
PREPARED FOR THE U.S. DEPARTMENT OF ENERGY,
UNDER CONTRACT DE-AC02-76CH03073

PRINCETON PLASMA PHYSICS LABORATORY
PRINCETON UNIVERSITY, PRINCETON, NEW JERSEY

PPPL-3945 PPPL-3945
UC-70

Approximate Integrals of rf-driven Particle Motion
in Magnetic Field

by

I.Y. Dodin and N.J. Fisch

April 2004



PPPL Reports Disclaimer

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its
use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States
Government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United
States Government or any agency thereof.

Availability

This report is posted on the U.S. Department of Energy’s Princeton
Plasma Physics Laboratory Publications and Reports web site in Fiscal
Year 2004. The home page for PPPL Reports and Publications is:
http://www.pppl.gov/pub_report/

DOE and DOE Contractors can obtain copies of this report from:

U.S. Department of Energy
Office of Scientific and Technical Information
DOE Technical Information Services (DTIS)
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Fax: (865) 576-5728
Email: reports@adonis.osti.gov

This report is available to the general public from:

National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161

Telephone: 1-800-553-6847 or
(703) 605-6000

Fax: (703) 321-8547
Internet: http://www.ntis.gov/ordering.htm



Approximate integrals of rf-driven particle motion in magnetic field

I.Y. Dodin and N.J. Fisch

Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA

For a particle moving in nonuniform magnetic field under the action of an rf wave, ponderomotive

effects result from rf-driven oscillations nonlinearly coupled with Larmor rotation. Using Lagrangian

and Hamiltonian formalism, we show how, despite this coupling, two independent integrals of the

particle motion are approximately conserved. Those are the magnetic moment of free Larmor

rotation and the quasi-energy of the guiding center motion parallel to the magnetic field. Under

the assumption of nonresonant interaction of the particle with the rf field, these integrals represent

adiabatic invariants of the particle motion.

I. INTRODUCTION

Under the action of an intense rf drive, charged particles undergo fast oscillations superimposed on the average drift

motion. If the drift is slow enough and the amplitude of particle oscillations is small compared with the characteristic

spatial scale of the applied external fields, then the particle average motion can be described in the framework of the

guiding center approach. In this case, the average effect of the rf drive can approximately be replaced by the particle

interaction with an effective potential [1, 2].

One of the applications where the guiding center approximation finds use is the problem of the particle motion

under the action of intense rf radiation superimposed on the particle interaction with a static nonuniform magnetic

field [2]. An interesting variation of this effect with important consequences occurs when the static field is nonuniform

[3]. In this case, the particle motion consists not only of the rf-driven oscillations, but also of the Larmor rotation in

the plane perpendicular to magnetic field lines, accompanied by the diamagnetic acceleration of the particle guiding

center parallel to the magnetic field. These types of motion can be easily studied separately when either the rf field

or the magnetic field is negligible: In the absence of rapidly oscillating rf fields, it can be shown that the magnetic

moment associated with particle Larmor rotation, µ = mv2
⊥/2B0, represents an adiabatic invariant [4, 5], where

1
2 mv

2
⊥ is the energy of particle motion transverse to the magnetic field B0. In the other case, when only the rf field

is present, the adiabatic invariance of the quantity 1
2 m〈v〉2 +Φ can be proven (see, e.g., [6]), where 〈v〉 is the guiding

center velocity, and Φ is the so-called ponderomotive potential [1, 2] given by

Φ =
e2|E(0)

rf |2
4mω2

, (1)

where e and m are the electric charge and the mass of the particle, E(0)
rf and ω are the complex amplitude and the

frequency of the rf field.

In the case when both magnetic and rf fields are present, the question about the adiabatic invariants conservation

becomes nontrivial because of possible coupling between the Larmor rotation and the rf-driven motion. As the

Larmor frequency becomes comparable to the frequency of the rf field, conventional hierarchy of adiabatic invariants
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[6] cannot be developed, and, in principle, chaotic motion may result from nonlinear interaction between the two

types of oscillations.

Usually, when the motion of an rf-driven particle in a magnetic field is studied, the two approximate integrals

are derived [2]. Those are the magnetic moment associated with the particle free Larmor rotation µ = mv2
f,⊥/2B0

(here vf,⊥ = v⊥ − vrf,⊥ is the velocity additional to the velocity of the rf-driven oscillations vrf) and the particle

“quasi-energy”

E =
m〈v||〉2

2
+ µB0 + Φ, (2)

with the effective potential Φ given by

Φ =
∑

ν=0,±1

e2|E(0)
ν |2

4mω(ω + νΩ)
. (3)

Here E(0)
ν is the amplitude of the electric rf field component with polarization τ ν ,

τ±1 = (x0 ± iy0)/
√

2, τ 0 = z0, (4)

where x0 and y0 are the unit vectors in the plane perpendicular to the magnetic field B0 ≈ z0B0(z), smooth on the

scale of the oscillations amplitude; Ω = eB0/mc is the Larmor frequency.

Though µ is often claimed to be an adiabatic invariant [2, 7, 8], this statement, rather than proven rigorously,

is usually made by analogy with the case of free Larmor rotation at zero rf field (see though the discussion in [9]).

Consequently, conservation of µ is never examined analytically (for numerical and experimental studies, see [7, 8]).

Moreover, it remains unclear exactly what is the nature of the integral (2) and what are the approximations under

which E can be considered as a conserved quantity.

These shortcomings of the conventional consideration result from the intrinsic limitations of the approach used for

deriving the average ponderomotive force. Namely, the guiding center motion equations are often obtained by direct

averaging of the true motion equations, Taylor-expanded with respect to the spatial coordinate (see, e.g., [2, 10–13]).

The potential form of the ponderomotive force in this case is not deduced directly — it is rather guessed (while the

proof follows), which makes the complicated averaging procedure even more unclear. What we show, however, is that

there exists an alternative, physically intuitive, formally simple, and clear in derivation Lagrangian approach, leading

to the same expression for the average force “seen” by a slowly drifting particle.

The purpose of the present paper is, first, to present a simple Lagrangian derivation of the known conservation laws

for µ and E ; second, to give a systematic Lagrangian and Hamiltonian formulation of the particle average motion;

and, third, to demonstrate how such a treatment gives the conditions under which µ and E can approximately be

considered as adiabatic invariants. The paper is organized as follows: In Sec. II we show how the average potential (3)

can be derived naturally and the conservation of µ and E can be proved in the framework of the Lagrangian approach.

A more detailed calculation involving the Hamiltonian analysis is given in Sec III, which demonstrates the connection

between the approximate integrals of the rf-driven particle motion and the theory of adiabatic invariants. We show

that µ and E represent adiabatic invariants of the particle motion only under the assumption of negligible heating of
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a particle at high-order resonances, which always takes place when the particle travels along a nonuniform magnetic

field under the action of an rf drive. In Sec IV, we summarize our main ideas. Some supplementary calculations are

given in Appendices A and B.

II. GUIDING CENTER LAGRANGIAN

To study the average motion of a charged particle under the action of rf radiation in a dc magnetic field, let us first

concretely define the guiding center approximation. The key condition under which particle dynamics can be readily

averaged over fast oscillations is that the particle displacement on a oscillation time scale is small compared with the

scale of the external field. Hence, the obvious conditions which are required can be put as

r∼
∆

� 1,
|〈v〉|
ω∆

� 1,
|〈v〉|
Ω∆

� 1, (5)

where r∼ is the amplitude of particle oscillations and ∆ is the least characteristic spatial scale of electromagnetic

field. In addition to those, however, one also needs the drift motion to remain slow in comparison with the beating

period between Larmor rotation and rf-driven oscillations τb = 2π/|ω − Ω|, and that τb itself varies smoothly along

the particle trajectory:

〈vz〉
|ω − Ω|∆ � 1,

〈vz〉
(ω − Ω)2

d(ω − Ω)
dz

� 1. (6)

To develop the guiding center description under the conditions (5), (6), first consider the expression for the action

S =
∫ t2

t1

Ldt, (7)

where L is the Lagrangian of the particle motion. Consider the time scale ∆t = t2−t1 large compared to τb. Then, the

major contribution to the action S (linear on ∆t) is provided by the time-averaged part of the Lagrangian, 〈L〉, while

the contribution of the oscillatory Lagrangian into the integral (7) remains small. Thus, the action S is approximately

given by S =
∫ t2

t1
〈L〉dt, from where it follows that Ld ≡ 〈L〉 can be treated as the Lagrangian of the guiding center

motion.

To calculate Ld, consider the full Lagrangian of a particle moving in a static magnetic field B0 = ∇ × A0 under

the action of rf drive governed by the vector potential Arf :

L =
mv2

2
+
e

c
(v · (A0 + Arf)) , (8)

Take ε to be the largest among the small parameters defined in Eqs. (5), (6). In the limit ε� 1, the vector potential

A0(r) can be approximated with a linear function of the particle transverse displacement:

A0(r) = B0(z)
(
z0 × r

)
/ 2 + O(ε) (9)

(see also [14]). Let us denote the rf-driven oscillatory displacement with rrf , and introduce the new coordinate

R = r − rrf together with the corresponding velocity V = dR/dt and the quiver velocity vrf = drrf/dt. Then the
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Lagrangian (8) takes the form

L =
mV 2

2
+
e

c
(V ·A0(R)) + Lrf + L∼, (10)

Lrf =
mv2

rf

2
+
e

c
(vrf ·A∼) , (11)

L∼ = mV · p∼ +
e

c
(vrf ·A0(R)) + O(ε), (12)

where p∼ = mvrf +(e/c)A∼ = mvrf,⊥+(e/c)A∼,⊥+O(ε) is the the oscillatory momentum, and A∼ = Arf +A0(rrf)

is the the oscillatory vector potential “seen” by the particle.

In comparison with traditional averaging of motion equations (see, e.g., [2, 10–13]), the advantage of the Lagrangian

approach consists of the fact that, in the guiding center Lagrangian, it is enough to keep only the zeroth-order terms

with respect to ε. (The ponderomotive force, which is of the first order in ε, readily appears in the motion equation,

as the guiding center Lagrangian is differentiated with respect to Z ≡ Rz.) In the limit of zero ε, the function L∼

represents a full time derivative, L∼ = d(R⊥ ·p∼,⊥)/dt+O(ε), and thus can be taken out from the original Lagrangian.

Therefore, the particle motion can be equivalently described in terms of the alternative Lagrangian function

L =
mŻ2

2
+ L⊥ + Lrf + O(ε), (13)

L⊥ =
mV 2

⊥
2

+
e

c
(V⊥ · A0(R⊥, Z)) . (14)

From the form of the Lagrangian (13), it can be concluded that, in the limit ε→ 0, a particle drifts along a magnetic

field line with velocity 〈vz〉 = Ż, undergoes Larmor rotation in variables (R⊥,V⊥) and experiences a ponderomotive

force ∇Lrf . To derive the Lagrangian of the longitudinal drift motion, let us average the expression (13) over both

Larmor and rf-driven oscillations, as well as over the beating between the two. Since L⊥ has a form of the Lagrangian

of Larmor motion in variables (R⊥,V⊥), it can be shown (Appendix A) that, after omitting the full time derivative,

〈L⊥〉 = −µB0, µ = const. (15)

Let us derive now the expression for the time-averaged function Lrf . Under the action of an rf field a particle

undergoes oscillations, which can be represented in the complex form as rrf = (−e/mω2)TErf , where the tensor T,

for Erf ∝ exp(−iωt), is given by

T =


1

1−b2
ib

1−b2 0
−ib
1−b2

1
1−b2 0

0 0 1

 , b = Ω/ω. (16)

Consider the most general expression for the rf field:

Erf = Re
(
E

(0)
+ τ+ + E

(0)
− τ− + E

(0)
|| τ 0

)
e−iωt, (17)

where E(0)
ν are some arbitrary complex amplitudes, τ ν are the polarization vectors defined according to Eq. (4). In

this case, one has

〈Lrf〉 =
e2

4mω2

{
|TErf |2 − 2Re [E∗

rf · TErf ] + b z0 · Im [(T∗E∗
rf) × (TErf)]

}
. (18)
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Since

TErf =
x0

√
2

(
E

(0)
+

1 + b
+
E

(0)
−

1 − b

)
+
iy0

√
2

(
E

(0)
+

1 + b
− E

(0)
−

1 − b

)
+ z0E

(0)
|| , (19)

it can be shown that

|TErf |2 =
|E(0)

+ |2
(1 + b)2

+
|E(0)

− |2
(1 − b)2

+ |E(0)
|| |2, (20)

Re [E∗
rf ·TErf ] =

|E(0)
+ |2

1 + b
+

|E(0)
− |2

1 − b
+ |E(0)

|| |2, (21)

Im [(T∗E∗
rf) × (TErf)]z =

|E(0)
+ |2

(1 + b)2
− |E(0)

− |2
(1 − b)2

. (22)

Substituting those into Eq. (18), one gets

〈Lrf〉 = − e2

4mω2

{
|E(0)

+ |2
1 + b

+
|E(0)

− |2
1 − b

+ |E(0)
|| |2

}
= −Φ, (23)

where Φ is the ponderomotive potential defined according to Eq. (3).

Hence, finally, the expression for the guiding center Lagrangian can be put in the form

Ld =
mŻ2

2
− µB0(Z) − Φ(Z) + 〈O(ε)〉, (24)

yielding a motion equation in a potential form

m
d2Z

dt2
≈ − d

dZ

(
µB0(Z) + Φ(Z)

)
, (25)

which conserves the quasi-energy (2). Indeed, E coincides with the drift Hamiltonian of a particle, Hd = mŻ2 − Ld,

Ż = 〈v||〉, and, since ∂Hd/∂t = 0, the value of E represents an integral of the guiding center motion..

III. ACTION-ANGLE VARIABLES

As shown above, the two approximate integrals of the guiding center motion, µ and E , exist for a particle undergoing

Larmor rotation under the action of an rf field. In this section, we show how these integrals appear naturally from

the Hamiltonian description of the ponderomotive effects (see also [9], where the rf field is treated as a perturbation).

To be more precise, what is shown below is that, under certain conditions, µ and E can be considered as adiabatic

invariants of the particle motion.

To proceed, let us develop the Hamiltonian formalism for particle dynamics starting from the Lagrangian (13). The

canonical momentum of the motion, additional to the rf-driven oscillations, is given by P = mV + (e/c)A0(R), and

the Hamiltonian function can be put in the intuitively expected form

H =
P 2

z

2m
+

1
2m

(
P⊥ − e

c
A0(R⊥, Z)

)2

− Lrf(Z, t) + O(ε), (26)

where Larmor rotation in the variables (R⊥,P⊥, ) is separated (at least, locally) from the rf-driven oscillations and the

average motion parallel to magnetic field. After the canonical transformation to the Larmor guiding center variables

(see, e.g., [6, 15]), the equivalent Hamiltonian takes the form

H =
P 2

z

2m
+ Ω(Z)Pφ − Lrf(Z, t) + ε∆H, (27)
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where Pφ = (mc/e)µ is the action variable corresponding to the canonical angle φ standing for the Larmor phase of

the particle, ∆H is a periodic function of φ and t (since the original particle Lagrangian is periodic with respect to

these variables).

Consider now the the action (7) written as

S =
∫
Pz dZ + Pφ dφ−Hdt. (28)

From this representation [16], it follows that one can treat the quantity −H as a canonical momentum with the time

t as the corresponding canonical coordinate, while the pair (−Pz, Z) is treated as the new Hamiltonian Ĥ and the

new “time”: Ĥ = −Pz(φ, Pφ; t,−H ; Z). Assuming, for clarity, that Pz is positive, one gets

Ĥ = −
√

2m
(
H + Lrf(Z, t) − ΩPφ

)
+ ε∆Ĥ, (29)

with small term ε∆Ĥ , periodic in t and φ.

Let us perform another canonical transformation to represent the Hamiltonian function in terms of the action

variable

Pϕ =
1
2π

∮
H dt (30)

and the corresponding angle variable ϕ, yet to be defined. To do so, consider the generating function

F (Pϕ, t) = −
∫ t

0

H dt = −Pϕ ωt+ F∼, (31)

with F∼ having zero time average. The new Hamiltonian H = Ĥ + ∂F/∂Z is given by H = H0 + εH∼, where

H0 = −
√

2m (ωPϕ − Φ(Z) − ΩPφ), (32)

and H∼ is periodic with respect to φ and t. Since

ϕ =
∂F

∂Pϕ
= −ωt−O(ε), (33)

where the second term is periodic in t, H∼ also appears to be periodic in ϕ. Finally, introducing the vector action

J = (Pφ, Pϕ) and the corresponding angle variable θ = (φ, ϕ), one can put the Hamiltonian H in the form

H = H0(J;Z) + εH∼(J,θ;Z), (34)

where the small term H∼ is periodic in θ and thus can be represented as Fourier series

H∼ =
∑
n

Hn(J;Z) exp(in · θ), (35)

with summation taken over all possible pairs of integers n = (nφ, nϕ).

Consider now another canonical transformation to the new variables (θ,J) with the generating function given by

S(J,θ) = J · θ +
∑
n,k

εk Sn,k(J;Z) exp(in · θ). (36)
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For small ε, one can find such coefficients Sn, for which the new Hamiltonian H represents a function of J alone (see,

e.g., [6] and the references therein). To the first order in ε one has

J = J + ε
∑
n 6=0

n〈v||〉Hn(J;Z)
n ·Ξ exp(in · θ) (37)

(see also [9]). Here θ is considered a function of θ, and Ξ = 〈v||〉 ∂H0/∂J = (Ω,−ω) is the frequency vector.

By construction, the new Hamiltonian H(J,θ) does not depend on θ to any order in ε. Thus, from the canonical

equation dJ/dZ = −∂H/∂θ, it follows that J is conserved with exponential precision if the above procedure can be

realized (see below). In this case, the value of J represents a so-called adiabatic invariant of the particle motion. As

one can see from the definition of the action variable J = (Pφ, Pϕ), the previously introduced quantities µ and E can

be represented in the form

µ = (e/mc)Pφ + O(ε), E = Pϕω + O(ε), (38)

and thus also represent approximate integrals of the particle motion. If evaluated away from the region of nonzero

Hamiltonian of interaction εH∼, the O(ε) terms vanish. Therefore, after the particle has experienced a complete

transition between the two regions of nonzero ε, the overall changes of µ and E are exactly proportional to the changes

of Pφ and Pϕ correspondingly:

∆µ = (e/mc)∆Pφ ≈ 0, ∆E = ω∆Pϕ ≈ 0. (39)

Note, however, that under the condition of resonant interaction between the particle cyclotron motion and the rf

field (nφΩ = nϕω) the canonic transformation (36) cannot be accomplished because of its singularity. Hence, the

conservation laws (39) are violated, and a particle becomes capable of exchanging energy with the field. Such nona-

diabatic interaction always takes place when Ω varies along the particle trajectory, so that the particle consecutively

passes resonant regions corresponding to different n. Let us estimate the change of action J as a particle crosses a

resonance region nφΩ = nϕω. Suppose nφ/nϕ 6= ±1, so that one may take Hn ≈ const. In this case, applying the

steepest descent method when integrating the canonical equation for J and taking B0/B
′
0 = LB ≈ const, one gets for

n 6= 0:

(∆J)n ≈ 2εn |Hn|
√
π
|〈v||〉|LB

nϕω
cosψn, (40)

where ψn is a constant determined by initial conditions. Note that, since ε ∝ L−1
B , the change of the action variable

scales like L−1/2
B . If LB is large enough, so that (∆J)n � J, then scattering on multiple resonances, crossed at random

moments of time can be considered a diffusive process in the J space. Indeed, in average over ψn change of action,

grows linearly with trace Z:

〈(∆J)2Σ〉 ∼ Z
|∆J|2
∆z

, (41)

where |∆J| is the characteristic (over n) change of action (40), ∆z is the characteristic distance between the resonances.

To ensure that 〈(∆J)2Σ〉 is small, it is necessary that the amplitues of harmonics |Hn 6=0| are sufficiently small. Only

in this case, approximate conservation of adiabatic invariants (39) can be claimed.
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In the end, it is important to emphasize that, though the above consideration was developed for strictly periodic

rf fields, it can also be extended to include more general situation of interest, that is the rf field consisting of

non-commensurate multiple harmonics. In this case, the rf-driven motion no longer remains periodic, and the Pϕ

conservation theorem must be revised. (Note that the loss of periodicity for the rf-driven motion does not impact

the µ conservation theorem, since Larmor rotation stays periodic with the frequency Ω.) For this situation, one must

redefine the action Pϕ as the “energy” H averaged over some arbitrary time interval ∆τ , large compared to the

correlation time of the rf-driven oscillatory motion τ∼:

Pϕ = lim
∆τ/τ∼→∞

1
∆τ

∫
∆τ

H dt = 〈E〉. (42)

As shown in Appendix B, for aperiodic processes, the quantity (42) represents an approximate integral of the particle

motion (under the same stipulations as discussed above). Hence, the quasi-energy of a particle E and the (modified)

magnetic moment µ are approximately conserved throughout particle motion in arbitrary nonresonant rf field under

the condition of small ε.

IV. SUMMARY

In this paper, we showed how the Lagrangian formulation of ponderomotive effects can be used to derive the average

potential. This formulation also makes physically and mathematically clear the origin of the well-known approximate

integrals of the particle motion. Those include the magnetic moment µ of free Larmor rotation (additional to the

externally driven motion), and the quasi-energy E of the guiding center motion parallel to the magnetic field. By

developing the Hamiltonian formulation, we showed that µ and E represent adiabatic invariants of the particle motion

only under the assumption of negligible heating at high-order resonances, which otherwise results in diffusive variations

of these quantities. With minor reservations, the conservation of µ and E is preserved for both periodic and aperiodic

high-frequency fields though, in the latter case, the periodicity of the particle motion may be lost completely.

The work was supported by the US DOE, under contract DE-AC0276-CHO3073.

APPENDIX A: EXPRESSION FOR 〈L⊥〉

The Larmor rotation, additional to the rf-driven motion can be described in terms of the Larmor radius ρ = |R⊥|,
the gyrophase φ, and the corresponding canonical momentum Pφ = mρ2(φ̇ + 1

2 Ω). Using these variables, one can

rewrite Eq. (14) in the form

L⊥ = −φdPφ

dt
− µB0 +

d

dt
(φPφ) , (A1)

where µ = mv2
f,⊥/2B0. Note that

dPφ

dt
=
dL
dφ

=
∑

n

in Cn(Z, Ż) exp(inφ), (A2)
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where we used the Fourier transformation of L with respect to the angle variable φ. The φ-dependence of L can

originate only from the inhomogeneity of the magnetic (and rf) field, which vanishes in the zeroth-order approximation

in ε, and thus Cn = O(ε). Also note that dφ/dt = Ω +O(ε), and therefore the time-averaged derivative of Pφ is small

compared to ε:

〈dPφ/dt〉 = o(ε). (A3)

From the obtained result, it follows that Pφ (or µ = (e/mc)Pφ) represents an approximate integral of the particle

motion. (More careful discussion is given in Sec. III; see also [2, 9].)

The contribution of the first term in Eq. (A1) into the integral (7) taken over a large time ∆t = O(ε−1) scales like

O(1). Since the contribution of the µB0 term appears to be of the order of ε−1, the first term in Eq. (A1) can be

neglected and, omitting the full-time derivative, one can approximate the average Lagrangian function (A1) as

〈L⊥〉 = −µB0, (A4)

where µ = const (see also [14]).

APPENDIX B: APPROXIMATE INTEGRAL OF APERIODIC MOTION WITH A SLOWLY VARYING

PARAMETER

Consider a dynamic system governed by the Hamiltonian function H(Q,P , λ(t)) with a parameter λ(t) slowly

varying in time t. Assume that, for dλ/dt = 0, the system undergoes aperiodic oscillatory motion with a characteristic

correlation time τ∼. Assume also that these oscillations are statistically uniform on time scales large compared to τ∼.

Consider the action J , that is the canonical momentum P averaged over the fixed trajectory ∆Q =
∫
∆T dQ, along

which the system travels during some large time ∆T � τ∼:

J = lim
∆T(∆Q)

τ∼ →∞

1
∆Q

∫
∆Q

P0 dQ0, (B1)

where the subindex 0 denotes quantities evaluated on the unperturbed trajectory with dλ/dt = 0. The above-imposed

requirement of statistical uniformity of the oscillatory motion guarantees that the averaging procedure is well-defined,

so that the limiting value of the integral (B1) exists.

Let us prove that the action J represents an approximate integral of the system, i.e. remains constant if λ(t) changes

slowly compared to unperturbed oscillations, in the sense that

ε = ∆T

∣∣∣∣∣ 1λ dλ

dt

∣∣∣∣∣� 1. (B2)

(The treatment of periodic oscillations, similar to the one given below, can be found in [16].) To do so, consider the

time derivative

dJ

dt
=

1
∆Q

∫
∆Q

∂P0

∂t
dQ0, (B3)



10

where we omitted the limit sign for clarity and made use of the fact that the limits of integration do not depend on

time. Since the integration is performed over the unperturbed trajectory, P0 must be considered a function of Q0,

parameter λ and energy E: P0 = P0(Q0;λ,E). Then

dJ

dt
=

1
∆Q

∫
∆Q

(
∂P0

∂λ

dλ

dt
+
∂P0

∂E

dE

dt

)
dQ0, (B4)

where the partial derivatives can be obtained by differentiating the definition of the energy E = H(Q,P ;λ):

dE =
∂H
∂QdQ +

∂H
∂P dP +

∂H
∂λ

dλ. (B5)

Representing the above expression as the complete differential of P0(Q0;λ,E), one gets

∂P0

∂λ
= − ∂λH0

∂P0H0
,

∂P0

∂E
=

1
∂P0H0

, (B6)

where H0 ≡ H(Q0,P0, λ). Let us use the Hamiltonian equation dQ0/dt = ∂H0/∂P0 to rewrite the above integral in

the following form:

dJ

dt
=

1
∆Q

∫
∆T

(
−∂H0

∂λ

dλ

dt
+
dE

dt

)
dt, (B7)

equivalent to

dJ

dt
=

∆T
∆Q

(〈
dE

dt

〉
− dλ

dt

〈
∂H0

∂λ

〉
λ

)
, (B8)

where the subindex λ stands for averaging at fixed value of the parameter λ, and, in the first-order approximation in

ε, dλ/dt is assumed constant on time ∆T . Since

dE

dt
=
dH
dt

=
∂H
∂t

=
∂H
∂λ

dλ

dt
, (B9)

and λ(t) is a slow function, we again take dλ/dt out of averaging and consider the rest a function of fixed λ and

energy. The latter allows replacing H with H0, so that one gets 〈dE/dt〉 = (dλ/dt)〈∂H0/∂λ〉λ. Finally,

dJ/dt = o (ε), (B10)

from where it follows that the action J represents an approximate integral of motion at small ε.

Note that, in the above derivation, we implicitly assumed that, if λ(t) is changing slowly, the true phase-space

trajectory can be adequately approximated by the trajectory with fixed λ on the whole time interval ∆T . For the

situation discussed in the main text, this requirement is fulfilled due to the linearity of the particle local response to

the rf fields. However, in a strongly nonlinear system, phase space trajectories may be unstable with respect to small

variations of parameters, rendering invalid the above analysis.
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