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Variational formulation of the Gardner’s restacking algorithm

I.Y. Dodin and N.J. Fisch

Princeton Plasma Physics Laboratory, Princeton, NJ 08543

The incompressibility of the phase flow of Hamiltonian wave-plasma interactions restrains the

class of realizable wave-driven transformations of the particle distribution. After the interaction,

the distribution remains composed of the original phase-space elements, or local densities, which

are only rearranged (“restacked”) by the wave. A variational formalism is developed to study the

corresponding limitations on the energy and momentum transfer. A case of particular interest is

a toroidal plasma immersed in a dc magnetic field. The restacking algorithm by Gardner [Phys.

Fluids 6, 839 (1963)] is formulated precisely. The minimum energy state for a plasma with a given

current is determined.

I. INTRODUCTION

The incompressibility of the phase flow of Hamiltonian wave-plasma interactions restrains the class of realizable

wave-driven transformations of the particle distribution [1–6]. In particular, this fact determines the existence of

what can be called the “plasma ground state” for a given one-particle distribution f1. By ground state, we mean

such a distribution of particles f2, which minimizes the total plasma energy on the manifold of all Hamiltonian

transformations f1 → f2.

As reported in the pioneering paper by Gardner [1], the ground state plasma energy Wmin is generally nonzero,

which can be explained as follows. Suppose that a bounded plasma particles having the initial phase-space distribution

f1 are introduced into an electromagnetic field for a limited time, which eventually results in bringing the plasma to

some final state f2. Imagine that we partition the plasma phase space into small cells of equal volume ∆Γi = ∆Γ,

and to each cell attach a certain value of the distribution function f(Γi). As the number of cells that have a given

value of f is conserved throughout the interaction (as follows from the Liouville theorem), the distribution f2 may not

be arbitrary, but rather will represent a result of reordering (“restacking”) of the original phase-space elements ∆Γi,

regardless of the spatial and temporal structure of the external fields. Alternatively, this fact can be expressed as

conservation of the so-called Casimir invariants, which determine the distribution of the values f(Γi) (see, e.g., Ref. [7])

and whose existence is an intrinsic property of any Hamiltonian system.

The plasma ground state will correspond to the distribution f2, such that the elements ∆Γi with larger f(Γi)

occupy the states with lower particle energy E . In a bounded plasma, only a finite phase volume is allotted to the

states with E below a given value. Hence, from incompressibility of the phase flow, it follows that after the interaction

the plasma will be left with the total energy W ≥ Wmin, where Wmin is a nonzero quantity defined as the minimum

of W over all possible ways of restacking the elements ∆Γi.

While chopping phase space into discrete elements is pictorial, it is fairly artificial in case of a continuous function

f1. Hence, solving the “restacking problem” must be possible in terms of a differential formulation. The purpose
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of the present paper is to derive such a formulation and apply it to a number of cases of interest, not previously

considered.

The paper is organized as follows: In Sec. II, we generalize the Gardner’s problem by putting it into a variational

form for an abstract dynamical system. We determine the condition under which a Hamiltonian transformation of

the system phase space yields the maximum or minimum of a given functional (such as the plasma energy in Ref. [1]).

In the framework of this formalism, we reproduce the results given in Ref. [1] and, in Sec. III, solve a similar, yet

different problem of finding the minimum energy state at given plasma current. In Sec. IV, we apply our formalism

to magnetized toroidal plasmas and derive a reduced variational principle. In Sec. V, we summarize our main ideas.

II. VARIATIONAL FORMALISM

Let us first restate the Gardner’s problem in its original form [1]. Suppose that a bounded plasma with the initial

distribution f(r1,p1) is introduced into external fields for a limited time, which eventually results in bringing the

plasma to some final state f(r2,p2). The particle distribution is conserved: f(Γ2) = f(Γ1), where Γ2 ≡ (r2,p2) is a

single-valued reversible function of Γ1 ≡ (r1,p1). Thus, the total energy left inside the plasma after the interaction

equals

W =
∫

E(Γ2) f(Γ1) dΓ, (1)

where E is the individual particle energy, and where we made use of phase space conservation: dΓ ≡ dΓ1 = dΓ2,

dΓi ≡ d3ri d
3pi. Suppose that the particles initially occupy a nonzero phase volume. In a bounded plasma, only a

finite phase volume is allotted to the states with E(Γ2) below a given value. Hence, from incompressibility of the

phase flow it follows that after the interaction the plasma will be left with the total energy W ≥Wmin, where

Wmin = min
Γ1→Γ2

∫
E(Γ2) f(Γ1) dΓ (2)

is a nonzero quantity defined as the minimum of W over all possible Hamiltonian (canonical) phase-space transfor-

mations (r1,p1) → (r2,p2). Hence, determination of Wmin can be considered as a variational problem of searching

for the canonical transformation Γ1 → Γ2, which minimizes the functional (1).

Treated like that, the Gardner’s problem yields a natural generalization as follows. Suppose one is given a function

φ(Γ1) defined in a 2N -dimensional phase space Γ1. Suppose also that Γ1 ≡ (q,p) undergoes Hamiltonian evolution

into some phase space Γ2 ≡ (Q,P). The generalized Gardner’s problem then consists of determining the connection

between Γ1 and Γ2, which provides the minimum or the maximum of the functional

G =
∫
ψ(Γ2)φ(Γ1) dΓ, (3)

where Γ2 is considered a function of Γ1 (or vice versa), ψ is a known function of Γ2, and dΓ ≡ dΓ1 = dΓ2 is a phase

space element

dΓ ≡ dNq dNp = dNQdNP (4)
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conserved by the canonical transformation.

Suppose Γ1 → Γ2 is an extremizing transformation and consider a small canonical transformation Γ2 → Γ′
2 de-

termined by an arbitrary trial Hamiltonian H. Since φ is defined as a given function of the initial variables, which

remain unchanged by the transformation, one gets

∆G =
∫

∆ψ(Γ2)φ(Γ1) dΓ1. (5)

The change of ψ, ∆ψ = ψ(Γ′
2) − ψ(Γ2), can be expressed as

∆ψ ≈ ∂ψ

∂Q
· ∆Q +

∂ψ

∂P
· ∆P +

1
2

∆Q · ∂2ψ

∂Q ∂Q
· ∆Q + +∆Q · ∂2ψ

∂Q ∂P
· ∆P +

1
2

∆P · ∂2ψ

∂P ∂P
· ∆P, (6)

where the dot product stands for summation over repeating indices. The changes of ∆Q and ∆P are derivable from

canonical equations and can be put in the form

∆Q = ∆t
∂H
∂P

+
∆t2

2

{
H, ∂H

∂P

}
+ o

(
∆t2

)
, (7a)

∆P = −∆t
∂H
∂Q

− ∆t2

2

{
H, ∂H

∂Q

}
+ o

(
∆t2

)
, (7b)

where ∆t is the time interval, on which the evolution generated by H is considered, and {·, ·} stands for Poisson

brackets

{f, g} ≡ ∂f

∂P
· ∂g
∂Q

− ∂f

∂Q
· ∂g
∂P

. (8)

Substituting the above equations into Eq. (5) and integrating by parts, one gets that

∆G = δG+ δ2G+ o
(
∆t2

)
, (9a)

δG = ∆t
∫

{ψ, φ}H dΓ, (9b)

δ2G = −∆t2

2

∫
{ψ,H}{φ,H} dΓ, (9c)

assuming that the surface integrals are equal to zero. (In case if ψ or φ stands for a distribution function, the surface

integrals vanish, e.g., if the system is localized within a finite phase volume.) Because of the invariance of Poisson

brackets, the above expressions equally apply to any space Γ canonically obtainable from Γ1 or Γ2 (Γ may also coincide

with one of the two), if the functions are understood as

φ = φ(Γ1(Γ)), ψ = ψ(Γ2(Γ)). (10)

From Eq. (9) it follows that the necessary condition for an extremizer, that is δG = 0 for an arbitrary H, can be

put in the form

{ψ, φ} = 0. (11)

In turn, the minimum and maximum of G are realized when δ2G has a definite sign regardless of H. Noting that

δψ = ∆t {H, ψ}, δφ = ∆t {H, φ}, (12)
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one can rewrite the expression for δ2G as

δ2G = −1
2

∫
δψ δφ dΓ. (13)

From Eq. (13) it can be concluded that the minimum of G is achieved if

φ = φ(ψ), or ψ = ψ(φ) (14)

is a single-valued monotonically decreasing function; the maximum of G corresponds to a single-valued monotonically

increasing function (14). (Note also that Eq. (14) automatically satisfies Eq. (11).)

The function (14) can be determined using the phase-space conservation imposed by the Liouville theorem. With

the density of states Ω defined for an arbitrary function ξ(Γ) according to

Ω(ξ̃) ≡
∫
δ(ξ̃ − ξ(Γ)) dΓ, (15)

the phase-space conservation requires that
∣∣∣∣∣
dφ

dψ

∣∣∣∣∣ =
Ω(ψ)
Ω(φ)

, φ(ψ0) = φ0. (16)

The sign of the derivative and the constant of integration must be chosen correspondingly, depending on whether the

maximum or the minimum of G is required: taking dφ/dψ ≥ 0 with φ(ψmax) = φmax yields the maximizer, while

dφ/dψ ≤ 0 with φ(ψmax) = φmin corresponds to the minimizer.

If φ(Γ1) and ψ(Γ2) are continuous functions, then the transformation, which yields the absolute minimum or the

absolute maximum of G, is at least piecewise continuous. In this case, the differential formulation as presented

here is more natural than the “Gardner’s restacking algorithm” described in Ref. [3]. Making use of the differential

formulation in certain cases can yield an analytical solution of the restacking problem or, at least, allow a solution

by quadratures, hence simplifying the numerical procedure of finding the extremized functional value. On the other

hand, our results can also be formulated in terms of reordering of discrete phase space elements as follows: To obtain

an extremizing transformation, first, chop the phase space Γ into differentially small elements with equal volume

dΓ(i) = dΓ, each confined between the neighboring isosurfaces of φ. Numerate the elements in ascending order with

respect to φ(Γ(i)). Then prepare the new “sites” for these elements – the phase space bins of the same volume,

dΓ̃(j) = dΓ, each located between the neighboring isosurfaces of ψ. Numerate them in ascending order with respect to

ψ(Γ̃(j)) and allocate Γ(i) at Γ̃(j). The maximizing transformation requires that i(j) be an increasing function, while

the minimizing transformation requires that i(j) be decreasing.

Let us apply the obtained results to reproduce the solution of the original Gardner’s problem. To put the energy

functional (1) into the form (3), take

φ(Γ1) = f(r1,p1), ψ(Γ2) = E2(r2,p2). (17)

If E2 includes only the kinetic energy of a particle (E2 = p2
2/2m), then the final particle distribution f(r2,p2)

corresponding to the minimum plasma energy cannot depend on r2, as follows already from Eq. (11). From the
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subsequent arguments, one gets that the final distribution must be a single-valued decreasing function of E2 and

satisfy the equation

df

dE2
= −Ω(E2)

Ω(f)
, (18)

where f(0) = max f(r1,p1). The density of states Ω(f) can be calculated knowing the initial distribution f(r1,p1),

and Ω(E2) is given by

Ω(E2) = 4πm
√

2mE2. (19)

The same analysis, including Eq. (18), applies if E2 contains also a potential energy of a particle in a static background

field U ,

E2(r2,p2) =
p2
2

2m
+ U(r2), (20)

if the density of states Ω(E2) is modified correspondingly. Hence, one can see that the results of Ref. [1] can be

naturally obtained in the framework of the proposed formalism. Yet, the latter also yields other results of interest, as

we show in the next sections.

III. CONDITIONAL EXTREMUM

The formalism presented in Sec. II yields a natural generalization to the case of a conditional restacking problem.

Consider finding an extremum of the functional (3) under the condition

R = R(0), R =
{
Ri

∣∣∣ i = 1..K
}
, (21)

where

Ri =
∫
ψ̃i(Γ2) φ̃i(Γ1) dΓ, (22)

assuming that ψ̃i(Γ2), φ̃i(Γ1) are given functions, and R(0) = {R(0)
i | i = 1..K} is a set of constants. Conditional

extrema of G are realized at unconditional extremizers of the functional

G̃ = G+ λ · R, (23)

where λ = {λi | i = 1..K} are indefinite Lagrange multipliers to be found. As seen from the previous analysis, the

extrema of G̃ are realized under the condition

{ψ, φ} +
K∑

i=1

λi

{
ψ̃i, φ̃i

}
= 0. (24)

If φ̃i are all equal to φ (alternatively, all ψ̃ may be equal to ψ), Eq. (24) is simplified:

{Ψ, φ} = 0, (25)
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where Ψ = ψ + λ · ψ̃. Eq. (25) has the form of Eq. (11) and hence can be solved by the method proposed in Sec. II,

with λi to be determined from Eq. (21).

An illustrative example of how this formalism can be applied is the problem of finding (again, assuming phase-space

conservation) the minimum energy state of a plasma with a given current. The problem has a definite practical value,

as its solution determines how much energy is required for generating a given amount of plasma current. (Note,

however, that this is not the problem that determines the “efficiency” of maintaining a current, since the maximum

efficiency may not occur for the minimum energy distribution [8].) To get the minimum energy current, consider

the frame of reference moving with the velocity v0 = j/en, where j is the current density, e is the charge of an

individual particle, and n is the particle number density. Solve the unconditional energy minimization problem for

the new frame, as shown in Sec. II. The absolute minimum of the total particle energy is achieved at an isotropic

distribution, which carries no current. On the other hand, in the moving frame, the current density must be zero by

definition. Thus, the solution of the unconditional problem in the new frame satisfies the requirements of the original

conditional problem. Hence, the minimum energy state at given current is realized at particle distribution isotropic

and monotonically decreasing with energy in the frame of reference where the net current is zero.

Note that the same result can be obtained formally as follows. Consider the functional

G̃ = W + λ · j, (26)

where the plasma current, assuming given initial distribution f(p1), equals

j = e

∫
v2 f(p1) d

3p1. (27)

Rewrite Eq. (26) as

G̃ =
∫

(p2 + λe)2

2m
f(p1) d

3p1 − λ2e2

2m
, (28)

where the value of the second term is fixed, and take

φ(Γ1) = f(p1), Ψ(Γ2) =
(p2 + λe)2

2m
. (29)

Hence, one can see that, to minimize G̃, the particle distribution must become a function of energy in the frame of

reference moving with v0 = −λ/me, and thus

G̃min = W ′
min − λ2e2

2m
. (30)

Here W ′
min is the minimized energy in the moving frame, where the particle distribution must be isotropic (as follows

from Sec. II), i.e. carry no current. The total current then equals env0, hence

λ = −mj/ne2. (31)

On the other hand, by definition,

G̃min = Wmin + λ · j. (32)
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Using Eqs. (30), (31), (32), one has

Wmin =
mj2

2ne2
+W ′

min, (33)

where the first term represents the energy of the average flow, while the second term stands for the minimum thermal

energy of the original distribution f(p1), which cannot be reduced further by Hamiltonian transformations of the

original particle distribution.

IV. RESTACKING ALGORITHM FOR MAGNETIZED TOROIDAL PLASMAS

Consider now the formalism developed in Sec. II in application to magnetized plasmas. Assume that a plasma

has a toroidal geometry, so that inhomogeneities along the magnetic field are smoothed out and the plasma becomes

uniform along a flux surface on time scales large compared to the period of particle rotation along the torus. Similarly,

assume uniform distribution over gyrophases, plus assume homogeneous plasma profile across flux surfaces.

Suppose now that the plasma, having an initial distribution f(r1,p1), undergoes Hamiltonian interaction with an

electromagnetic field for a limited time, which eventually results in bringing the plasma to some final state f(r2,p2).

The number of particles within each phase space element is conserved:

f(Γ1) dΓ1 = f(Γ2) dΓ2, (34)

as well as conserved is the distribution function itself, as follows from the Liouville theorem. Assuming spatially

uniform both initial and final distributions and neglecting the dependence on the gyrophase, obtain

f(ε2, u2) = f(ε1, u1), (35)

where ε is the energy of the particle motion transverse to the dc magnetic field, and u is the particle velocity along

the field. Since dΓi = m2 dui dεi dθi dVi, where θi is the gyrophase and dVi is the element of a spatial volume, from

Eqs. (34), (35) one has

du2 dε2 = du1 dε1 (36)

after integrating over θ and V . Eq. (36) can be considered as the requirement of space conservation on an effective

phase plane (u, ε), whose evolution can hence be considered a Hamiltonian process with a single degree of freedom

(N = 1).

A variational formalism, like in Sec. II, can be readily restated for the reduced system. Hence, the absolute maximum

and the absolute minimum of the functional

G =
∫
ψ(u2, ε2)φ(u1, ε1) dΓ̃ (37)

(dΓ̃ ≡ dΓ̃1 = dΓ̃2, dΓ̃i = dui dεi) are realized by phase space transformations, which map the surfaces of constant φ

on the plane (u1, ε1) to the surfaces of constant ψ on the plane (u2, ε2) and provide that φ(ψ) becomes a monotonic

function given by Eq. (16). If dφ/dψ ≥ 0, the absolute maximum is realized; if dφ/dψ ≤ 0, then the absolute minimum

is obtained.
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V. CONCLUSIONS

We developed a variational formalism to study the phase space limitations on the Hamiltonian interaction between

plasmas and electromagnetic fields. The solution of the so-called Gardner’s restacking problem [1] was given a precise

mathematical formulation over a class of piecewise continuous phase space transformations. The analysis was extended

to the conditional restacking problem, through which we found the minimum energy state of a plasma with a given

current. We also showed how the formalism could be applied to toroidal plasmas in a dc magnetic field.
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