours if left still, or appears in only a few minutes if surface waves are driven. A

decrease in surface tension due to oxidation is qualitatively consistent with a small chemistry

experiment performed by the authors. After covering of small blob of gallium with a coating
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FIG. 6: The measured dispersion relation of MHD surface waves in gallium without magnetic field

(diamonds) and with B0=380 Gauss (cross). Theoretical curves by Eq. (26) are shown for three

cases: T = T0 = 0.718N/m (solid line); T = T0/1.5 (dashed line); and T = T0/2.5 (dotted line).

of 1 mole hydrochloric acid solution, the surface became very shiny as the acid i cleaned

the oxide layer from the surface. At the same time the surface was cleaned, the gallium

pulled itself up into a tight ball, implying increased surface tension. Later, as the acid

evaporated and the surface re-oxidized, the gallium lost its uniform tight shape, implying

that the surface tension decreased.

B. Wave propagation with magnetic field

The effects of a horizontal magnetic field on the surface wave dispersion relation are

studied by repeating the above experiments with varying strength of the applied field. Also

shown in Fig.6 are the results obtained under a parallel imposed field of B = 500 Gauss

at the measurement locations. At a given driving frequency, the wavelength is observed to

increase with B. At B = 500 Gauss, the lengthened wavelength is still shorter than the

predictions using T = T0, but the observed changes are more than 10% at f ≈ 12 Hz.

Interestingly, the measurements agree well with the predictions using T = T0/1.5. To
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FIG. 7: The fitted surface tension coefficient normalized by published value22 for clean gallium

T0 = 0.718 N/m as a function of imposed magnetic field.

quantify the observed changes better, the measured dispersion relation is fitted by Eq.(26)

with T as a free parameter. The fitted T is shown as a function of Bx in Fig.7.

The observed change in the dispersion relation of the surface wave propagation due to

magnetic field cannot be simply explained by linear theory. According to Eq.(18), the

real part of the dispersion relation does not depend on magnetic field if the DC current

density is zero. This is better seen in Eq.(26), which is valid in the limit of weak magnetic

field (α = B2
0x/ρηω � 1), a condition well satisfied in our experiments. For example, for

f ≈ 12 Hz and B = 500 Gauss, α = 0.022. The next order corrections to the dispersion is on

the order of α2 ≈ 5×10−4, which is much smaller than the measured changes. Furthermore,

the observed changes cannot be explained by nonlinear effects, which is on the order of the

ratio of ρ(V1 · ∇)V1 to ρ∂V1/∂t (see Sec. II.A) or simply ka ∼ 10−2. The effect due to

omission of the wave-induced magnetic field B1 is also small:

B1

B0

∼ µ0j1
kB0

∼ µ0V1

kη
∼ µ0ωa

kη
∼ 6× 10−5.

We therefore seek explanations outside of the physics in the linear MHD dispersion re-

lation. One possible explanation of the observed changes in effective surface tension force

with an imposed magnetic field is changes in atomic physics in the surface oxide layer or the

adjacent pure gallium layers . The structure of surface of liquid metal has been a hot topic

in recent years, especially after rapid development of experimental techniques, such as x-ray
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reflectivity measurements, to directly study the surface structure. A recent review paper

is given by Penfold on this topic23. A theoretically predicted phenomenon called surface-

induced atomic layering24 due to the sharp discontinuity in density across a liquid-vapor

surface has been confirmed experimentally25. The effect of oxidation on gallium surface has

also been studied26. It was found that the oxide layer has a uniform thickness of about 5 Å,

which does not increase with further oxygen exposure and temperature increase, suggesting

that the oxide layer provides rigidity to the surface and thus may cause wave damping (see

later). The dependence of these surface properties on the magnetic field has been reported

neither experimentally nor theoretically. However, it would not be surprising to have some

dependences on magnetic field since liquid gallium has larger degrees of covalency (less close

to a free-electron metal) and directional bonding23. We should note that the dispersion

relation remains unchanges when the magnetic field is imposed horizontal but perpendicular

to wave propagation17. This fact constrains of theory of surface tension modification by a

magnetic field: the magnetic field can only modify the surface tension along the direction

of the magnetic field.

C. Wave damping without magnetic field

The linear theory predicts that waves interact with a parallel magnetic field, leading to

damping in deep fluids [Eq.(21)]. However, as shown in Fig.5, wave damping exists even

without magnetic field. To quantify the wave damping rate, the amplitudes are fitted to the

function of

a(x) = a0 exp[−ki(x− x0)], (27)

where a0 and ki are fitting parameters and x0 is the x position of the first laser measurement.

The magnitude of ki characterizes the damping rate. The fitted curve is also shown in Fig.5,

where the error in ki, δki, is estimated by equating the measurement uncertainties δa(x) to

−a0(x − x0) exp[−ki(x − x0)]δki. (One should note that there exist also systematic errors

in ki due to deviations from the perfect e-folding beyond statistical uncertainties in the

measurements. Using residual fitting errors, the systematic errors in ki are estimated to be

about 4 times larger than the statistical counterparts.) Figure 8 shows that the normalized

damping rate, ki/k, increases with k, but saturates at about 0.1 at large k.

Absent a magnetic field, waves can be damped by finite viscosity, which has been ignored
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FIG. 8: The normalized wave damping rate, ki/k, versus k without magnetic field.

in the linear theory described earlier because of its smallness. Here we estimate the viscous

damping rate as following. Let v be characteristic fluid velocity due to the wave motion,

then the dominant viscous force is given in deep fluids by

Fν = ρν
∂2v

∂x2
∼ ρνk2v,

where ν is kinematic viscosity. Therefore, the wave energy decays as

∂

∂t

(
1

2
ρv2

)
= −Fνv = −ρνk2v2,

which leads to

a(t) = a0 exp(−νk2t) (28)

since v = ∂a/∂t = ωa. We note that Eq.(28) is consistent with more rigorous derivations17,27

within a factor of 2. Setting t = x/vph = kx/ω in Eq.(28) leads to a(x) = a0 exp(−kix),

where
ki

k
=
νk2

ω
' (1− 4)× 10−4, (29)

using the published value22 for gallium viscosity ν ' 3× 10−7m2/s and the measured values

for other quantities. There is also a viscous drag effect due to the friction between the oscil-

lating fluid and stationary tank boundaries27. Landau and Lifshitz calculate the temporal

damping rate to be

γ =
1

2
√

2

2h+ w

wh

√
νω, (30)

which depends the fluid depth h, and the tank width w. As might be expected, since

the damping gives the energy dissipated per unit energy in the fluid, and all the energy

dissipation occurs at the boundary, the expression incorporates the ratio of the area of
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FIG. 9: The wave amplitude measured by the first laser as a function of magnetic field perpendicular

to the propagation direction for several frequencies.

contact with the wall (2h + w per unit length) to the fluid volume (wh per unit length).

Using the tank width of 40 cm, and depth of 1 cm, one can estimate that the convective

damping rate due to this effect is ki/k ∼ 2 × 10−3. Therefore, the viscous drag at the

boundary is more important than the internal viscosity, but it, too, is too small to explain

the observed wave damping without magnetic field.

An alternate explanation again can be based on existence of the surface oxide layer, which

has been described in Sec. III.A and III.B. Wave motions bend the oxide layer, which is

likely semirigid and thus consumes wave energy. Qualitatively, it was observed that the

gallium surface becomes less excitable as the oxide layer forms. In fact, deviations from the

exact exponential decay, as seen in Fig.5, may be due to non-uniformness of the oxide layer,

which often is visible. We note that in general the wave damping due to this mechanism can

also depend on the wave amplitude, and this effect was not investigated in our experiment

(Fig.8). On the other hand, quantitative theoretical estimates are not possible without

detailed knowledge of physical properties of the layer, which is beyond the scope of the

present paper.

D. Wave damping with magnetic field

According to the linear theory described in Sec.II, MHD surface waves in the deep liquid

limit are not damped by a perpendicular magnetic field to the propagation direction, but not
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FIG. 10: The wave amplitude measured by the first laser as a function of magnetic field parallel to

the propagation direction. The dotted and dashed lines represent predictions by linear theory using

actual distance between the paddle and measurement (∆x) and a distance of 6∆x, respectively.

by a perpendicular magnetic field. These predictions are basically confirmed by experiments.

Figure 9 shows the wave amplitudes as a function of magnetic field perpendicular to the

propagation direction for several frequencies while everything else is kept the same. No wave

damping by magnetic field is observed. In contrast, the waves are damped by an imposed

magnetic field along the propagation direction, as shown in the single point measurements.

Fig. 10. The plotted amplitudes are normalized by the amplitude without magnetic field.

It is seen that the wave amplitude is reduced by a factor of 2 when a magnetic field of 500

G is imposed.

Linear theory predicts wave damping by a parallel magnetic field as shown in Eq.(21).

The damping rate, given by

exp

[
− B2

0xωkr

2η(ρω2 + 2Tk3
r)

∆x

]
, (31)

where ∆x ' 4.1cm is the distance between the paddle and the measurement location, is also

shown in Fig.10 as the dotted line. The observed damping rates are much larger than the

predictions, but would be consistent with predictions if instead 6∆x was used in Eq.(31) as

also shown in Fig.10 as the dashed line. Here we need to point out that the wave damping

given by Eq.(31) accounts only for the MHD effects during the wave propagation, but not

for the wave generation by the paddle, which is also subject to the MHD interactions. Such

MHD effects are well conceivable since the cross-field motions tend to bend the magnetic
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FIG. 11: The normalized wave amplitudes as functions of x for several magnitudes of magnetic

field parallel to the propagation direction.

field lines in a probably nonlinear fashion, although detailed theoretical modeling is beyond

the reach of the present linear theory. The observed damping enhancement likely reflects

such MHD effects during the wave generation. Note that experiments in water did confirm

that the wave driving hardware alone is unaffected by the magnetic field17

Furthermore, the wave damping due to magnetic field parallel to the propagation direction

is observed in between the measurements at 7 locations. As an example, Fig.11 shows the

normalized wave amplitudes as functions of x for B = 0, 206 G, and 501 G, respectively. It is

clearly seen that the wave is damped more rapidly when a stronger magnetic field is applied.

To better quantify the wave damping, measurements at each given magnetic field are fitted

to the function shown in Eq.(27) to obtain a spatial damping rate ki. The results are shown

in Fig. 12 as squares. Despite certain scatters in the obtained damping rates, a trend for

increased damping rate with magnetic field is apparent. Note that the scatter in the data

points is on the same order of the error exemplified in Fig. 5. The theoretically predicted

damping rates given by Eq.(21), ki(B), are calculated by using the measured values for all

other parameters. Plotted also in Fig.12 as the dashed line is ki(0) + ki(B) where ki(0) is

the measured damping rate at B = 0. The agreement is reasonable given the scatter and

errors in the experimentally determined damping rates.
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FIG. 12: The wave damping rate (squares) as a function of magnetic field parallel to the propagation

direction. The dashed line represents predictions by linear theory (see text).

V. IMPLICATIONS TO FUSION APPLICATION

Given theoretical and experimental results and their physics understanding described

in the previous sections, discussions are in order with regard to their implications to the

proposed application of a free-surface liquid metal first wall in the fusion reactors2–4. Below

we discuss two specific effects: magnetic damping of surface waves, and an instability when

the Lorentz force is used to support a free-surface liquid metal layer against gravity.

A. Magnetic damping of surface waves

An important dimensionless parameter here is α = B2/ρηω. For a typical magnetic

field strength of 10 T in the magnetic fusion reactors, α is much larger than unity unless

f > 100kHz for lithium or f > 10kHz for gallium. However, the surface tension becomes

important and strongly stabilizing [Eq.(21)] at these high frequencies. Therefore, one ex-

pects that the large magnetic fields in the magnetic fusion reactors will stabilize surface

disturbances very effectively along the field direction in the deep fluid limit. In addition,

a finite vertical magnetic component will further stabilize the surface as shown in previous

studies14,18,28.

However, there is no magnetic damping on disturbances propagating in a horizontal,
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but perpendicular, direction, as shown in the previous sections. Even for the case when

the disturbances propagate parallel to magnetic field, the damping effect does not exist if

the wavelength is much longer than 2πh so that the liquid is shallow, i.e., kh � 1. (We

note that this is a theoretical result since our experiment did not cover this regime.) If

h = 5mm, then the critical wavelength above which there is no large stabilizing effect from

magnetic field is about 3cm. Therefore, in the application of a free-surface liquid metal

first wall in a fusion reactor, it may not be possible to depend on magnetic damping to

suppress disturbances. However, surface conditions, such as existence of an oxide layer, may

provide more effective stabilization for possible disturbances, as observed experimentally in

the previous section. Of course, the detailed atomic physics and chemistry, as well as their

manifestation as surface tension, need to be understood before they can be better applied

in the reactor environment.

B. Stability of a liquid metal layer supported by Lorentz force against gravity

In order to completely cover the plasma in a fusion reactor, some parts of a liquid metal

layer need be supported against gravity. One proposed method is to use the Lorentz force

by inducing electric current in the liquid metal with an appropriate angle to the background

magnetic field so that the resulting Lorentz force is upward to offset the gravity force4.

This scheme works if the supported liquid metal is stable. However, the obtained dispersion

relation, Eq.(18), suggests that this is not the case.

Using the coordinate shown in Fig.1, now the gravity force ρg points upward and the

Lorentz force, |j0 × B0| = |j0xB0y − j0yB0x| ≥ ρg, points downward. Thus the term ρg in

Eq.(18) needs to be replaced by −ρg. As discussed in Sec. II.D, only one of the two terms

of the Lorentz force, j0yB0x, appears in the dispersion relation. This only term will also

disappear when the x direction or the propagation direction is set to be perpendicular to

B0. The resultant dispersion relation then becomes

ρω2 = (−ρg + k2T )k tanh(kh), (32)

which predicts instability for sufficiently small k or long wavelength. This is essentially

the Rayleigh-Taylor instability. Figure 13 shows the growth rates for both lithium and

gallium cases. The critical wavelength is determined by the surface tension, which may
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FIG. 13: The growth rate as functions of wavelength for lithium or gallium layer supported by the

Lorentz force against gravity in the deep liquid limit.

vary depending on the surface conditions, as described in this paper. The typical growth

time is on the order of 0.1 s for lithium, which sets the maximum time scale for the liquid

metal to stay in the layer supported by the Lorentz force. This can be translated into a

minimum speed with which liquid metal is forced to flow across certain distances in the

reactor chamber. For example, for a distance of 1 m, the minimum speed is 10 m/s if only

one e-folding time is allowed for this instability to grow. Again, the existence of a surface

oxide layer can slow down its growth.

VI. CONCLUSIONS

Effects of magnetic field on surface waves on liquid gallium are studied in detail both the-

oretically and experimentally in the small magnetic Reynolds number limit. Theoretically,

a linear dispersion relation is derived when horizontal magnetic field and electric current is

imposed, including effects from surface tension. No wave damping is found in the shallow

liquid limit (kh � 1) while waves will damp in the deep liquid limit (kh � 1) if travelling

parallel to the magnetic field. Under a weak magnetic field (B2/ρηω � 1), waves are weakly

damped with no effects on propagation characteristics while in the opposite limit the waves

are strongly damped with shortened wavelengths. Experimentally, the planar MHD surface
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waves on liquid gallium are studied in detail with a weak magnetic field and in the deep

liquid limit by using a computer-controlled paddle in a table-top device. A non-invasive

diagnostic accurately measures surface waves at multiple locations by reflecting an array

of lasers off the surface onto a screen, which is recorded by an Intensified-CCD camera.

The measured dispersion relation is consistent with the linear theory with a reduced surface

tension likely due to surface oxidation. It is observed that surface waves are damped when

a horizontal magnetic field is imposed parallel to the propagation direction. No damping is

observed with a perpendicular magnetic field. These results are in excellent agreements with

the linear theory. The existence of a strong wave damping without magnetic field suggests

the importance of the surface oxide layer. Implications to the liquid metal wall concept

in fusion reactors are discussed. Magnetic damping can suppress surface disturbances with

short wavelengths propagating along the magnetic field, but waves with long wavelengths

or propagating across magnetic field are unaffected. A liquid metal layer supported by the

Lorentz force against gravity is unstable to the Rayleigh-Taylor instability when a perturb-

ing wave vector is perpendicular to the magnetic field and its wavelength is sufficiently long,

possibly leading to a practical limitation of these applications.
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