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Abstract

Recently reported numerical results for axisymmetric devices with low aspect

ratioA found radial transport enhanced over the expected neoclassical value by a

factor of 2 to 3. In this paper, we provide an explanation for this enhancement.

Transport theory in toroidal devices usually assumes largeA, and that the ratio

Bp/Bt of the poloidal to the toroidal magnetic field is small. These assumptions

result in transport which in the low collision limit is dominated by banana orbits,

giving the largest collisionless excursion of a particle from an initial flux surface.

However in a small aspect ratio device one may haveBp/Bt ∼ 1, and the gyrora-

dius may be larger than the banana excursion. Here, we develop an approximate

analytic transport theory valid for devices with arbitraryA. For lowA, we find

that the enhanced transport, referred to as omniclassical, is a combination of neo-

classical and properly generalized classical effects, which become dominant in the

low-A,Bp/Bt ∼ 1 regime. Good agreement of the analytic theory with numerical

simulations is obtained.

PACS numbers: 52.25.Fi 52.65.Cc 52.55.Fa
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A recent numerical study1 of collisional transport in tokamaks with low as-

pect ratio (“spherical tori”) found that the transport rate predicted by a Lorentz

(i.e., full-orbit) code GYROXY2 is substantially larger than the rate computed us-

ing guiding-center (GC) codes such as ORBIT.3 The drift-kinetic equations used

by GC codes are also the basis of standard neoclassical theory,4,5 so the disparity

between the GC and Lorentz results indicates that something is missing in neo-

classical theory, related to the effects of finite gyroradius for devices with low

aspect ratioA ≡ R/a (R anda are the device major and minor radii), and larger

ratiosBp/Bt of the poloidal to toroidal magnetic field than those found in larger-A

tokamaks. The total transport including these new effects was termed “omniclas-

sical transport.”

In this work, we provide an explanation for the omniclassical enhancement

over the neoclassical rates from the ORBIT code. The explanation is a general-

ization of the classical transport one expects in a 1-dimensional (1D) or large-A

(weakly 2D) system, where the diffusion coefficientDcl ' νρ2
g is small com-

pared with the neoclassical coefficientDnc ' ν(qρg)
2/ε3/2 (with ν the collision

frequency,ρg the particle gyroradius, andε ≡ A−1). While some form of clas-

sical transport is one natural candidate to explain the numerical results in Ref. 1,

how this mechanism generalizes to the strongly 2D case, and whether this in fact

accounts for the observed disparity, need to be determined. Here, we present an

approximate analytic calculation of the radial transport, from which emerges the

appropriately generalized expression for the classical transport in this strongly 2D

context, and we provide the demonstration that this expression accounts for the

numerical findings.

In the GC code, a collision operatorC = C‖ is used which scatters only in

pitchλ ≡ v‖/v⊥ ≡ v cos θv, wherev is the particle speed, andv‖ andv⊥ are its

components parallel and perpendicular to the magnetic fieldB. This permits the

particle “banana center” (bounce-averaged flux surface label)x̄ to wander diffu-

sively. In GYROXY, as well as in the analytic calculation,C scatters not only
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in λ, but also in gyrophaseφv, C = C‖ + C⊥, providing a second statistically

independent process by whichx̄ can wander, enhancing the overall transport. As

in the 1D case, the analytic theory finds that the classical transport has two con-

tributions, one from scattering inλ, and a dominant contribution from scattering

in φv. When the collision operator in GYROXY is constrained to scatter only in

λ, we find that the transport rate drops toward that from ORBIT by an amount

consistent with the theory.

The method used to computeD with ORBIT and GYROXY is as described

in Ref. 1. A monoenergetic distribution of particles is loaded on a surfaceψ0 (ψ

is the poloidal flux/2π) uniformly in poloidal angleθ and pitch variableλ. In-

tegrating the particle orbits,D is computed from the Fokker-Planck expression

D = (1/2)d/dt〈(δψ)2〉(t). In Fig. 1 we plot〈(δψ)2〉 (arbitrary units) versus time

from GYROXY and ORBIT, for a high beta equilibrium in the National Spherical

Torus Experiment6 (NSTX) spherical torus with a 100 eV monoenergetic distri-

bution launched on a surfaceψ with maximum major radiusX(ψ) = 140 cm.

The collision frequency used is10−4ω0, with ω0 the cyclotron frequency, which

is well within the banana regime. The top curve (a) is from GYROXY with full

collision operatorC = C‖ + C⊥, the bottom curve (c) is from ORBIT, which has

C‖ only, and the middle curve (b) is from GYROXY withC‖ only. One notes that

the slope of this curve has dropped most of the way from that of full-C GYROXY

curve to the ORBIT curve, as indicated above. The rapid displacement from the

flux surface occuring initially reflects the mean square banana width in the case

of ORBIT, and the much larger banana plus gyro width for the upper two curves.

In Fig. 2 we plotD/Dnc versusX(ψ), whereDnc is the GC result from ORBIT.

The top curve (a) gives results using the fullC, and the bottom curve (b) withC

constrained toC‖ only. Doing so removes about 3/4 of the disparity between the

GYROXY and ORBIT results.

To gain an analytic understanding of these results, we consider the diffusion

of particles in the space of the three constants of motionJ, and in particular,
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diffusion in the banana-center flux surfacex̄. (A typical choice forJ, employed

in the “action-angle formalism”,7 are the magnetic momentJg, the bounce action

Jb, and the angular momentumpζ . For our limited purposes here, we shall only

need to make use of a small part of the machinery of this formalism.) One may

definex̄ using the conservation ofpζ ≡ eζ · p ≡ e
c
Aζ + Mvζ for collisionless

orbits. Here,eζ = Rζ̂ is the contravariant basis vector for toroidal azimuthζ. We

use a flux coordinate system(x, θ, ζ), with x the flux-surface label. The vector

potential is given byA = Φ∇θ − ψ∇ζ, with Aθ(x) = Φ the toroidal flux/2π,

andAζ(x) = −ψ. Thus,pζ = − e
c
ψ + Mvζ , and for this reason, expressions are

somewhat simpler if one adopts the choicex→ ψ, which we now do. Sincepζ is

a constant of the motion, it equals its orbit-averagep̄ζ = e
c
ψ̄ +Mv̄ζ , and thus

ψ̄ = −c
e
(pζ −Mv̄ζ) = ψ − c

e
M(vζ − v̄ζ). (1)

After a little geometry, one can writevζ in terms of the more conventional com-

ponentsv‖, v⊥ as

vζ = R(btv‖ + bpv⊥ cos φv) = Rv(btλ + bp
√

1− λ2cosφv) ≡ vζ‖ + vζ⊥, (2)

wherebt,p ≡ Bt,p/B, the ratio of the toroidal or poloidal to the total magnetic

field.

For trapped particles (trapping-state indexτ = 0), one has̄vζ = 0. For passing

particles (τ = 1), ¯vζ⊥ again vanishes under the gyro-average, whilev̄ζ‖ ' vζ‖, an

approximation improving for more deeply-passing particles. Thus, in Eq.(1), one

has

(vζ − v̄ζ) ' (1− τ )vζ‖ + vζ⊥. (3)

As in the GYROXY simulations, we adopt a collision operator which scatters

in λ andφv, but not in energy:

C ≡ C‖+C⊥ ≡ (νv2/2)∇v ·(I−v̂v̂)·∇v = ν/2[∂λ(1−λ2)∂λ+(1−λ2)−1/2∂2
φv

].

(4)
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C‖ is the usual Lorentz collison operator used in the drift-kinetic framework. Both

C‖, C⊥ are self-adjoint in(λ, φv) space: for any functionsF,G,∫
d2vFC‖,⊥G =

∫
d2vGC‖,⊥F .

We compute the radial flux of banana centers due to the action ofC:

dt〈ψ̄〉 ≡ 〈Cψ̄〉, wheredt is the collisionally-induced time derivative, and for any

functionF (z), 〈F 〉 ≡ V −1
∫
V d

6zfF is a phase-space integral (d6z = d3xd3p) of

F weighted by distribution functionf , over a thin toroidal shell of volumeV cen-

tered at flux surfaceψ. From Eq.(4), one hasdt = d
‖
t + d⊥t , yielding contributions

to the flux induced byC‖ andC⊥, respectively. From Eqs.(1)-(4), one thus has

dt〈ψ̄〉 = (−c
e
M)dt〈(vζ − v̄ζ)〉 = (−c

e
M)〈(C‖ + C⊥)[(1− τ )vζ‖ + vζ⊥]〉, (5)

which one sees gives four terms, of which the term〈C⊥(1 − τ )vζ‖〉 vanishes.

The first term is the neoclassical flux,Γnc ≡ (− c
e
M)〈(C‖(1 − τ )vζ‖〉, while the

remaining two yield the generalized classical flux,Γcl ≡ (− c
e
M)〈(C‖+C⊥)vζ⊥]〉.

To complete the calculation, we need an expression for the particle distribu-

tion f . Any functionf = f0(J) of J satisfies the Vlasov equation, so for low

ν, a good collisionless approximation is the local Maxwellian formf0(ψ̄, E) =

n0/[2πTM ]3/2 exp(−E/T ), with n0 and T functions of ψ̄, andE ≡ Mv2/2

the particle energy. Usinḡψ = ψ − δψ, one hasf0(ψ̄) ' f0(ψ) − δψ∂ψf0,

where∂ψf0 = −κf0, with κ = κn + κT (v2/v2
T − 3)/2, κn ≡ −∂ψ lnn0 and

κT ≡ −∂ψ lnT . From Eqs.(1) and (3),δψ = ( c
e
M)((1−τ )vζ‖+vζ⊥) ≡ δψb+δψg,

with δψg the gyro-orbit radial excursion, andδψb the (bounce-related) radial drift

excursion. Using these in (5), one finds

dt〈ψ̄〉 = −V −1
∫
V
d6z∂ψf0

ν

2
(
c

e
MRv)2 ×

{(1− τ )b2t (1− λ2) + b2p[(1− 2λ2) +
√

1− λ2] cos2 φv} (6)

The integrations overλ andφv here are elementary, and those overθ andv may

be done for specific models. SettingκT = 0 to extract only the diagonal termDψ
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of the transport matrix, we find from Eq.(6)

dt〈ψ̄〉 = −∂ψn0[D̄
ψ
nc(ψ) + D̄ψ

cl(ψ)] = κnV
−1

∫
V
d6zf0[D

ψ
nc(v,x) +Dψ

cl(v,x)],

(7)

whereDψ
nc(v,x) = 1

2
νρ2

g(BtR)2(1− B/Bπ)
1/2, and

Dψ
cl(v,x) = 1

4
(1

3
+ π

2
)νρ2

g(BpR)2 are the neoclassical and generalized classical

diffusion coefficients, which must be integrated overθ andv to obtain the averaged

coefficients. Here,Bπ ≡ B(ψ, θ = π) is the maximum value ofB on surface

ψ. The factor1
3

in Dψ
cl is the contribution from the termC‖vζ⊥ in (5), while

the dominant factorπ
2

is from the termC⊥vζ⊥. Thus, removingC⊥ from the

GYROXY simulation should remove most of the enhancement ofD overDnc, as

seen in Fig. 2. The dominant contribution from this approximate theory is about
π
2
/(1

3
+ π

2
) ' 82% of Dcl, while the factor in Fig. 2 is about 70%. Note that ratios

of these quantities are independent of particle energy, being due to equilibrium

field geometry, and thus these results apply to heat transport as well as particle

transport.

We put these diffusion coefficients in a more familiar form by transforming

from ψ to a flux functionr(ψ) having units of length, which approximates an

average minor radius. One hasdt〈r̄〉 = −∂rn0D̄
r, with D̄r = (∂ψr)

2D̄ψ, and

similarly forDr. Takingr ≡
√

2Φ/B0, with B0 the toroidal field strength on the

magnetic axis, one has(∂ψr) = (q/B0r), and thus

Dr
nc(v,x) = 1

2
ν(ρgq)

2(BtR/B0r)
2(1−B/Bπ)

1/2, and

Dr
cl(v,x) = 1

4
(1

3
+ π

2
)νρ2

g(qBpR/B0r)
2.

The θ-dependences in these expressions lie inρg, (1 − B/Bπ), andBpR. For a

small-ε device,ρg ' const,
∮ dθ

2π
(1 − B/Bπ)

1/2 ' 2
π

√
2ε, (BtR/B0r)

2 ' 1/ε2,

and(qBpR/B0r)
2 ' 1, resulting in the familiar dependences

Dr
nc(v,x) ' σncν(ρgq)

2/ε3/2 andDr
cl(v,x) ' σclνρ

2
g , with numerical coefficients

σnc =
√

2
π

, andσcl = 1
4
(1

3
+ π

2
).

In Fig. 3 we average these expressions using the NSTX geometry to compute

the analytic counterparts of the numerical results in Fig. 2. One notes the approx-
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imate agreement of the numerical and analytic results.

Summarizing, we have provided an explanation for the omniclassical enhance-

ment of the total transport over neoclassical rates observed in Ref. 1, and devel-

oped an approximate transport theory which predicts both the enhancement over

neoclassical from the full-orbit GYROXY code with full collision operator, and

the residual finite-gyroradius enhancement in GYROXY present when its colli-

sion operator is constrained to scatter in pitch only. The enhancement comes from

a generalization to strongly 2D geometries of classical transport, which for low-A

configurations like NSTX can dominate over the neoclassical contribution.
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Figures

FIG. 1. Plots of〈(δψ)2〉 versus time from the full-orbit code GYROXY and guiding-

center code ORBIT, from whose slopes (straight lines) the diffusion coeffi-

cients are computed. See text for details.

FIG. 2. The ratioD/Dnc of the diffusion coefficient from GYROXY to that from

ORBIT, versus radial variableX. See text for details.

FIG. 3. The same ratioD/Dnc as in Fig. 2 from the analytic expressions derived

in the text.
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