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Abstract

The anomalous skin effect in a plasma with a highly anisotropic electron velocity distribution

function (EVDF) is very different from skin effect in a plasma with the isotropic EVDF. An analyt-

ical solution was derived for the electric field penetrated into plasma with the EVDF described as a

Maxwellian with two temperatures Tx >> Tz, where x is the direction along the plasma boundary

and z is the direction perpendicular to the plasma boundary. The skin layer was found to consist of

two distinctive regions of width of order vTx/ω and vTz/ω, where vTx,z =
√

Tx,z/m is the thermal

electron velocity and ω is the incident wave frequency.
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In a recent Letter [1], it was shown that a highly anisotropic electron velocity distribution

function (EVDF) yields a large skin-layer depth compared with the isotropic EVDF. The

EVDF was described as a Maxwellian with two temperatures Tx >> Tz, where x is the

direction along plasma boundary and z is the direction perpendicular plasma boundary.

The electromagnetic wave is assumed to propagate also along z−axis in vacuum. The skin

layer was found to be much longer than the skin layer in a plasma with isotropic EVDF.

The authors of Ref. [1] showed that under conditions

Tx >> Tz;
c

ωp
<<

vTx

ω
; ωp >> ω, (1)

where ω is the incident wave frequency, ωp =
√

4πe2n/m is the plasma frequency, n is the

electron density, vTx =
√

Tx/m, the electric field profile is exponential E(z) ∼ exp(−z/ls)

where

ls =
vTx

ω
. (2)

In their analysis authors of Ref.[1] assumed from the outset that the skin depth is much

longer than vTz/ω, where vTz =
√

Tz/m, Tz is the electron temperature along z−axis

perpendicular to the plasma boundary. We show that the skin layer actually consists of two

distinctive regions of widths of order vTx/ω and vTz/ω. The latter short region was missed

in Ref. [1].

In contrast to Ref. [1], we solve Maxwell’s equation

d2

dz2
E(z) +

ω2

c2
E(z) = −4πiω

c2
jx, (3)

for x- component of electric field without making any assumptions. For semi-infinite

geometry, the electric field can be calculated making use of the Fourier transform in

the infinite plane by continuing the electric field symmetrically around plasma boundary

[E(−z) = E(z)]. Following Ref. [2], the Fourier transform of the electric field is given by

E(k) = −2iω

c
B(0)

1

k2 − εt(ω, k)ω2/c2
, (4)

where B(0) is the magnetic field at plasma boundary and εt(ω, k) is the transverse plasma

dielectric constant [2]

εt(ω, k) = 1 − 4πi

ωE(k)
e

∫
vxδfdv, (5)
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where δf is the perturbation of electron velocity distribution function due to a planar

x−polarized electromagnetic wave with frequency ω and wavenumber �k = k�ez. To de-

termine δf and consequently εt we perform the Fourier transform of the Vlasov equation

[1]:

δf(k) = − e

im

[
E(k) − vzB(k)/c

ω − vzk

∂f0

∂vx
+

vxB(k)/c

ω − vzk

∂f0

∂vz

]
. (6)

Because in the planar electromagnetic wave B(k) = ckE(k)/ω, Eq.(5) simplifies to

εt(ω, k) = 1 +
4πe2

mω2

∫
dv

[
vx

∂f0

∂vx
+

v2
xk

(ω − vzk)

∂f0

∂vz

]
. (7)

Substituting f0 as a Maxwellian with two different temperatures Tx and Tz into Eq.(7) and

making use of an algebraic identity

v2
xk

(ω − vzk)

∂f0

∂vz

=
mv2

x

Tz

f0

(
1 +

ω/vTzk

vz/vTz − ω/vTzk

)
(8)

gives

εt(ω, k) = 1 − ω2
p

ω2

{
1 − Tx

Tz

[
1 +

ω√
2vTzk

Z

(
ω√

2vTzk

)]}
. (9)

where Z(ζ) is the plasma dielectic function [2].

The spatial profile of the electric field E(z) is given by the inverse Fourier transform of

Eq.(4)

E(z) = − iω

πc
B(0)

∫ ∞

−∞

eikz

k2 − εt(ω, |k|)ω2/c2
dk. (10)

The |k| denotes the fact that E(z) is continued symmetrically to the semi-plane z < 0

and E(z) = E(−z), which is satisfied by setting E(k) = E(−k) [2]. Note that despite

E(z) = E(−z), the derivative of E(z) is not continues at z = 0.

The contour of integration in Eq.(10) can be shifted into complex k-plane. Because

|k| =
√
k2, the contour of integration has to enclose the branch point k = 0 with the

cut along the imaginary k axis [3]. As a result Eq.(10) can be represented as a sum of

contributions from poles and an integral along the imaginary axis of the complex k-plane

E(z) = − iω

πc
B(0) × (11){ ∑

n

eikpnz2πiRez

(
1

k2
pn − εt (ω, kpn)ω2/c2

)

+

∫ ∞

0

Imεt(ω, is)ω
2/c2e−sz

[s2 + Reεt(ω, is)ω2/c2]2 + [Imεt(ω, is)ω2/c2]2
ds

}
. (12)
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Here, kpn are the poles of denominator in Eq.(10) in the complex k-plane given by

k2
pn − ω2/c2 + ω2

p/c
2

{
1− Tx

Tz

[
1 +

ω√
2vTzkpn

Z

(
ω√

2vTzkpn

)]}
= 0. (13)

In the limit of small k, ω/
√

2 |k| vTz ≡ ζ >> 1 and 1 + ζZ(ζ) → −1/2ζ2,

εt(ω, k) = 1 − ω2
p

ω2

(
1 +

v2
Txk

2

ω2

)
(14)

and the pole is

k2
p1 = − (ω2

p − ω2)

c2 + ω2
pv

2
Tx/ω

2
. (15)

Under the conditions Eq.(1), Eq.(15) simplifies to become

kp1 = i
ω

vTx
. (16)

Calculations of the residual in Eq.(11) gives the electric field profile from this pole

Ep1(z) = − iω2c

ω2
pvTx

B(0)eikp1z. (17)

This corresponds to the exponential decay of the electric field with the scale ls = vTx/ω

described in Ref. [1].

However, there is another pole kp2 >> kp1. In the limit of large k, ω/
√

2 |k| vTz ≡ ζ << 1

ζZ(ζ) << 1 and under the conditions in Eq.(1), Eq.(13) yields

Rekp2 =
ωp

c

√
Tx/Tz. (18)

Note that according to Eq.(1)

ω

kp2vTz
=

ωc

ωpvTx
<< 1. (19)

Imaginary part of kp2 can be determined taking into account imaginary part of Z(0) = i
√
π,

which gives

Imkp2 =

√
πω

2
√

2vTz

. (20)

The pole kp2 gives rise to the rapidly oscillating field in the plasma

Ep2(z) =
ω

ckp2
B(0)eikp2z. (21)

Under the conditions Eq.(1), the contribution of the branch point [last integral in Eq.(11)]

is small. Indeed, the width of the integral is determined by the dispersion function and it is
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equal to ω/vTz while the amplitude of the function under the integral is of order c2Tz/ω
2
pTx.

This gives for the contribution from the branch point Eb(z) an estimate

Eb(z) ∼ B(0)
ω2c

√
Tz/Tx

πvTxω2
p

, (22)

which is 2π
√

Tx/Tz times smaller than Ep1(z) in Eq.(17). Note that it is in contrast to the

classical anomalous skin effect, where the contribution of the branch point is comparable to

the pole contribution [3].

Exact numerical integration of inverse Fourier transform of Eq.(10) confirms the impor-

tance of the oscillating solution as shown in Fig.1. Therefore the prediction of Ref. [1] of

monotonically decaying electric field is inaccurate.

Finally, the profile of the electric field is a sum of the two complex exponents given by

Eq.(17) and Eq.(21)

E(z) = Ep1 exp(−ikp1z) + Ep2 exp(−ikp2z), (23)

with kp1 given by Eq.(16) and kp2 given by Eqs.(18) and (20). The first pole in Eq.(23)

produces a slowly decaying electric field, while the second pole produces a faster decaying

electric field (Rekp2 >> Rekp1). Note that, in contrast to anomalous skin effect in plasma

with isotropic EVDF, the skin layer in a plasma with anisotropic EVDF consists of two

distinctive layers with very different lengthes. The amplitude of short layer Ep2 is larger in

most cases than the amplitude of long layer Ep1. It follows from Eq.(17) and Eq.(21) that

|Ep2|
|Ep1| ∼

ωpvTx

ωc

1√
Tx/Tz

, (24)

and under conditions in Eq.(1) amplitude of the electric field Ep2 is large compared with

Ep1 for modest anisotropy (
√

Tx/Tz ∼ 1), whereas amplitudes are comparable for very large

anisotropy (
√

Tx/Tz >> 1), as can be seen in Fig.1.

The surface impedance - the ratio of the electric and magnetic fields at the boundary -

characterizes the absorption coefficient and the phase of reflected wave [2, 4]. Substituting

Eqs.(17) and (21) [together with Eqs.(18) and (20)] gives

ζ =
E(0)

B(0)
= − iω2c

ω2
pvTx

+
ω

ωp

√
Tx/Tz + i c

√
πω

2
√

2vTz

. (25)

The energy dissipation in the plasma and, correspondingly the absorption coefficient are

determined by the real part of the surface impedance. Under the conditions (1), it follows
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from Eq.(25) that the real part of the surface impedance can be expressed as

Re(ζ) =
ω

ωp

√
Tx/Tz

. (26)

Therefore, the absorption coefficient in semi-infinite plasma is entirely governed by the short

scale region of width of order vTz/ω. Equation (26) recovers the result previously obtained

in Ref.[5].

Generally speaking, the anisotropic EVDF is the subject of the Weibel instability [6].

The growth rate can be obtained analyzing the poles of Eq.(13) with real k, but complex

ω. The maximum growth rate is given by γ = ωpvTx/c [6]. Instability develops faster than

one laser oscillation. Indeed, γ/ω = ωpvTx/cω = ωp/ω(vTx/c). The last parameter is large

according to the assumption in Eq.(1) and, therefore, the instability has time to develop.

However, particle-in-cell simulations in Ref. [7] shows that Weibel instability may saturate

on relatively low levels where the EVDF remains very anisotropic.

In summary, we have discovered that the electric field structure in the skin layer is far

from a monotonic exponentially decaying profile predicted in [1]. In fact, the skin layer

contains multiple oscillations of the electric field. The non-monotonic nature of the electric

field decay accounts for the finite dissipation missed in Ref. [1]. The anisotropic EVDF is

the subject of the Weibel instability, which develops quickly during the penetration of the

electric field into the plasma. However, the Weibel instability may saturate on relatively

low levels where the EVDF remains very anisotropic. The exact estimates of the saturation

level are difficult analytically and, therefore, self consistent particle-in-cell simulations are

necessary for further investigation of the subject.

This research was supported by the U.S. Department of Energy and (for G.S.) by the

DOE Office of Fusion Energy Sciences Junior Faculty Award.
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FIGURE CAPTION

The electric field in plasma with vTx = 0.1c, ω = 0.01ωp, Tx/Tz = 50. Solid line shows the

real part of the electric field profile obtained from the full solution making use of Eq.(10).

Dashed line corresponds to the solution of Ref.[1] Ep1e
ikp1z given by Eq.(17). Dotted line

corresponds to Ep2e
ikp2z given by Eq.(21).
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