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Abstract

An overview is given of certain aspects of fundamental statistical theories as applied to strongly

magnetized plasmas. Emphasis is given to the gyrokinetic formalism, the historical development

of realizable Markovian closures, and recent results in the statistical theory of turbulent generation

of long-wavelength flows that generalize and provide further physical insight to classic calculations

of eddy viscosity. A Hamiltonian formulation of turbulent flow generation is described and argued

to be very useful.
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1 INTRODUCTION

The purpose of this paper is to describe the current state of affairs regarding certain

topics in fundamental statistical plasma physics, with emphasis on techniques and recent

results especially relevant for strongly magnetized plasmas. Such plasmas are particularly

useful in fusion research; however, no detailed knowledge of fusion physics is required or

used in the discussion.

In Sec. 2 I provide some introductory plasma-physics background on the gyrokinetic

formalism used in modern discussions of low-frequency fluctuations in magnetized plasmas.

This is a reduced kinetic (velocity-space) description that efficiently replaces the more

comprehensive Vlasov equation when only low-frequency, long-wavelength fluctuations are

of concern. Moments of the gyrokinetic equation lead to nonlinear gyrofluid equations that

are the plasma analogs of the Navier–Stokes equation. Several important equations are

briefly derived or cited, including the Hasegawa–Mima equation (directly analogous to the

Charney equation for Rossby waves) and the Hasegawa–Wakatani equations.

In Sec. 3 I mention some past and recent plasma applications of statistical methods,

including calculations of gyrokinetic noise and the development of realizable Markovian

closures appropriate for problems with linear waves (ubiquitous in plasma physics as well as

in geophysics and elsewhere).

In Sec. 4 I discuss in detail the statistical description of convective cells, including

zonal flows (those will be defined later). This problem is closely related to calculations

of eddy viscosity for Navier–Stokes fluids; I will note a precise and quantitative connection.

The methodology unifies a number of interesting technical specialities, including statistical

closure theory, the theory of weakly inhomogeneous spectral evolution equations, field-

theoretic techniques, and the Hamiltonian formulation of nonlinear partial differential

equations (PDE’s).

The paper ends in Sec. 5 with some discussion and suggestions for future work.
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2 INTRODUCTORY PLASMA-PHYSICS BACKGROUND, PARTICULARLY

GYROKINETICS

At the level of one-particle probability density functions (PDF’s), the most fundamental

description of a magnetized, collisional plasma is provided by the kinetic equation

∂tfs(x,v, t) + v ·∇fs + (q/m)s(E + c−1v×B) · ∂vfs

= −Cs[f ], (1)

where the collision operator C is the Balescu–Lenard operator or, more practically, the

Landau operator. Here s is a species label, q is the charge, m is the mass, E is the

electric field, B is the magnetic field, and square brackets denote functional dependence.

The fields are determined from Maxwell’s equations. Equation (1), which lives in the

six-dimensional (6D) phase space of a generic particle (sometimes called the µ space),

describes all particle motions, including the rapid gyrospiraling around the magnetic field

at frequency ωc
.
= qB/mc, as well as both high- and low-frequency collective fluctuations.

Its very completeness, however, poses substantial problems for both analysis and numerical

simulation. For toroidal plasma systems (Fig. 1), which are routinely confined long enough

to have particle distributions very close to a local Maxwellian, simple arguments [1] show

that the most important microinstabilities are of low frequency, characteristically ω ∼ ω∗,
where ω∗ is the so-called diamagnetic drift frequency inversely proportional to the scale

length Ln of the background density profile. Specifically, if B ∝ ẑ and ∇〈n〉 ∝ −x̂, then

ω∗ = kyV∗, where

V∗ .
= cTe/eBLn = (ρs/Ln)cs, (2)

the sound speed is cs
.
= ZTe/mi (Te is the electron temperature and Z is the atomic number

of the ions), and ρs
.
= cs/ωci. One has

ω∗/ωci = (kyρs)(ρs/Ln) � 1, (3)

since typically kyρs = O(1) and ρs � Ln. The disparity between ω∗ and ωci implies that

simulations of the complete dynamics are prohibitively lengthy by orders of magnitude, even

with modern supercomputers.

The advent of the nonlinear gyrokinetic formalism was a major advance. Gyrokinetics

is the statistical description of the motion of appropriately defined gyrocenters. Most
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heuristically, the motion of a gyrocenter is defined by the well-known particle drift

velocities [2] such as the E ×B, ∇B, and curvature drifts. However, there are subtleties,

especially surrounding the role of the polarization drift V pol = ω−1
c ∂t(cE⊥/B) (⊥ means

perpendicular to B), that can only be addressed with the aid of a systematic formalism.

Following earlier attempts at linear gyrokinetics [3, 4], Frieman and Chen [5] published

an important paper discussing the nonlinear problem. That work, however, divided the

distribution function into separate parts for the background and the fluctuations, so the

resulting gyrokinetic equation was not immediately useful for numerical simulation and also

disguised certain important conservation properties of the dynamics. Lee [6] attempted

to correct those deficiencies; however, his recursive procedure was soon superceded by the

noncanonical Hamiltonian formalism of Dubin et al. [7] based on the Darboux techniques of

Littlejohn [8]. After the later advent of even more efficient techniques based on differential

one-forms [9], the formalism was further refined by Hahm [10]. For the most modern results,

see Refs. 11 and 12.

The Hamiltonian methods proceed by constructing a perturbative change of variables

from an initial set of guiding-center variables appropriate for a static, spatially constant

magnetic field. The goal of the transformation is to remove dependence on the gyro-angle θ

from all components of the fundamental differential one-form [9]; when that is done, the

magnetic moment µ is (adiabatically [13]) conserved. The procedure thus ensures both that

the gyrocenter PDF is independent of θ (so the phase space is 5D rather than 6D) and that

the left-hand side of the kinetic equation contains no derivative with respect to µ. These

are considerable simplifications. For the simplest case of a constant magnetic field, the

gyrokinetic equation reads (in the absence of collisions)

∂tFs(X, µ, v‖, t) + v‖∇‖Fs

+ V E ·∇Fs + (q/m)sE‖∂v‖Fs = 0. (4)

Here F is the PDF of gyrocenters and the overlines signify the effective (gyro-averaged)

field at the position X of the gyrocenter [in k space, the averaging introduces the factor

J0(k⊥v⊥/ωci)]. Notably, only the E × B drift enters in the gyrokinetic equation; the

polarization drift does not appear. Instead, the effects of polarization enter through the

Poisson equation. That equation holds at the position x of the actual particles; it is
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∇2φ(x, t) = −4πρ(x, t), where ρ =
∑

s(nq)s

∫
dvfx(x,v, t) is the charge density.1 In this

last expression, both the coordinates and the distribution function must be transformed in

order to calculate ρ from the gyrocenter distribution F . The polarization drift is contained

in that change of coordinates [7, 13], the several steps of which are reviewed in App. C of

Ref. 14. For Ti → 0, the final result for a quasineutral plasma consisting of electrons and a

single ion species is

λ2
De∇2ϕ+ ρ2

s∇2
⊥ϕ = −(δNi/ni − δne/ne), (5)

where λDe is the electron Debye wavelength [λDe
.
= (Te/4πnee

2)1/2] and ϕ
.
= eφ/Te. The ρ2

s

term describes the ion polarization density npol
i (electron polarization is negligible); that is,

ni = Ni + npol
i , where npol

i obeys ∂tn
pol
i + ∇ · jpol

i = 0 with jpol
i

.
= (nq)iV

pol
i . The quantity

ε⊥
.
= 1+ρ2

s/λ
2
De = 1+ω2

pi/ω
2
ci [ωpi

.
= (4πniq

2
i /mi)

1/2] defines what can be called the dielectric

constant of the gyrokinetic vacuum [15]. The gyrokinetic regime is defined [16] by ε⊥ � 1,

which is frequently the case.2 Then, since usually k‖ � k⊥, the λ2
De term, which describes

the deviation from absolute charge neutrality, is negligible. Upon scaling lengths to ρs, one

obtains the gyrokinetic Poisson equation

∇2
⊥ϕ = −(δNi/ni − δne/ne), (6)

which describes quasineutrality within the gyrokinetic framework. It is quite convenient

numerically, as one does not need to somehow enforce ρi = ρe implicitly but instead can

merely calculate the polarization density (or resulting potential) from the given imbalance

of gyrocenter densities that exists at time t.

A simple physical interpretation can be given of the important ρ2
s∇2

⊥ϕ contribution to

the gyrokinetic Poisson equation. Consider the z-directed vorticity Ω associated with the

E ×B motion: Ω
.
= ẑ ·∇ × VE. One readily finds that

Ω/ωci = ρ2
s∇2

⊥ϕ; (7)

that is, for cold ions the ion polarization density is just the vorticity in appropriate units.

This important property of strongly magnetized plasma is illustrated in Fig. 2, where it is

1 The mean density n enters because of the convenient normalization convention V −1
∫
dx

∫
dv f = 1, where

V is the volume.
2 The guiding-center limit is ω2

pi/ω2
ci → 0 (ε⊥ → 1).
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shown that a deficiency of ion gyrocenters leads to a positive vorticity. It is thus expected

that the dynamics of vorticity will play a crucial role in virtually all gyrokinetic calculations.

Integration of Eq. (4) over velocity leads to the continuity equation for gyrocenters. If

ion parallel motion is ignored (because the ion inertia is very large) and for simplicity one

again considers Ti → 0, one obtains

∂tNi + ∇ · (VENi) = 0. (8)

Let us divide Ni into a background (mean-profile) part 〈Ni〉 and a fluctuating part δNi:

Ni = 〈Ni〉+ δNi. The mean profile obeys

∂t〈Ni〉+ ∇ · Γi = 0, (9)

where Γi
.
= 〈δVEδNi〉, and the fluctuations obey

∂

∂t

(
δNi

ni

)
+ V∗∂ϕ

∂y
+ ∇ ·

[
VE

(
δNi

ni

)
− n−1

i Γ

]
= 0. (10)

Here the so-called “diamagnetic” term proportional to V∗ is a rewriting of VE ·∇ ln〈Ni〉; it

thus describes advection of the background density gradient, not literally ion diamagnetism

(which vanishes for Ti = 0). For homogeneous statistics, the terms in ∇ · Γ vanish.

The gyrocenter continuity equation contains both δNi and δϕ. The gyrokinetic Poisson

equation relates those quantities, but also introduces the electron density as a new unknown.

The classic approximation of Hasegawa and Mima (HM) [17] is to assume that the

electron response is adiabatic: δne/ne = δϕ (the first-order part of a Maxwell–Boltzmann

distribution). Poisson’s equation then becomes

δNi/ni = δϕ−∇2
⊥δϕ. (11)

Finally, substitution of this result into Eq. (10) leads to the Hasegawa–Mima equation

(HME)

(1−∇2
⊥)∂tδϕ+ V∗∂yδϕ+ VE ·∇(−∇2

⊥δϕ) = 0. (12)

Note the appearance of the vorticity Ω = ∇2
⊥ϕ in several terms. The original derivation

of HM from the Braginskii equations [18] (the fluid equations in particle coordinates) was

not as physically transparent. The Hasegawa–Mima equation is the simplest paradigm for

the nonlinear dynamics of drift waves. If one omits the two terms related to explicitly plasma
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effects [the term in ∂tϕ (adiabatic electron response) and the term proportional to V∗ (effect

of the background density gradient)], one is left with the 2D Navier–Stokes equation (NSE)

∂tΩ + VE ·∇Ω = 0. (13)

The implicit assumption of HM was that the parallel wave number k‖ does not vanish.

If it does, adiabatic electron response is no longer appropriate because there is no parallel

potential modulation for the mobile electrons to neutralize. Because electron polarization is

negligible, a frequently used approximation is to ignore electron response altogether for the

k‖ = 0 modes (convective cells).3 What results is the generalized HME

(α−∇2
⊥)∂tϕ+ αV∗∂yϕ+ VE ·∇(α−∇2

⊥)ϕ = 0, (14)

where

α
.
=




1 k‖ 6= 0

0 k‖ = 0
(15)

can be interpreted as a projection operator onto the DW subspace. For the CC’s, one obtains

precisely the 2D NSE.

Let us call the k‖ 6= 0 modes the drift waves (DW’s). For the DW’s, the linear dispersion

relation is

ω =
ω∗

1 + k2
⊥
. (16)

In this approximation there is no growth or dissipation. This is a nonphysical consequence of

the neglect of Landau damping (the physically important wave–particle resonance, which is

lost in fluid truncations that involve neglect of velocity cumulants beyond some order4) and

collisions. Both of those effects introduce nonadiabatic electron response. If only collisions

are taken into account (through the electron momentum equation), the system of equations

due to Hasegawa and Wakatani (HW) [20] results:

∂tΩ + VE ·∇Ω = δ̂(ϕ− n) + µ∇2
⊥Ω, (17a)

∂tn+ VE ·∇n = δ̂(ϕ− n)− κ ∂yϕ+D∇2
⊥n, (17b)

3 A subtle issue regarding modes with ky = 0 (zonal flows) and ky 6= 0, especially in the presence of magnetic
shear, cannot be discussed here.

4 More sophisticated fluid closures can model the Landau damping; see Ref. 19.
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where n ≡ ne, κ
.
= L−1

n , δ̂
.
= −D−1

‖ ∇2
‖, and the equations are written for fluctuations only.

The dissipative terms involving µ and D can be added heuristically or can be derived from

more detailed considerations. The virtue of this system is that it is both forced (there is a

linear instability for some wavevectors [21] and dissipative, so it can achieve typical states

of steady-state turbulence. It provides the simplest paradigm for fluctuations in the cold,

collisional edge of toroidal devices and has been discussed by a number of workers [14, 21, 22].

Further nonlinear equations of interest to research on strongly magnetized plasmas are

discussed in the review article by Krommes [14].

3 PLASMA APPLICATIONS OF STATISTICAL METHODS

Much evidence from both analysis and simulation shows that steady-state gyrokinetic

microturbulence can exist, in agreement with experimental observations. Statistical

descriptions are thus appropriate. Before turning in Sec. 4 to the main topic, the statistical

description of convective cells, I wish to briefly mention some of the other applications for

which statistical formalism has been used in plasma physics. For a much more complete

review, see Ref. 14.

3.1 Gyrokinetic noise

One method of solution of the gyrokinetic equation is by the so-called particle-in-cell

technique (reviewed for unmagnetized plasmas in Ref. 23). A large number of particles is

distributed at t = 0 (either randomly or by a quiet start5). They are integrated along the

characteristic trajectories of the gyrokinetic equation for a small time step, then the charge

density is calculated by distributing the particles onto a spatial grid and the potential is

updated by solving the gyrokinetic Poisson equation; the process is then repeated.6 The

procedure is a Monte Carlo sampling method [25]; as such, one must contend with sampling

5 The general problem of initializing a particle distribution subject to various constraints is interesting and
nontrivial. A Monte Carlo scheme particularly appropriate for generating states of negative temperature
was discussed and analyzed in Ref. 24.

6 In practice, one frequently uses a modification of this basic scheme wherein one solves only for
perturbations away from a known, e.g., Maxwellian base state. Some remarks and historical references to
this so-called δf method can be found in Ref. 25.
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noise. In unmagnetized plasmas, long-wavelength Fourier amplitudes are excited almost to

thermal level. This would not be a problem if a physically realistic number of particles was

used, since the microturbulent fluctuations are far above the thermal level; however, it is an

important constraint for simulations, which can use only a restricted number of simulation

particles. However, the fluctuation characteristics of gyrokinetic plasmas differ from those

of the full many-body problem because high-frequency fluctuations have effectively been

excised. The gyrokinetic fluctuation–dissipation theorem was studied in several papers

by Krommes [15, 16, 26, 27]. As one would expect, the large dielectric constant of the

gyrokinetic vacuum leads to strongly suppressed gyrokinetic fluctuations. Gyrokinetic

particle simulation in fully 3D and global toroidal geometry is now a major industry.

3.2 Realizable statistical closures

In view of the physical complexity of nonlinear plasma dynamics, it is not surprising that

the theory and applications of statistical closures for plasmas have lagged far behind their

Navier–Stokes counterparts. An attempt at a historical survey of the plasma theories was

made in Ref. 14; see in particular the bibliographical timelines presented in Figs. 34–36 of

that work, which clearly show the inflow of information to plasma turbulence theory from

the other physics specialities. A very brief historical overview follows. For reference, the

direct-interaction approximation (DIA) was proposed by Kraichnan in 1959 [28].

The quasilinear description of plasmas was discussed by Vedenov et al. [29] and

Drummond and Pines [30] in the early 1960’s. Various calculations on perturbative weak-

turbulence theory [31, 32] soon followed. The first attempts at renormalization were by

Dupree [33, 34]. In 1967 Orszag and Kraichnan [35] critically analysed Dupree’s 1966

resonance-broadening theory (RBT) and gave a thorough discussion of the Vlasov DIA;

unfortunately, that important work was ignored for about a decade.

A resurgence of interest in renormalized formalisms for plasmas was stimulated by the

seminal 1973 paper of Martin, Siggia, and Rose (MSR) [36]. Krommes [37] discussed how

RBT and related approximate plasma theories were embedded in the more general formalism.

Dubois and Espedal [38] provided important insights about the general form of the nonlinear

plasma dielectric function. Many additional references and historical remarks can be found

in Ref. 14.
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By considering a three-wave example, Krommes [39] noted early on that the DIA could

provide an adequate description of the saturation level of drift waves coupled with a

Hasegawa–Mima-like nonlinearity. This was no surprise to the neutral-fluid community

in view of the seminal work of Kraichnan [40], but it was the first quantitative calculation

of the full DIA in a plasma context.

For practical calculations on many-mode problems such as HM or HW, it was readily

apparent that Markovian closures were preferred. The eddy-damped quasinormal Markovian

(EDQNM) closure was known to be realizable for Navier–Stokes dynamics [41]. It was

therefore an unwelcome surprise when numerical integrations of the EDQNM for certain

DW problems demonstrated unrealizable behavior. This problem was studied at length by

Bowman [42] in collaboration with M. Ottaviani and the present author. The problem was

traced to the triad interaction coefficient θkpq, which becomes complex in the presence of

linear waves; the triad interaction time Re θkpq ≡ θr
kpq can then easily become negative.

This difficulty arises in the evolution of the EDQNM from an initial state. Bowman

and collaborators argued pragmatically that one should abandon a faithful description

of the transient evolution (in any event, nonrealizable behavior cannot be faithful) while

constraining the initial-value problem to evolve to the steady state described by the EDQNM.

While there are various ways of doing this for the statistical description of scalar fields,

the challenge of implementing this constraint for the evolution of systems of coupled fields

proved to be formidable. Bowman et al. [43] discussed a method that appears to work

satisfactorily in practice; they called the algorithm the realizable Markovian closure (RMC).

Hu and Krommes [21, 44] used the RMC to discuss the statistical dynamics of the HW

system; excellent agreement was found between direct numerical simulations and the closure

predictions of the particle flux and wave-number spectra. Bowman [45] subsequently made

related studies of HM dynamics; he also discussed and studied a realizable test-field model

motivated by Kraichnan’s work in Ref. 46.

The numerical closure studies that directly stemmed from Bowman’s pioneering work

are the most complete and recent in the context of plasma DW models. The successful

comparisons between DNS and simple nonlinear DW paradigms such as HM and HW show

that the essentials of second-order closures are reasonably well understood in plasma-physics

contexts. At the present time, it appears to be hopeless to perform detailed closure studies

on more realistic models involving nontrivial (e.g., toroidal) geometry, three dimensions,
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and the many practical effects that are inevitably present in real devices; such problems are

better addressed by large-scale numerical gyrokinetic simulations, which are ongoing.

One fertile area for future research involves the analytical study of intermittent statistics,

which are frequently observed in the edges of toroidal devices. This difficult area might

be addressed through the mapping-closure techniques originally suggested in Ref. 47 and

developed by later authors (for references, see Ref. 14 and the recent paper by Takaoka [48]).

However, application of mapping closure to HW-like systems involves major technical

complications, including generalization to coupled fields and the difficulty of adequately

handling the nonlocal relation between potential ϕ and vorticity ∇2
⊥ϕ. Research in this

area [49] is still at a very early stage, so will not be discussed further in the present paper.

4 STATISTICAL DESCRIPTION OF LONG-WAVELENGTH FLOWS

I now turn to recent research on the statistical description of the turbulent self-generation

of long-wavelength flows. This subject is intimately related to the seminal calculations of

eddy viscosity by Kraichnan [50]; I will describe some new insights that have emerged

recently. The problem is also of considerable practical importance in fusion physics, since

it impacts on the physics of saturation of DW turbulence and thus has implications for the

magnitudes of steady-state transport.

In the fusion context, it is usual to distinguish various special cases of convective cells

(k‖ = 0): zonal flows (ZF’s; y-directed E×B velocities arising from potentials with ky = 0);

and streamers (x-directed velocities arising from potentials with kx = 0). Streamers can

cause direct transport of particles and heat across magnetic flux surfaces, but can be broken

up by secondary instabilities [51]. Zonal flows do not cause such transport, but they can

interact with the DW’s and thereby indirectly regulate the level of turbulent transport.

Diamond et al. [52] attempted an analytical description of zonal-flow generation. Their basic

idea, which was well motivated, was to assume scale separation between short-wavelength

DW’s and long-wavelength ZF’s and to use a weakly inhomogeneous wave kinetic equation

(WKE) for the DW’s (k‖ 6= 0) to calculate energy transfer to the ZF’s due to the weak

modulation of the DW’s by the ZF’s. A central question is what quantity to use as the

“plasmon density” in the WKE. Some insight was provided by Smolyakov and Diamond [53],

who derived “action invariants” for various simple paradigms such as the generalized HME.

11



However, that work did not address the question of how to proceed for systems of coupled

PDE’s such as the HW system. I will discuss an appropriate methodology in Sec. 4.3.

Motivated by Refs. 52 and 53, Krommes and Kim (KK) [54] performed a detailed study

of the problem of convective-cell generation by generalized HM dynamics in the limit of

disparate scales. That work proceeded directly from Markovian statistical closure, thus was

closely related to the calculations of Kraichnan [50] on the asymptotic long-wavelength limit

of eddy viscosity in two dimensions. As I will describe, the work of KK sheds further light on

the calculations of both Kraichnan as well as Diamond et al. and Smolyakov and Diamond,

and unifies all such calculations for scalar fields into a common framework. Subsequent work7

on coupled-field systems [55, 56] provided an elegant formalism that subsumes the scalar

calculations and essentially completes the formal statistical description of long-wavelength

CC generation by short-wavelength DW’s. That is, however, only one part of the full

problem of interacting DW’s and CC’s. I will not discuss the effect of the CC’s on the DW’s

in this paper except to say that preliminary work on systematic bifurcation analysis of the

transition to drift-wave turbulence has been accomplished [57]; that work involves the CC

backreaction in a fundamental way.

4.1 Asymptotic long-wavelength expansion of the EDQNM formula for coherent

damping

For the CC generation problem, I first define exactly what statistical quantity is to be

computed. Consider a scalar amplitude equation

∂tψk − Lkψk =
1

2

∑
∆

Mkpqψ
∗
pψ
∗
q . (18)

In a Markovian description of homogeneous statistics, the spectral-balance equation for

wave-number intensity Ck(t)
.
= 〈|δψk(t)|2〉 is

∂tCk − 2(ReLk)Ck + 2(Re ηk)Ck = 2Fk, (19)

7 At the May, 2003 conference that these Proceedings document, my talk focused on the work of Krommes
and Kim [54]. Further progress on coupled systems was made during the subsequent half-year that elapsed
before publication of these Proceedings was formalized. In the interest of utility and completeness, I will
incorporate those latter results into the present discussion.
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where ηk describes coherent nonlinear response and Fk is the variance of the nonlinear

noise f̃k in the Langevin amplitude equation

∂tψk − Lkψk + ηkψk = f̃k(t). (20)

When I specialize to the DW–CC problem, I shall use k for the DW’s and q for the CC’s; I

always work in the limit ε
.
= q/k � 1. Then the CC growth rate γq is defined by

γq ≡ γnl
q
.
= −Re ηq. (21)

The linear growth rate is, of course, γlin
q = ReLq. Thus the spectral balance equation for

the CC’s is

∂tCq = 2(γlin
q + γnlin

q )Cq + 2Fq. (22)

Fq is intrinsically positive, so one or both of γlin
q or γnlin

q must be negative in order that a

steady state can be achieved. (Typically γlin
q is very small [58].) What I shall calculate in

this work is the portion of γnlin
q due to interactions with short-wavelength DW’s. Except for

a sign, this is exactly the statistical eddy viscosity in the asymptotic limit ε� 1. If γDW
q is

positive, one is discussing negative eddy viscosity. This does not mean that the total γnlin
q

need be positive. The ultimate value and sign of γnlin
q involve interactions with neighboring

scales as well as distant ones, and the details cannot be available until all of the fully self-

consistent modal interactions are analyzed. Such calculations have not been published as

yet.

According to the EDQNM, one has

γq = −
∑
∆

MqkpMkpqθ
r
qkpCp. (23)

Here
∑

∆ denotes the sum over all triangles such that k + p + q = 0, and θqkp is the

triad interaction coefficient whose real part θr defines the triad interaction time. In the

usual EDQNM, θ is a symmetric function of its arguments.8 The goal is to expand γq for

q � k, p. In detail, this is somewhat tedious because if q is fixed, then p varies with k. The

integration domain is thus complicated (Fig. 4) and one must be very careful. The details

were presented in Ref. 54, first for isotropic statistics (a test case that is closely related to

8 Bowman [43] used an asymmetric function in his RMC.
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the calculations of Ref. 50), then for the more general and realistic anisotropic case. For the

case of the GHME, the final result is

γq = − 2

α + q2︸ ︷︷ ︸
(a)

∑
k

|ẑ · (q× k)|2︸ ︷︷ ︸
(b)

θr
k,−k,q︸ ︷︷ ︸
(c)

× q · k
(1 + k2)2︸ ︷︷ ︸

(d)

q.
∂Zk

∂k︸ ︷︷ ︸
(e)

. (24)

Here Zk
.
= (1 + k2)2〈|δϕk|2〉. In the next section I will describe a more physical algorithm

that recovers this result. However, it is useful now to list the physical interpretation of each

term:

(a) possibly nonadiabatic CC response;

(b) nonlinear advection of the DW’s by the CC’s;

(c) interaction time between the DW’s and the CC’s;

(d) DW wavevector refraction due to CC modulation;

(e) conservation of Z by the DW’s due to CC modulation.

At this point, the interpretation of at least term (d) is probably unclear. This will be

explained by the physical algorithm to be discussed next.

4.2 Weakly inhomogeneous spectral kinetics and the convective-cell growth rate

Given the rigorous and systematically derived result (24), one can discuss various physical

algorithms that reproduce it [54]. The basic idea, first proposed in Ref. 52, is to use a

weakly inhomogeneous spectral balance equation or “wave kinetic equation” to describe

the modification of the short-wavelength DW statistics due to the long-wavelength CC

modulation. In Diamond’s formalism, it was important that the proper quantity Z was used

as the plasmon density evolved by the WKE, and Smolyakov and Diamond [53] discussed

the appropriate form of Z for several popular scalar PDE’s. Working with a particular Z
in the WKE amounts to a particular (k-weighted) choice of dependent field variable in

which to write the spectral balance equation. However, general statistical theory does not

constrain the choice of dependent variable; moreover, for systems of coupled fields with

multiple conserved quantities it might appear that the choice of dependent variables would
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be overconstrained. Such paradoxes led KK to reexamine the foundations of the spectral

balance equation in the presence of weak inhomogeneity.

4.2.1 General remarks about weakly inhomogeneous statistics

For classical physics, the general problem of weak inhomogeneity (and weak

nonstationarity) was addressed in the important paper of Carnevale and Martin [59]

by means of multiple-scale expansions in both space and time. Focus on the spatial

problem for simplicity. Then the general two-point correlation function C(x,x′) can be

rewritten in terms of the sum and difference variables X
.
= 1

2
(x + x′) and ρ

.
= x − x′:

C(x,x′) ≡ C(ρ | X). It is assumed that C varies rapidly with ρ but slowly with X. Let Ĉ

represent the abstract operator whose x-space matrix element is C(x,x′). In general, linear

operators act nonlocally on C, e.g., (L̂Ĉ)(x,x′) ≡ ∫
dxL(x,x)C(x,x′). According to CM,

when this expression is expanded through first order in a weak inhomogeneity (and Fourier

transformed with respect to ρ), the result is

L̂Ĉ → Lk(X)Ck(X) + i{Lk, Ck}, (25)

where the Poisson bracket for weak inhomogeneity is

{A,B} .
=

∂A

∂X
· ∂B
∂k

− ∂A

∂k
· ∂B
∂X

(26a)

=
∂

∂X
·
(
A
∂B

∂k

)
− ∂

∂k
·
(
A
∂B

∂X

)
. (26b)

[I will object to the result (25) momentarily.] The form (26b) shows that this bracket is

conservative in the sense that it is annihilated by integration over X and summation over k

(this pair of operations is denoted by an overline). That is,

{A,B} = 0. (27)

Thus under the action of a linear operator, which I now write as L = −iΩ, the contribution

of weak inhomogeneity to the evolution of the spectral density is apparently

∂TCk = {Ωk, Ck}. (28)

I have introduced Ω because in the application to the CC generation problem the relevant

operator stems from the nonlinear advection and is generally purely real in k space. For
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example, if one uses the generalized HME to consider DW advection by a long-wavelength

CC (denoted by an underline) with velocity V E(X), the relevant operator is

Ω̂ = −i(1−∇2
⊥)−1V E ·∇(1−∇2

⊥), (29)

whose Fourier transform for constant VE is

Ωk = (1 + k2
⊥)−1k · V E(1 + k2

⊥) = k · V E . (30)

For the interaction between DW’s and CC’s, Smolyakov and Diamond [53] showed that

a certain quantity Z was conserved. (In Sec. 4.3 I will show that Z is a Casimir invariant in

a noncanonical functional Hamiltonian description of the nonlinear physics.) However, for

arbitrary choice of dependent variable, this contradicts the evolution equation (28) because

barring that equation leads to ∂TC = 0. That is, C is apparently conserved regardless of

the choice of variable. This conclusion is obviously incorrect.

The resolution of this paradox was given by KK, who took issue with the result (25) and

its implication (28). Consider the situation where L̂ is the composition of two operators Â

and B̂; L̂ = ÂB̂. Symmetry (or detailed calculation) dictates that the expression for

L̂Ĉ = ÂB̂Ĉ must contain the Poisson bracket of all of the operators taken in pairs:

ÂB̂Ĉ → AkBkCk + i[{Ak, Bk}Ck

+ Ak{Bk, Ck}+ {Ak, Ck}Bk]. (31)

Upon combining the last two terms, this can be written as

L̂Ĉ → LkCk + i[{Ak, Bk}Ck + {Lk, Ck}]; (32)

the underlined, nonconservative term (of first order in the weak gradient) was overlooked

by CM. Thus, to the extent that L̂ is composed of noncommuting operators, C is no longer

conserved. Some other quantity, however, may be. Suppose that the quantity Z = σ
(Z)
k Ck

is known to be conserved, where σ
(Z)
k is a certain k-dependent weight factor. It is then easy

to see that the formalism is consistent provided that σ(Z){A,B} − {L, σ(Z)} = 0. [This

must be appropriately generalized if L̂ is the composition of three or more operators. A

good example is generalized HM dynamics, which involves the triple operator product given

by Eq. (29).] That is, it must be the case that weak inhomogeneity leads to the spectral

evolution equation

∂TCk = [σ
(Z)
k ]−1{Ωk,Zk} = [σ

(Z)
k ]−1{Ωk, σ

(Z)
k Ck}, (33)
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where only the term explicitly related to the inhomogeneity is displayed. In the last form of

Eq. (33), σ
(Z)
k may not be passed through the bracket because it is k-dependent. The result

(33) can be verified explicitly for specific PDE’s such as the generalized HME [54].

4.2.2 Modulated Reynolds stress, energy principles, and use of the Martin–Siggia–Rose formalism

We wish to calculate γq by somehow invoking the theory of weakly inhomogeneous

statistics. However, there is a technical problem: γq is nonzero even when the turbulence is

entirely homogeneous. On the one hand, this is clear since, as I have stressed, γq represents

only one part of the spectral balance equation. On the other hand, there certainly is a

CC–DW interaction, and the intuition that a CC introduces a long-wavelength modulation

seems compelling.

This paradox is reconciled in a well-known way by paying close attention to the distinction

between an ensemble of CC’s (distributed homogeneously) and a single test CC that perturbs

the background turbulence. There is a precise analogy to the test-particle techniques of

classical kinetic theory. Perturbations of background states are best handled by response-

function techniques that generalize thermal-equilibrium fluctuation–dissipation theory [60].

The most elegant formulation was given in Ref. 36; I comment on it briefly here in order

to emphasize the variational foundations of γq, which lead rather directly to definitions

of γq in terms of perturbed Reynolds stress and second-order variations of a certain energy

functional.

Although it is unnecessary, consider statistically homogeneous turbulence for definiteness.

In this case, all mean fields can be taken to vanish. A standard way of breaking the symmetry

is to add an arbitrary, statistically sharp external source function η̂k(t) to the right-hand side

of the dynamical equation (18). This inevitably induces nonvanishing mean fields 〈ψ〉η̂ that

depend functionally on η̂. Furthermore, other statistical observables such as the two-point

correlation function C and response function R also depend functionally on η̂. One can use

the mean field rather than η̂ as the control parameter, so one can discuss such functional

dependences as C[〈ψ〉].
MSR showed that it is also useful to introduce a source η that appears in an equation

adjoint to that for ψ. Then n-point cumulants of ψ generate (n + 1)-point cumulants by

functional differentiation: C
(n+1)
η (1, 2, . . . , n, n+1) = δC

(n)
η (1, 2, . . . , n)/δη(n+1). They also
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emphasized that proceeding in this way merely leads to an unclosed cumulant hierarchy,

the generalization of the BBGKY hierarchy of classical many-body kinetic theory. To effect

closure, one must introduce response functions. For the details, see Ref. 14 and references

therein. The result is that the two-point response function is

R(1; 1′) =
δ〈ψ〉η(1)

δη̂(1′)

∣∣∣∣
η=0

, (34)

where η
.
= (η, η̂)T . Furthermore, the triplet correlation that appears in the evolution

equation for R can be shown by means of the functional chain rule to be equal to ΣR,

where

Σ(1; 1′) =
δ〈〈N〉〉η(1)

δ〈ψ〉η(1′)

∣∣∣∣
η=0

. (35)

Here 〈〈N〉〉 is the cumulant part of the nonlinear term in the original dynamical equation.

This rewriting of the triplet correlation function effects the elimination of the disconnected

graphs in the derivation of the famous Dyson equation [61]; the method of sources discussed

here is due to Schwinger. γq is a Markovian version of −Σ.

Now 〈〈N〉〉 is just the generalization of the (divergence of the) Reynolds stress of Navier–

Stokes theory to arbitrary nonlinear dynamics. One thus understands that γq is not

determined from the Reynolds stress itself, but rather from a perturbed stress modulated

by the CC’s. Failure to appreciate this point can lead to paradoxes and incorrect results.

Consider, for example, the GHME problem. There the nonlinear effect on the CC’s is

the advection of vorticity (not of velocity, as in the usual Navier–Stokes equation). The

appropriate nonlinear effect driving the CC’s is therefore (with primes denoting the DW’s)

〈V ′
E ·∇∇2ϕ′〉 = (∂xx − ∂yy)〈v′xv′y〉

+ ∂xy(〈v′y2〉 − 〈v′x2〉). (36)

Here the last result, involving the physical Cartesian components of the E × B velocity,

follows by integration by parts assuming homogeneous statistics. Now consider isotropic

DW statistics for definiteness. In this case one has 〈v′y2〉 = 〈v′x2〉 and 〈v′xv′y〉 = 0. That is,

the Reynolds stress vanishes for homogeneous, isotropic turbulence, which is well known.

But the perturbed Reynolds stress on the DW’s due to CC modulation does not vanish. The

presence of a CC with wavevector q introduces an anisotropy dependent on the direction

of q. Now both ∆〈v′y2〉 6= ∆〈v′x2〉 and ∆〈v′xv′y〉 6= 0. When those modulations are calculated
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(according to the algorithm to be described shortly), one is led to the proper answer (24).9

The analysis can be continued to demonstrate that γq can be obtained from the second

functional derivative of a certain energy rate-of-change functional. That is, one can derive

a generalized Poynting theorem. For HM dynamics, that is

∂tE = 〈E〉 · Γ, (37)

where E is the DW energy averaged over the long wavelengths and Γ is the flux of DW

vorticity. Note the presence of the induced mean field. As in the discussion of the

specific example (36), the right-hand side of expression (37) would vanish for homogeneous

turbulence in the absence of the symmetry-breaking η̂. In its presence, Ė is at least of second

order in η̂ or 〈ϕ〉, and one can show [54] that

γq = −
(

1

α + q2

)
δ2Ė

δ〈ϕq〉δ〈ϕq〉∗
∣∣∣∣∣
η=0

. (38)

Note that the differentiation is with respect to the induced mean field. A more definitive

derivation of Eq. (38) follows from the Hamiltonian formalism to be discussed in Sec. 4.3.

What remains is to calculate Ė from the weakly inhomogeneous WKE as discussed in

Sec. 4.2. Although Z is conserved under the DW–CC interaction, E is not. Upon assuming

that the DW energy is related to the spectral density according to Ek = σ
(E)
k Ck, and upon

defining ρk
.
= σ

(Z)
k /σ

(E)
k , one may use Eq. (33) to find

∂TEk = ρ−1
k {Ωk, ρkEk} = {Ωk, Ek}+ {Ωk, ln ρk}Ek. (39)

The first term is in conservative form and vanishes under the barring operation, but the last

term describes a mean energy transfer from the DW’s to the CC’s. (The actual sign is not

clear at this point.) The last Poisson bracket simplifies to ∇Ωk ·∂k ln ρk because ρk depends

only on k. Thus

∂TE =
∑

k

[∇Ωk(X) · ∂kρk]Zk(X) (40a)

=
∑

k

∑
q

(−iq · ∂kρk)Ω∗k;qZk;q, (40b)

9 Kim and Diamond [62] suggested that one should ignore the term in 〈v2
y〉 − 〈v2

x〉 (on the grounds that it
vanishes for isotropic statistics) while retaining the term in 〈vxvy〉. As discussed by Krommes [63], this
argument is incorrect; if it is pursued [62], it leads to a formula for γq that is not properly invariant under
rotations of q.
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where Parseval’s theorem was used in the last step in order to Fourier-decompose the

X dependence of the CC’s into the q variable. The functional derivatives required in

Eq. (38) can now be readily performed; only the product Ω
(1)
k;qZ(1)

k;q contributes. For Z(1)
k ,

one may use a variant of Eq. (33). That equation is not complete, however, since it seems

to suggest that the individual spectral components ∂TZk would never reach a steady state.

Such a state is achieved only by the interaction between the CC’s and the DW’s, and in

Markovian closure theory the duration of that interaction is given by the triad interaction

time θq,k,−k. Therefore, guided by the rigorous asymptotic closure results, I heuristically

generalize the first-order version of Eq. (33) to

[∂T + (θr
q,k,−k)−1]Z(1)

k;q = {Ω(1)
k;q,Z(0)

k }. (41)

(The term {Ω(0)
k ,Z(1)

k;q} vanishes at 〈ϕ〉 = 0.) Now one can consider a true steady state in

which ∂TZk = 0 and find that

Z(1)
k;q = θr

q,k,−k{Ω(1)
k;q,Z(0)

k }. (42)

Substitution of this result into Eq. (40b) leads to Eq. (24). The physical effect involved is

identified by noting that

{Ω(1),Z(0)} = ∇Ω(1) · ∂kZ(0). (43)

In the full equation for ∂TZ, the associated characteristic equation is

dk/dt = −∇Ω, (44)

which describes a refractive change in wavevector due to the weak inhomogeneity induced

by the modulation. This effect gives rise to term (d) in Eq. (24).

This calculation of γq and the result (24) are very closely related to Kraichnan’s classic

calculation of 2D eddy viscosity [50]. He used the NSE, whereas Eq. (24) pertains to the

HME. However, the plasma problem may be readily reduced to the Navier–Stokes one by

removing the term describing adiabatic electron response [the 1 in the factor (1 + k2)].

Upon doing that, KK showed that Eq. (24) reduces precisely to the result of Kraichnan

(who considered only homogeneous, isotropic statistics). It is then instructive to compare

Kraichnan’s physical explanation with the above discussion based on the WKE. Kraichnan

considered a special case; however, it can be seen from study of Ref. 50 that Kraichnan

understood clearly that the underlying mechanism was wavevector refraction. The merits
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of the present analysis employing the WKE are that the analyis is quite general, holds for

arbitrary anisotropic statistics, and has an elegant generalization to the case of multiple

coupled fields, as discussed below in Sec. 4.3.

For isotropic statistics, the eddy viscosity calculated by Kraichnan and also by KK for

the HME is negative (γq > 0). In the Appendix of Ref. 54, KK commented on some

literature in which a positive eddy viscosity was apparently found. The reconciliation was

that the present calculations pertain to a self-consistent turbulent steady state in which the

total energy of the DW’s plus CC’s is conserved. The predictions of positive eddy viscosity

arise from initial-value calculations in which the DW energy is held fixed; KK identified

the specific term in the asymptotic analysis that is omitted in the initial-value calculations.

For most purposes, it is the self-consistent, steady-state version of the formalism that is

appropriate.

4.3 Hamiltonian formalism

The discussion to this point covers the material presented in the May, 2003 Conference

represented by these Proceedings. Subsequently, new insights into, and generalizations

of the formalism have been obtained. Although these have been detailed in other

publications [55, 56], it is useful for completeness to briefly discuss them here as well.

An outstanding question is, How does one generalize the heuristic algorithm discussed

in Sec. 4.2.2 to the important physical situation of multiple coupled fields, e.g., the HW

equations? Systems of PDE’s usually possess multiple invariants. Which one, if any, plays

the preferred role of the Z in the scalar case? The answer is not immediately clear.

In order to address these questions, it is important to realize that the CC generation

process is entirely nonlinear. The details of linear physics enter the expression for the CC

growth rate only indirectly through the properties of the triad interaction time θr. Although

the linear evolution matrix may be essentially arbitrary (in particular, its eigenvalues may

be complex, representing linear forcing and dissipation), the nonlinear terms are usually

conservative. That is certainly true if the nonlinear behavior arises from E×B advection.

A powerful way of deriving conservative nonlinear Eulerian PDE’s is to use a Hamiltonian

formalism. This provides new insights even for a scalar PDE such as the Hasegawa–Mima

equation. Moreover, a generalization to multiple coupled fields leads to a particularly efficient
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representation of the γq for that case.

4.3.1 Hamiltonian description of Eulerian partial differential equations

A Hamiltonian description of certain Eulerian PDE’s was first given by Morrison and

Greene [64]. An extensive amount of subsequent additional work was reviewed by Morrison

in Ref. 65. First consider the scalar case for simplicity. Let ψ(x, t) be the dependent variable.

The basic idea is to exhibit a Hamiltonian functional H[ψ] and a Poisson-bracket functional

{·, ·} such that the conservative PDE can be represented in the form

∂tψ = {ψ,H}. (45)

This generalizes to an uncountably infinite number of spatial points x the familiar equation of

finite-dimensional, noncanonical Hamiltonian dynamics żi = {zi, H} (on which, for example,

the modern gyrokinetic formalism [7] is based).

Consistency of the formalism requires that the bracket be antisymmetric ({A,B} =

−{B,A}) and obey the Jacobi identity ({{A,B}, C} + {{B,C}, A} + {{C,A}, B} = 0),

where A, B, and C are arbitrary functionals.

As an example, consider the 2D NSE for vorticity Ω = ∇2ϕ:

∂tΩ + V ·∇Ω = 0, (46)

where V = ẑ× ∇ϕ. It is well known that V ·∇Ω = [ϕ,Ω], where

[A,B]
.
= ẑ ·∇A× ∇B. (47)

Now consider the Hamiltonian

H[Ω] =
1

2
Ω(−∇−2)Ω (48)

(integration by parts shows that H = 1
2
|V |2) and the bracket

{A,B} = ψ

[
δA

δψ
,
δB

δψ

]
. (49)

One readily verifies that {Ω,H} = −[ϕ,Ω], so Eq. (45) reproduces Eq. (46).

In considering the generalization of this result to multiple-field systems, Krommes and

Kolesnikov [55] restricted their attention to PDE’s whose nonlinearities can be represented by

the square Poisson bracket (47). That includes the E×B nonlinearity (as in, for example,

22



the HWE’s) as well as the field-line bending terms that arise in weakly electromagnetic

generalizations of electrostatic models. Thus, they considered the Hamiltonian functional

H[ψ] =
1

2
ψigijψj (50)

and the Lie-Poisson bracket

{A,B} = Sij

[
δA

δψi
,
δB

δψj

]
. (51)

Here gij and Sij are symmetric matrices. g is taken to be independent of ψ, so H can be

considered to be a generalized kinetic energy. g plays the role of a metric tensor that can

be used to raise and lower indices; for example, the covariant component of ψ is ψi = gijψ
j.

Thus one has the compact covariant expression

H[ψ] =
1

2
ψiψi. (52)

S is taken to be linear in ψ, viz.

Sij [ψ] = Sij
kψ

k. (53)

S is called the structure matrix and the Sij
k are called the structure constants. In order

that the Jacobi identity be satisfied, the matrix T ijk
m
.
= Sij

lS
lk

m must be fully symmetric

in i, j, and k (∀m).

It is readily seen that the nonlinear dynamics conserve the Hamiltonian H. Other

quantities may be conserved as well. In particular, a quantity that is conserved independently

of the form of H is called a Casimir invariant Z. Thus, the conservation of a Casimir

depends only on the properties of the Poisson bracket; with the particular choice of bracket

given above, Casimir conservation is encoded in the properties of the structure tensor Sij
k.

Consider, for example, how that bracket conserves both H = 1
2
ψiψi and the prospective

Casimir Z = 1
2
ψiψi. In component form, the vector generalization of Eq. (45) is

∂tψ
i = Sij

k[ψ
k, ψj ]. (54)

One has

∂tH = ψ̇iψi = Sij
k[ψk, ψj ]ψi = Sij

kψk[ψj , ψi] = 0, (55)

the last result following from the contraction of a symmetric form (in contravariant indices)

and an antisymmetric form (in covariant indices). Similarly,

∂tZ = ψ̇iψi = Sij
k[ψk, ψj]ψi = Sij

k[ψk, ψi]ψj . (56)
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Now the antisymmetric form is in contravariant indices. This expression will therefore vanish

if Sij
k = Skj

i. This symmetry holds sometimes but not always.

Thus the conservation of the particular form Z = 1
2
ψiψi depends on the up-down

symmetry properties of the structure tensor. That this particular form is not always

conserved is understandable since ψiψi is not a covariant expression. That is, its form will

change under a linear transformation of the field variables. Under that same transformation

the symmetries of the structure tensor will also change. Thus there may exist a bilinear

form in the ψi’s that is a Casimir. Generally there are multiple Casimirs Z(n). Of course,

each such Casimir constrains the dynamics to move in a subspace of the full energy surface;

see Fig. 4. We will see that the Casimirs figure importantly in the CC generation problem.

4.3.2 Hamiltonian description of γq

In order to use this formalism to calculate the generation rate of CC’s, one needs to

(i) obtain a generalized energy theorem; (ii) represent the multivariate spectral balance

equation in Hamiltonian form; (iii) use that equation to calculate the requisite functional

derivatives. To derive (i), one begins by projecting the dynamical equation (54) into the DW

subspace (denoted by primes) and the CC subspace (denoted by an underline). (An underline

can be interpreted as integration over z, i.e., extracting the k‖ = 0 component.) For example,

one has

∂tψ
i′ = Sij

k([ψ
k′, ψ

j
] + [ψk, ψ′j ]) + self-interaction terms. (57)

Next, an equation for the quadratic DW and CC energies can be obtained by contracting

Eq. (57) with ψi and barring the resulting equation. The details are given in Ref. 55; the

result is that the DW power loss is

∂tE = GiPi, (58)

where G is the cumulant part of the mean nonlinearity and P is the mean induced field.

This covariant result should be compared to formula (37).

One may now prove an important theorem about the spectral dynamics. In Eq. (57), the

first term on the right-hand side describes advection of the DW’s by the CC’s; the second

term describes the advection of the CC’s by the DW’s. This latter effect is small and will

be neglected. Because the retained interaction involves the covariant component ψ
j

(which

is δH/δψj), the DW’s conserve the same Casimirs as the full dynamics. This result is the
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generalization to multifield systems of the formulas given in Ref. 53 for conserved quantities

in certain scalar models. That is, in the presence of CC modulation and to lowest order in

the scale-separation parameter ε, the DW’s conserve the Casimir invariant(s).

In the presence of multiple Casimir invariants, there is no a priori invariant that is

preferred (i.e., is the leading candidate for an action density in a scalar WKE). In lieu

of other physical information, one should treat all Casimirs on equal footing. The way

to accomplish that is simply to work with the tensor spectral-balance equation, i.e., the

equation for the DW ∂tC
ij
k . The calculation is sketched in Ref. 55. The final result is

(Σij)H = H(ij)(Σij), where H(ij) denotes the Hermitian part with respect to the indices i

and j, and

Σij
q = −

∑
k
d2Sir

k[(∂ + 2i)grs]

× θ̂ks
ksH

(ks)[Sjk
l(∂ + 2i)C ls

k ], (59)

d
.
= ẑ · q× k, and ∂

.
= q · ∂k. This result should be compared to the scalar result (24). The

general similarities in form are obvious. The terms proportional to 2i are associated with

off-diagonal correlations and vanish in the scalar case. The effect of wave-number refraction

show up here as the derivative of the metric tensor g. The scalar triad interaction time

has been heuristically generalized to a fourth-rank tensor θ̂; further discussion is given in

Sec. 4.3.3. Most strikingly, the new result involves ∂C, not the derivative of any particular

Casimir. This may be troubling because it may not be apparent how the limit of a scalar

system is achieved; this will also be discussed below. But such a form should really be

expected because no Casimir was given preferred treatment; conservation of all Casimirs

is automatically built into the result (59). This is true even though one may not explicitly

know the forms of the Z(n).

Several examples of physically relevant PDE’s that can be treated by this Hamiltonian

formalism were given in Ref. 55; they include a two-field model describing ion-temperature-

gradient-driven fluctuations and a three-field model describing weakly electromagnetic

corrections to the electrostatic HW system.

One way of using the formula (59) is to identify a small parameter β and to calculate

the lowest-order corrections to the zeroth-order result. For example, one could calculate γq

for the two-field electrostatic HW model, then recalculate it for the weakly electromagnetic

three-field model (using as small parameter the normalized plasma pressure β). Typically
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β corrections show up in the metric tensor g, so the procedure is in principle straightforward

for fixed θ̂ and C. However, it is inconsistent to hold those quantities fixed because the

backreaction of the CC’s on the DW’s causes β-related modifications to the DW spectrum.

Those cannot be calculated within the present formalism; a fully self-consistent theory is

required.

4.3.3 The tensor triad interaction time

Left undetermined in Eq. (59) was the form of the triad interaction tensor θ̂. That

object is already nontrivial in the scalar case due to issues relating to random Galilean

invariance [54]. Its tensor generalization to multiple fields may appear daunting. For some

discussions of tensor interaction times, see Ref. 43.

One important cross check is to verify that formula (59) reduces properly to a single-

field limit. The electrostatic HW model permits such a limit, which may be obtained by

letting δ̂ approach infinity. In that limit, consistent balance requires that the terms δ̂(ϕ−n)

remain finite, i.e., that n → ϕ (adiabatic electron response). Subtraction of Eq. (17a)

from Eq. (17b) then leads to the HM equation if the dissipative terms are ignored. But

does Eq. (59) approach Eq. (24) in that same limit? An important feature of Eq. (24) is

that it involves ∂Zk. However, formula Eq. (59) involves ∂C. It is easy to see that if θ̂ is

taken to be diagonal (an assumption that has been frequently made for simplicity [66]), the

appropriate limit cannot be obtained. Instead, it can be shown that as δ̂ →∞ θ̂ approaches

a singular matrix whose size is dictated by the scalar θq,k,−k and whose structure guarantees

the adiabatic relationship between n and ϕ; off-diagonal components are essential. When

the details are carried through, it can ultimately be shown [67] that the proper HM limit is,

in fact, achieved. This is a necessary cross check. Unfortunately, it suggests that one must

be extremely careful with the use of the tensor θ̂; cavalier assumptions here may seriously

vitiate the fidelity of the overall calculation. Further work remains to be done on this topic.

5 DISCUSSION

I have tried to provide an overview of the general state of affairs of some basic aspects

of statistical plasma physics as motivated by confinement in strongly magnetized plasmas.
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I emphasized (i) the use of the gyrokinetic formalism; (ii) the development of realizable

Markovian closures and their applications to simple nonlinear plasma paradigms; (iii) the

statistical description of convective cells (including zonal flows). Although the latter topic

only provides part of the story of self-consistent turbulence, it is quite rich in detail and

unifies various technical tools, including asymptotic expansion of Markovian statistical

closure, weakly inhomogeneous spectral evolution equations, the use of field-theoretic

techniques, the derivation of energy variational principles, and the Hamiltonian formulation

of nonlinear PDE’s.

In general terms, what remains is a detailed investigation of the backreaction of the CC’s

on the DW’s. An analytical formulation of that problem is nontrivial. Energetic consistency

in a steady state demands that comparable-sized scales be included in the mode coupling;

those are not amenable to asymptotic techniques. Drift-wave physics is intrinsically

anisotropic, and any sort of analytically tractable model will significantly underrepresent

the complexity of real devices. Numerical simulations will be of obvious help, and those are

planned by a number of groups. The importance of the drift-wave problem, not only for the

understand of confinement in fusion plasmas but also for its relevance to geophysics, means

that the subject will remain of considerable interest for an extended period of time.
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Figures

FIG. 1: (a) A typical tokamak showing nested flux surfaces. (b) Local coordinate system for

studying microturbulence. The turbulence is of much shorter wavelength than the scale length of

the background profile.

FIG. 2: Let the magnetic fieldB point out of the page. A net deficiency of ion gyrocenters produces

an inward-pointing electric field E; the resulting E ×B drift produces counterclockwise motion,

i.e., a positive vorticity [in agreement with Eqs. (6) and (7)].

FIG. 3: Integration domains for the evolution of the small q’s. Region C: k ≥ kmin. Region D:

k < kmin, p ≥ kmin. (From Ref. 54.)

FIG. 4: Casimir conservation restricts the dynamics to lie in a subspace of the energy “surface.”
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