PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073

PPPL-3925 UC-70 PPPL-3925

Anomalous Skin Effect for Anisotropic Electron Velocity Distribution Function

by

Igor Kaganovich, Edward Startsev, and Gennady Shvets

February 2004

PRINCETON PLASMA PHYSICS LABORATORY PRINCETON UNIVERSITY, PRINCETON, NEW JERSEY

PPPL Reports Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any any legal liability warranty, express or implied, or assumes or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its or favoring bv endorsement. recommendation, the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Availability

This report is posted on the U.S. Department of Energy's Princeton Plasma Physics Laboratory Publications and Reports web site in Fiscal Year 2004. The home page for PPPL Reports and Publications is: http://www.pppl.gov/pub_report/

DOE and DOE Contractors can obtain copies of this report from:

U.S. Department of Energy Office of Scientific and Technical Information DOE Technical Information Services (DTIS) P.O. Box 62 Oak Ridge, TN 37831

Telephone: (865) 576-8401 Fax: (865) 576-5728 Email: reports@adonis.osti.gov

This report is available to the general public from:

National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161 Telephone: 1-800-553-6847 or (703) 605-6000 Fax: (703) 321-8547 Internet: http://www.ntis.gov/ordering.htm

Anomalous skin effect for anisotropic electron velocity distribution function

Igor Kaganovich, Edward Startsev Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543

Gennady Shvets

University of Texas at Austin, Institute for Fusion Studies, Austin, Texas 78712

Abstract

The anomalous skin effect in a plasma with a highly anisotropic electron velocity distribution function (EVDF) is very different from skin effect in a plasma with the isotropic EVDF. An analytical solution was derived for the electric field penetrated into plasma with the EVDF described as a Maxwellian with two temperatures $T_x >> T_z$, where x is the direction along the plasma boundary and z is the direction perpendicular to the plasma boundary. The skin layer was found to consist of two distinctive regions of width of order v_{Tx}/ω and v_{Tz}/ω , where $v_{Tx,z} = \sqrt{T_{x,z}/m}$ is the thermal electron velocity and ω is the incident wave frequency. In a recent Letter [1], it was shown that a highly anisotropic electron velocity distribution function (EVDF) yields a large skin-layer depth compared with the isotropic EVDF. The EVDF was described as a Maxwellian with two temperatures $T_x >> T_z$, where x is the direction along plasma boundary and z is the direction perpendicular plasma boundary. The electromagnetic wave is assumed to propagate also along z-axis in vacuum. The skin layer was found to be much longer than the skin layer in a plasma with isotropic EVDF. The authors of Ref. [1] showed that under conditions

$$T_x >> T_z; \ \frac{c}{\omega_p} << \frac{v_{Tx}}{\omega}; \ \omega_p >> \omega,$$
 (1)

where ω is the incident wave frequency, $\omega_p = \sqrt{4\pi e^2 n/m}$ is the plasma frequency, n is the electron density, $v_{Tx} = \sqrt{T_x/m}$, the electric field profile is exponential $E(z) \sim \exp(-z/l_s)$ where

$$l_s = \frac{v_{Tx}}{\omega}.$$
(2)

In their analysis authors of Ref.[1] assumed from the outset that the skin depth is much longer than v_{Tz}/ω , where $v_{Tz} = \sqrt{T_z/m}$, T_z is the electron temperature along z-axis perpendicular to the plasma boundary. We show that the skin layer actually consists of two distinctive regions of widths of order v_{Tx}/ω and v_{Tz}/ω . The latter short region was missed in Ref. [1].

In contrast to Ref. [1], we solve Maxwell's equation

$$\frac{d^2}{dz^2}E(z) + \frac{\omega^2}{c^2}E(z) = -\frac{4\pi i\omega}{c^2}j_x,$$
(3)

for x- component of electric field without making any assumptions. For semi-infinite geometry, the electric field can be calculated making use of the Fourier transform in the infinite plane by continuing the electric field symmetrically around plasma boundary [E(-z) = E(z)]. Following Ref. [2], the Fourier transform of the electric field is given by

$$E(k) = -\frac{2i\omega}{c}B(0)\frac{1}{k^2 - \varepsilon_t(\omega, k)\omega^2/c^2},$$
(4)

where B(0) is the magnetic field at plasma boundary and $\varepsilon_t(\omega, k)$ is the transverse plasma dielectric constant [2]

$$\varepsilon_t(\omega, k) = 1 - \frac{4\pi i}{\omega E(k)} e \int v_x \delta f d\mathbf{v},\tag{5}$$

where δf is the perturbation of electron velocity distribution function due to a planar x-polarized electromagnetic wave with frequency ω and wavenumber $\vec{k} = k\vec{e_z}$. To determine δf and consequently ε_t we perform the Fourier transform of the Vlasov equation [1]:

$$\delta f(k) = -\frac{e}{im} \left[\frac{E(k) - v_z B(k)/c}{\omega - v_z k} \frac{\partial f_0}{\partial v_x} + \frac{v_x B(k)/c}{\omega - v_z k} \frac{\partial f_0}{\partial v_z} \right].$$
(6)

Because in the planar electromagnetic wave $B(k) = ckE(k)/\omega$, Eq.(5) simplifies to

$$\varepsilon_t(\omega,k) = 1 + \frac{4\pi e^2}{m\omega^2} \int d\mathbf{v} \left[v_x \frac{\partial f_0}{\partial v_x} + \frac{v_x^2 k}{(\omega - v_z k)} \frac{\partial f_0}{\partial v_z} \right].$$
(7)

Substituting f_0 as a Maxwellian with two different temperatures T_x and T_z into Eq.(7) and making use of an algebraic identity

$$\frac{v_x^2 k}{(\omega - v_z k)} \frac{\partial f_0}{\partial v_z} = \frac{m v_x^2}{T_z} f_0 \left(1 + \frac{\omega / v_{Tz} k}{v_z / v_{Tz} - \omega / v_{Tz} k} \right)$$
(8)

gives

$$\varepsilon_t(\omega,k) = 1 - \frac{\omega_p^2}{\omega^2} \left\{ 1 - \frac{T_x}{T_z} \left[1 + \frac{\omega}{\sqrt{2}v_{Tz}k} Z\left(\frac{\omega}{\sqrt{2}v_{Tz}k}\right) \right] \right\}.$$
(9)

where $Z(\zeta)$ is the plasma dielectic function [2].

The spatial profile of the electric field E(z) is given by the inverse Fourier transform of Eq.(4)

$$E(z) = -\frac{i\omega}{\pi c} B(0) \int_{-\infty}^{\infty} \frac{e^{ikz}}{k^2 - \varepsilon_t(\omega, |k|)\omega^2/c^2} dk.$$
 (10)

The |k| denotes the fact that E(z) is continued symmetrically to the semi-plane z < 0and E(z) = E(-z), which is satisfied by setting E(k) = E(-k) [2]. Note that despite E(z) = E(-z), the derivative of E(z) is not continues at z = 0.

The contour of integration in Eq.(10) can be shifted into complex k-plane. Because $|k| = \sqrt{k^2}$, the contour of integration has to enclose the branch point k = 0 with the cut along the imaginary k axis [3]. As a result Eq.(10) can be represented as a sum of contributions from poles and an integral along the imaginary axis of the complex k-plane

$$E(z) = -\frac{i\omega}{\pi c}B(0) \times$$

$$\left\{\sum_{n} e^{ik_{pn}z} 2\pi i Rez \left(\frac{1}{k_{pn}^2 - \varepsilon_t(\omega, k_{pn})\omega^2/c^2}\right) + \int_0^\infty \frac{Im\varepsilon_t(\omega, is)\omega^2/c^2 e^{-sz}}{[s^2 + Re\varepsilon_t(\omega, is)\omega^2/c^2]^2 + [Im\varepsilon_t(\omega, is)\omega^2/c^2]^2} ds\right\}.$$

$$(11)$$

Here, k_{pn} are the poles of denominator in Eq.(10) in the complex k-plane given by

$$k_{pn}^{2} - \omega^{2}/c^{2} + \omega_{p}^{2}/c^{2} \left\{ 1 - \frac{T_{x}}{T_{z}} \left[1 + \frac{\omega}{\sqrt{2}v_{Tz}k_{pn}} Z\left(\frac{\omega}{\sqrt{2}v_{Tz}k_{pn}}\right) \right] \right\} = 0.$$
(13)

In the limit of small k, $\omega/\sqrt{2} |k| v_{Tz} \equiv \zeta >> 1$ and $1 + \zeta Z(\zeta) \rightarrow -1/2\zeta^2$,

$$\varepsilon_t(\omega,k) = 1 - \frac{\omega_p^2}{\omega^2} \left(1 + \frac{v_{Tx}^2 k^2}{\omega^2} \right) \tag{14}$$

and the pole is

$$k_{p1}^2 = -\frac{(\omega_p^2 - \omega^2)}{c^2 + \omega_p^2 v_{Tx}^2 / \omega^2}.$$
(15)

Under the conditions Eq.(1), Eq.(15) simplifies to become

$$k_{p1} = i \frac{\omega}{v_{Tx}}.$$
(16)

Calculations of the residual in Eq.(11) gives the electric field profile from this pole

$$E_{p1}(z) = -\frac{i\omega^2 c}{\omega_p^2 v_{Tx}} B(0) e^{ik_{p1}z}.$$
(17)

This corresponds to the exponential decay of the electric field with the scale $l_s = v_{Tx}/\omega$ described in Ref. [1].

However, there is another pole $k_{p2} >> k_{p1}$. In the limit of large k, $\omega/\sqrt{2} |k| v_{Tz} \equiv \zeta \ll 1$ $\zeta Z(\zeta) \ll 1$ and under the conditions in Eq.(1), Eq.(13) yields

$$Rek_{p2} = \frac{\omega_p}{c} \sqrt{T_x/T_z}.$$
(18)

Note that according to Eq.(1)

$$\frac{\omega}{k_{p2}v_{Tz}} = \frac{\omega c}{\omega_p v_{Tx}} << 1.$$
(19)

Imaginary part of k_{p2} can be determined taking into account imaginary part of $Z(0) = i\sqrt{\pi}$, which gives

$$Imk_{p2} = \frac{\sqrt{\pi\omega}}{2\sqrt{2}v_{Tz}}.$$
(20)

The pole k_{p2} gives rise to the rapidly oscillating field in the plasma

$$E_{p2}(z) = \frac{\omega}{ck_{p2}}B(0)e^{ik_{p2}z}.$$
(21)

Under the conditions Eq.(1), the contribution of the branch point [last integral in Eq.(11)] is small. Indeed, the width of the integral is determined by the dispersion function and it is

equal to ω/v_{Tz} while the amplitude of the function under the integral is of order $c^2 T_z/\omega_p^2 T_x$. This gives for the contribution from the branch point $E_b(z)$ an estimate

$$E_b(z) \sim B(0) \frac{\omega^2 c \sqrt{T_z/T_x}}{\pi v_{Tx} \omega_p^2},\tag{22}$$

which is $2\pi\sqrt{T_x/T_z}$ times smaller than $E_{p1}(z)$ in Eq.(17). Note that it is in contrast to the classical anomalous skin effect, where the contribution of the branch point is comparable to the pole contribution [3].

Exact numerical integration of inverse Fourier transform of Eq.(10) confirms the importance of the oscillating solution as shown in Fig.1. Therefore the prediction of Ref. [1] of monotonically decaying electric field is inaccurate.

Finally, the profile of the electric field is a sum of the two complex exponents given by Eq.(17) and Eq.(21)

$$E(z) = E_{p1} \exp(-ik_{p1}z) + E_{p2} \exp(-ik_{p2}z), \qquad (23)$$

with k_{p1} given by Eq.(16) and k_{p2} given by Eqs.(18) and (20). The first pole in Eq.(23) produces a slowly decaying electric field, while the second pole produces a faster decaying electric field ($Rek_{p2} >> Rek_{p1}$). Note that, in contrast to anomalous skin effect in plasma with isotropic EVDF, the skin layer in a plasma with anisotropic EVDF consists of two distinctive layers with very different lengthes. The amplitude of short layer E_{p2} is larger in most cases than the amplitude of long layer E_{p1} . It follows from Eq.(17) and Eq.(21) that

$$\frac{|E_{p2}|}{|E_{p1}|} \sim \frac{\omega_p v_{Tx}}{\omega c} \frac{1}{\sqrt{T_x/T_z}},\tag{24}$$

and under conditions in Eq.(1) amplitude of the electric field E_{p2} is large compared with E_{p1} for modest anisotropy $(\sqrt{T_x/T_z} \sim 1)$, whereas amplitudes are comparable for very large anisotropy $(\sqrt{T_x/T_z} >> 1)$, as can be seen in Fig.1.

The surface impedance - the ratio of the electric and magnetic fields at the boundary - characterizes the absorption coefficient and the phase of reflected wave |2, 4|. Substituting Eqs.(17) and (21) |together with Eqs.(18) and (20)| gives

$$\zeta \equiv \frac{E(0)}{B(0)} \equiv \frac{i\omega^2 z}{\omega_r^2 v_{Tx}} \pm \frac{\omega}{\omega_r \sqrt{T_x/T_1} \pm i \frac{2\sqrt{\tau\omega}}{2\sqrt{2t}}}$$
(25)

The energy dissipation in the plasma and, correspondingly the absorption $\cos fficient$ are determined by the real part of the surface impedance. Under the conditions (1), it follows

from Eq.(25) that the real part of the surface impedance can be expressed as

$$Re(\zeta) = \frac{\omega}{\omega_{\rm r}} \sqrt{T_{\rm r}/T_{\rm r}}$$
(26)

Therefore, the absorption coefficient in semi-infinite plasma is entirely governed by the short scale region of width of order v_{Tz}/ω . Equation (26) recovers the result previously obtained in Ref. 5.

Generally speaking, the anisotropic EVDF is the subject of the Weibel instability [6]. The growth rate can be obtained analyzing the poles of Eq.(13) with real k, but complex ω . The maximum growth rate is given by $\gamma = \omega_p v_{Tx}/c$ [6]. Instability develops faster than one laser oscillation. Indeed, $\gamma/\omega = \omega_p v_{Tx}/c\omega = \omega_p/\omega(v_{Tx}/c)$. The last parameter is large according to the assumption in Eq.(1) and, therefore, the instability has time to develop. However, particle-in-cell simulations in Ref. [7] shows that Weibel instability may saturate on relatively low levels where the EVDF remains very anisotropic.

In summary, we have discovered that the electric field structure in the skin layer is far from a monotonic exponentially decaying profile predicted in [1]. In fact, the skin layer contains multiple oscillations of the electric field. The non-monotonic nature of the electric field decay accounts for the finite dissipation missed in Ref. [1]. The anisotropic EVDF is the subject of the Weibel instability, which develops quickly during the penetration of the electric field into the plasma. However, the Weibel instability may saturate on relatively low levels where the EVDF remains very anisotropic. The exact estimates of the saturation level are difficult analytically and, therefore, self consistent particle-in-cell simulations are necessary for further investigation of the subject.

This research was supported by the U.S. Department of Energy and (for G.S.) by the DOE Office of Fusion Energy Sciences Junior Faculty Award.

- [1] G. Ferrante, M. Zarcone and S.A. Urypin, Phys. Rev. Lett. 91, 085005 (2003).
- [2] E.M. Lifshitz and L.P. Pitaevskii, "Physical Kinetics", (Pergamon Press, Oxford 1981), p.368.
- [3] Yu. M. Aliev, I. D. Kaganovich and H. Schluter, Phys. Plasmas, 4, 2413 (1997); and in more details Yu. M. Aliev, I. D. Kaganovich and H. Schluter, "Collisionless electron heating in RF gas discharges. I. Quasilinear theory" in U.Korsthagen and L. Tsendin (Eds.), Electron kinetics and Applications of glow discharges, NATO ASI Series B, Physics 367, Plenum Press, (New York and London) (1998).
- [4] A.A. Andreev, K. Yu. Platonov and J.C. Gauthier, Phys. Rev. E 58, 2424 (1998).
- [5] G. Ferrante, M. Zarcone and S.A. Urypin, Eur. Phys. D. 19, 349 (2002).
- [6] E.S. Weibel, Phys. Rev. Lett. 2, 83 (1959).
- [7] M. Honda, J. Meyer-ter-Vehn, A. Pukhov, Phys. Plasmas 7, 1302 (2000).

FIGURE CAPTION

The electric field in plasma with $v_{Tx} = 0.1c$, $\omega = 0.01\omega_p$, $T_x/T_z = 50$. Solid line shows the real part of the electric field profile obtained from the full solution making use of Eq.(10). Dashed line corresponds to the solution of Ref.[1] $E_{p1}e^{ik_{p1}z}$ given by Eq.(17). Dotted line corresponds to $E_{p2}e^{ik_{p2}z}$ given by Eq.(21).

FIG. 1:

External Distribution

Plasma Research Laboratory, Australian National University, Australia Professor I.R. Jones, Flinders University, Australia Professor João Canalle, Instituto de Fisica DEQ/IF - UERJ, Brazil Mr. Gerson O. Ludwig, Instituto Nacional de Pesquisas, Brazil Dr. P.H. Sakanaka, Instituto Fisica, Brazil The Librarian, Culham Laboratory, England Mrs. S.A. Hutchinson, JET Library, England Professor M.N. Bussac, Ecole Polytechnique, France Librarian, Max-Planck-Institut für Plasmaphysik, Germany Jolan Moldvai, Reports Library, Hungarian Academy of Sciences, Central Research Institute for Physics, Hungary Dr. P. Kaw, Institute for Plasma Research, India Ms. P.J. Pathak, Librarian, Institute for Plasma Research, India Ms. Clelia De Palo, Associazione EURATOM-ENEA, Italy Dr. G. Grosso, Instituto di Fisica del Plasma, Italy Librarian, Naka Fusion Research Establishment, JAERI, Japan Library, Laboratory for Complex Energy Processes, Institute for Advanced Study, Kyoto University, Japan Research Information Center, National Institute for Fusion Science, Japan Dr. O. Mitarai, Kyushu Tokai University, Japan Dr. Jiangang Li, Institute of Plasma Physics, Chinese Academy of Sciences, People's Republic of China Professor Yuping Huo, School of Physical Science and Technology, People's Republic of China Library, Academia Sinica, Institute of Plasma Physics, People's Republic of China Librarian, Institute of Physics, Chinese Academy of Sciences, People's Republic of China Dr. S. Mirnov, TRINITI, Troitsk, Russian Federation, Russia Dr. V.S. Strelkov, Kurchatov Institute, Russian Federation, Russia Professor Peter Lukac, Katedra Fyziky Plazmy MFF UK, Mlynska dolina F-2, Komenskeho Univerzita, SK-842 15 Bratislava, Slovakia Dr. G.S. Lee, Korea Basic Science Institute, South Korea Institute for Plasma Research, University of Maryland, USA Librarian, Fusion Energy Division, Oak Ridge National Laboratory, USA Librarian, Institute of Fusion Studies, University of Texas, USA Librarian, Magnetic Fusion Program, Lawrence Livermore National Laboratory, USA Library, General Atomics, USA Plasma Physics Group, Fusion Energy Research Program, University of California at San Diego, USA Plasma Physics Library, Columbia University, USA Alkesh Punjabi, Center for Fusion Research and Training, Hampton University, USA Dr. W.M. Stacey, Fusion Research Center, Georgia Institute of Technology, USA Dr. John Willis, U.S. Department of Energy, Office of Fusion Energy Sciences, USA Mr. Paul H. Wright, Indianapolis, Indiana, USA

The Princeton Plasma Physics Laboratory is operated by Princeton University under contract with the U.S. Department of Energy.

> Information Services Princeton Plasma Physics Laboratory P.O. Box 451 Princeton, NJ 08543

Phone: 609-243-2750 Fax: 609-243-2751 e-mail: pppl_info@pppl.gov Internet Address: http://www.pppl.gov