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Microwave imaging reflectometry for the measurement of
turbulent fluctuations in tokamaks

E. Mazzucatoa)

Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543

ABSTRACT

This article describes a numerical study of microwave reflectometry for the
measurement of turbulent fluctuations in tokamak-like plasmas with a
cylindrical geometry. Similarly to what was found previously in plane-
stratified plasmas, the results indicate that the characteristics of density
fluctuations cannot be uniquely determined from the reflected waves if the
latter are allowed to propagate freely to the point of detection, as in standard
reflectometry. Again, we find that if the amplitude of fluctuations is below a
threshold that is set by the spectrum of poloidal wave numbers, the local
characteristics of density fluctuations can be obtained from the phase of
reflected waves when these are collected with a wide aperture antenna, and an
image of the cutoff is formed onto an array of phase-sensitive detectors.

Key words: Tokamak, anomalous transport, plasma turbulence, short-scale
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Subject classification: Te, D2, K0

                                                
a) Electronic mail: mazzucato@pppl.gov



2

I. INTRODUCTION

Microwave reflectometry [1], a radar technique for the detection of fluctuations using

the reflection of electromagnetic waves from a plasma cutoff, has found extensive use for

the detection of short-scale turbulent fluctuations in tokamaks – the probable cause of

anomalous transport in this type of magnetic configurations [2,3]. However, the

extraction of any quantitative information from the measured signals is always very

difficult and often impossible. This is caused by two phenomena. Firstly, the high

sensitivity of reflectometry to plasma fluctuations makes its response non-linear, as

demonstrated by the very first application of this technique to tokamaks [4]. The second

reason, which is more subtle and was not promptly understood [5], is due to fact that

when the plasma permittivity fluctuates perpendicularly to the direction of propagation of

the probing beam, as in the case of tokamak plasmas where turbulent fluctuations vary in

both radial and poloidal directions, the spectral components of the backward wave

propagate in different directions. This may result in a complicated interference pattern on

the detection plane, from which it is very difficult to extract any quantitative information

on fluctuations under investigation.

This can be understood by considering a simple case where the wave permittivity has

the form 

† 

e = e0 (r) + ˜ e (r,q) [where 

† 

˜ e <<1 is the fluctuating component and 

† 

(r,q) is a

system of coordinates representing the radial and poloidal directions of a tokamak

plasma], and by assuming that the reflected wave near the cutoff can be cast in the form

† 

E = exp(i ˜ f ) , with 

† 

˜ f (q)  given by the geometric optics approximation (phase screen

model) [5,6]. Since the phase of the probing wave is the cumulative result of many

random contributions, we may assume that 

† 

˜ f (q)  is a normal random variable with mean

† 

< ˜ f >= 0 , variance 

† 

sf
2 ≡< ˜ f 2 >  and autocorrelation 

† 

gf (d) ≡< ˜ f (q) ˜ f (q + d) > /sf
2. From

this, we get that the first moment of the wave amplitude (i.e., the amplitude of the
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coherent specular reflection) is < E >= exp(-sf
2 / 2) , and thus it is a decreasing function

of sf .  From the joint probability density [7]

† 

P( ˜ f 1, ˜ f 2) =
1

2psf
2(1- gf

2)1/2 exp -
f1

2 - 2gff1f2 + f2
2

2sf
2(1- gf

2)

È 

Î 
Í 
Í 

˘ 

˚ 
˙ 
˙ 
 , (1)

where 

† 

˜ f 1 ≡ ˜ f (q)  and 

† 

˜ f 2 ≡ ˜ f (q + d) , we get the second moment of the wave amplitude

† 

< E1E2* >= exp[-sf
2(1- gf )], which shows that the signal correlation length is also a

decreasing function of sf . The normalized autocorrelation of E is then given by

† 

gE ≡
< ˜ E 1 ˜ E 2* >
<| ˜ E |2>

=
esf

2gf -1
esf

2
-1

. (2)

From this, we get g E ª gf  for sf
2 <<1 . On the other hand, for sf

2 >>1 , by taking

† 

gf ª exp(-d2 /2Df
2 )  and making the approximation 

† 

gf ª1-d2 /2Df
2  for 

† 

d2 << Df
2 , we

obtain 

† 

gE ª exp(-d2sf
2 /2Df

2 ) . To summarize, when sf
2 >>1 , the correlation length of

the wave amplitude is a factor of sf  smaller than the correlation length of 

† 

˜ f .

In conclusion, 

† 

gf  cannot be derived from the measured value of 

† 

gE  without

knowledge 

† 

sf . On the other hand, the latter cannot be measured when the reflected

waves are allowed to propagate freely to the detection plane where they may form a

chaotic interference pattern. In a series of papers [8-10], the author has discussed the

possibility of overcoming this difficulty by collecting the reflected waves with a wide

aperture optical system forming an image of the cutoff onto an array of phase sensitive

detectors. This should allow a measurement of the autocorrelation function 

† 

gf , and hence

information on the structure of plasma density fluctuations near the cutoff. Such a

reflectometry scheme –  named Microwave Imaging Reflectometry – was the result of an

extensive series of numerical simulations where, as in the previous paragraph, a plane-

stratified plasma equilibrium was used in conjunction with a field of two dimensional

fluctuations. In this paper, we reanalyze the same problem using a plasma equilibrium
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configuration with a more realistic cylindrical geometry.

II.  PHYSICAL MODEL

We assume that the density (

† 

n) of a cylindrically symmetric plasma is perturbed by a

field of 2D density fluctuations (

† 

˜ n ) with the spatial distribution

† 

˜ n (r,q)
n(r)

=  dpq  q=1

Q
Â

 p=1

P
Â cos(pkr + j pq)cos(qq) , (3)

in the system of cylindrical coordinates (r,q ). This spectrum consists of PxQ discrete

components with radial wave number 

† 

kr = pk  (

† 

k ≡constant), poloidal number q, random

phase 

† 

j pq  and amplitudes 

† 

dpq
 .  As in previous simulations [8,9], the rationale for

choosing a poloidally symmetric spectrum of fluctuations is that it provides an extra

check for the calculated reflected wave, which obviously must display the same degree of

symmetry. However, the numerical code used in this paper could deal with odd

symmetric fluctuations as well, with  results that were substantially similar to those

described in this paper.

Similarly to Ref. [8], we take the amplitude distribution

† 

dpq 2 µ p exp[-(pk/kr )2 - (q /q0)2], (4)

where the constants 

† 

kr = kP /2  and 

† 

q0 represent the spectral width of fluctuations in the

radial and poloidal directions, respectively. At the cutoff, the poloidal spectral width can

also be expressed in terms of the wave number 

† 

k p = q0 /rc . Throughout this article we

will use P=21 and Q=101.

The probing wave is launched from 

† 

r = r0  with the Gaussian amplitude profile

† 

E0(q) = e-(q /q0)2
. (5)

where 

† 

q0  is a constant. Since we assume 

† 

q0 << p , Eq. (5) can also be cast in the form
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† 

E0(q) ª
q0

2 p
e-(mq0 /2)2

m=-•

m=+•
Â eimq ≡  gm

m=-•

m=+•
Â  eimq . (6)

The total amplitude (E) of the wave, that we will assume propagating in the ordinary

mode, is expressed as the sum of 2N+1 independent solutions of the wave equation

† 

E(r,q) = cn
 n=-N

   N
Â  En (r,q), (7)

where N >>Q (to be determined). The functions En  are cast in the form

† 

En (r,q) = fmn
m=-N

   N
Â (r) e  imq , (8)

where fmn(r)  are solutions of the system of 2N+1 ordinary differential equations

† 

d2 fm n

dr2 +
1
r

dfm n

dr
+ k0

2(e0 -am
2 ) fm n + k0

2(e0 -1)

        x  [
 q=1

  Q
Â

 p=1

  P
Â

dpq
2

 cos(pkr + j pq) ( f(m-q) n + f(m+q)  n )] = 0

                                                                         ( m = -N,-N +1.......N) ,

(9)

with 

† 

e0 =1- (w p /w)2 (the unperturbed  permittivity), 

† 

w p = (4p n e2 /me )1/2 (the plasma

frequency), 

† 

am = m /k0 r  and 

† 

k0 = w /c  (the probing wave number). These equations,

which are derived by inserting Eqs. (3) and (8) into the wave equation and by performing

a Fourier expansion in q, can be solved with the method of Runge-Kutta.

The coefficients 

† 

cn  in Eq. (7) are obtained by imposing that the wave field at r=r0 is

the sum of the incoming probing wave (Eq. (6)) and an outgoing reflected wave

† 

Er (q) = am
m=-N

   N
Â  e  imq  . (10)

From this we get a first set of 2N+1 equations

† 

fmn (r0) cn
n=-N

   N
Â - am = gm  ,

† 

 ( m = -N,-N +1.......N). (11)
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Another set of equations can be derived from the expressions

† 

E f (r,q) = gm
Hm

(2)(k0r)
Hm

(2)(k0r0)m=-•

   m=•
Â  e  imq (13)

and

† 

Eb (r,q) = am
Hm

(1)(k0r)
Hm

(1)(k0r0)m=-N

   N
Â  e  imq , (14)

representing the solutions of the wave equation that at 

† 

r = r0 coincide with Eqs. (6) and

(10), respectively. In these expressions, 

† 

Hm
(1) ≡ Jm + iYm  and 

† 

Hm
(2) ≡ Jm - iYm  are the

Hankel functions [11] which satisfy the recurrence relation

† 

2 ¢ F m (z) = Fm-1(z) - Fm+1(z) .

From the r-derivatives, then, we obtain a second set of equations

† 

¢ f mn (r0) cn
n=-N

   N
Â - amk0Hm

(1)¢(k0r0) /Hm
(1)(k0r0) = g(m)k0Hm

(2 ¢ ) (k0r0) /Hm
(2)(k0r0) 

† 

 ( m = -N,-N +1.......N), (15)

which together with Eq. (11) determine the values of 

† 

an  and 

† 

cn .

In the following, Eq. (14) will be referred to as the backward field. Outside of the

plasma region, 

† 

Eb  coincides with the reflected wave, while inside the plasma region, it

represents a virtual field that an observer in free space could measure by using an optical

system to map the plasma region onto an array of detectors located at the image plane.

Finally, the integer N must be chosen large enough to make the results significantly

unchanged by any increase in its value. This condition, verified a posteriori, allows the

closure of the system of equations by setting to zero all terms f(m ±q)n  with | m ± q |  > N .

The numerical simulations of this paper have been performed using values of N in the

range 200≤N≤250.
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III.  NUMERICAL RESULTS

The numerical results described in this section refer to the case of a cylindrical

plasma with a radius of 

† 

rb=80 cm and the density profile of Fig. 1 (derived from a typical

plasma equilibrium of the Tokamak Fusion Test Reactor [5]). The probing wave has a

frequency of 75 GHz and is launched from 

† 

r0=100 cm. The cutoff has a radius of 

† 

rc =40

cm where the density scale length is 

† 

Ln ≡ n /(dn /dr)=25 cm.

Figure 2 displays the contour plot of the backward field amplitude 

† 

Eb  for different

values of the angular aperture of the probing beam (

† 

q0 ). The field of turbulent

fluctuations is the same in all four cases, with 

† 

sn ≡< ˜ n 2 /n2 >1/2  =1.0x10-2, 

† 

kr =1.0 cm-1

and 

† 

q0=40 (

† 

k p=1.0 cm-1). Figure 3 displays similar plots for a constant beam aperture

(

† 

q0= 40o) but different values of 

† 

sn . In all four cases, the fluctuations have the same

value of 

† 

q0=20 (

† 

k p=0.5 cm-1) and 

† 

kr =1.0 cm-1, and identical sets of random phases

(

† 

j pq).

The plots of Figs. 2 and 3 illustrate how the radiation pattern of the backward field

splits into several striations that seem to originate from a location behind the cutoff – a

virtual cutoff  – where the fluctuations in the backward field amplitude are at a their

minimum. As noted in the previous section, the backward field does not coincide with the

reflected wave in the plasma region. It is simply how the reflected wave, after crossing

the region between the cutoff and the plasma edge, would appear to an observer in free

space. Since the refractive index of this region is lower than one, the striations seem to

start from a radial location (

† 

rG ) behind the cutoff, at a distance from the latter of the order

of the density scale length (

† 

Ln ), i.e., where the rays of waves originating near the real

cutoff seem to intersect when observed in free space. This phenomenon is similar to what

makes the bottom of a swimming pool to appear artificially close to the surface, the only

difference in this case being a refractive index larger than one. In Figs. 2 and 3, the
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distance between the real and the virtual cutoff is approximately half (~

† 

Ln /2 ) of what it

was found (~

† 

Ln ) previously in plane geometry [8,9]. This is explained by the fact that in

a cylindrical plasma the conservation of the poloidal m-number causes a strong bending

in the rays of reflected waves, which therefore appear to originate closer to the cutoff

than in a plane plasma configuration with similar density gradients.

As described in the introduction, interference of the spectral components of the

reflected wave may result in a chaotic wave pattern in free space – the only place where

we can perform reflectometry measurements. This is demonstrated in Fig. 4(a), which

shows that the amplitude of the backward field at r=r0 is strongly modulated by the

fluctuations of Fig. 3(c). Furthermore, the fluctuating component (

† 

˜ f ) of the phase of 

† 

Eb

(i.e., the change in the phase of the backward field due to the presence of fluctuations) is

completely different  from the phase of geometric optics 

† 

˜ f GO (q) = k0 ˜ e / e0 drrc
rbÚ  (Fig.

5(a)). On the contrary, plasma fluctuations have a small effect on the value of 

† 

Eb  near

the virtual cutoff (Fig. 4(b)), where 

† 

˜ f  coincides with 

† 

˜ f GO  (Fig. 5(b)). Consequently,

since most of the contribution to 

† 

˜ f GO  comes from a narrow region in front of the cutoff,

the poloidal power spectrum of 

† 

˜ f  at r=

† 

rG  must be similar to that of 

† 

˜ n /n  at r=

† 

rc . This is

indeed the case, as demonstrated in Fig. 6 where the spectrum of 

† 

˜ n /n  is normalized by

the factor 

† 

kr /pk0
2Ln  (derived from the approximation of geometric optics [5,6]).

Similarly to the results of previous simulations [9], we find that the best agreement is

obtained using the value of 

† 

˜ n /n  at a small distance from the cutoff (~0.5 cm in Fig. 6).

Apart from a few rare cases, such as that of Ref. [5], a normal procedure of standard

reflectometry is to identify the spectrum of plasma turbulence with the spectrum of

measured signals. This leads to erroneous results, as demonstrated by Fig. 7 showing the

power spectra of 

† 

Eb at r= r0 and of 

† 

˜ n /n  at r=

† 

rc  (the latter being renormalized for

facilitating the comparison with the backward field spectra). These results show very
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clearly that, as plasma fluctuations rise to the level found in tokamaks, the spectrum of

reflected waves in free space – the main product of standard reflectometry –  becomes

considerably broader than the spectrum of fluctuations.

As in previous simulations [8,9], we find that the possibility of inferring the spectrum

of plasma turbulence from the phase of the backward field breaks down at large levels of

plasma fluctuations. This is explained by the fact that, since each spectral component of

the backward wave originates near the corresponding reflecting point, the breakdown

occurs when the set of these points is distributed over a distance 

† 

dr  that is comparable to

the radial scale of plasma fluctuations (

† 

kr-1). This occurs when [8,9]

† 

sn <
1

p 3/4Lnk p
 . (16)

When this condition is not satisfied, we expect large fluctuations in the value of 

† 

Eb  at

the virtual cutoff and a departure of the spectrum of 

† 

˜ f  (at r=

† 

rG ) from that of 

† 

˜ n /n  (at

r=

† 

rc ). This is indeed what Fig. 8 shows when the value of 

† 

sn  is raised to 3.0x10-2 for

fluctuations similar to those of Fig. 6 (

† 

k p= 0.5 cm-1 and 

† 

Ln=25 cm), in agreement with

Eq. (16) that gives 

† 

sn < 3.4x10-2. Another demonstration of the validity of this criterion

is provided by Fig. 9, where the breakdown occurs for a value of 

† 

sn  smaller than 2x10-2

when 

† 

k p= 1.0 cm-1, again in agreement with Eq. (16) that for this case gives 

† 

sn <

1.7x10-2. The contour plot of 

† 

Eb  in Fig. 10 shows that this is accompanied by the

destruction of the virtual cutoff.

Finally, it is worth noting that when Eq. (16) is not satisfied, such as in Figs. 8(b) and

9(b), the power spectrum of 

† 

˜ f  acquires a 1/m2 dependence, which is reminiscent of the

1/f 2 frequency dependence of the spectra of standard reflectometry [1,6].
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IV. CONCLUSION

In conclusion, we have presented a numerical study of microwave reflectometry for

the measurement of turbulent fluctuations in a tokamak-like plasma with a cylindrical

equilibrium configuration. Similarly to what was found previously in plane-stratified

configurations, our results indicate that the characteristics of plasma fluctuations cannot

be uniquely determined from the reflected waves if these are allowed to propagate freely

to the point of detection, as in standard reflectometry. Again, we find that if the amplitude

of fluctuations is below a threshold that is set by the spectrum of poloidal wave numbers

(Eq. (16)), the local characteristics of density fluctuations can be obtained from the phase

of reflected waves when these are collected with a wide aperture antenna and an image of

the cutoff is formed (taking into account plasma refraction) onto an array of phase

sensitive detectors. A reflectometer apparatus for testing this conjecture has been

constructed and is currently being commissioned on the TEXTOR tokamak [12,13].
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Figure 1.  Plasma density profile; the cutoff is at r=rc for a probing wave with a
frequency of 75 GHz and the ordinary mode of propagation.
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Figure 2.  Contour plots of 

† 

Eb  for different values of the angular width 

† 

q0 : 5o (a), 10o

(b), 20o (c), 40o (d). Green line is the plasma boundary (

† 

rb=80 cm), solid white line is
the cutoff (

† 

rc =40 cm), dashed line is the virtual cutoff (

† 

rG=26 cm). Fluctuations
parameters: 

† 

q0=40, 

† 

kr =1.0 cm-1 and 

† 

sn =1.0x10-2.
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Figure 3.  Contour plots of 

† 

Eb  for different values of 

† 

sn : 0.0 (a), 0.5x10-2 (b), 1.0x10-2

(c), 2.0x10-2 (d). Other parameters: 

† 

q0=20, 

† 

kr =1.0 cm-1, 

† 

q0= 40o.
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Figure 4.  Profile of 

† 

Eb  at r=r0 (a) and r=

† 

rG  (b) for the case of Fig. 3(c).
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Figure 5.  Comparison of 

† 

˜ f  (solid line) and 

† 

˜ f GO  (dashed line) at r=r0 (a) and r=

† 

rG  (b)
for the case of Fig. 3(c). Note that the two curves in the bottom figure are almost
identical.
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Figure 6.  Power spectra of 

† 

˜ f  at r=

† 

rG  (solid lines) and of 

† 

˜ n /n  at r

† 

ª rc  (dashed line) for
different values of 

† 

sn . Other parameters are those of Fig. 3. Spectra are averaged over
twenty realizations of the turbulence field.
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Figure 7.  Power spectra of 

† 

Eb at r=r0 (solid lines) and of 

† 

˜ n /n  at r

† 

ª rc  (dashed line) for
the fluctuations of Fig. 6. Spectra are averaged over twenty realizations of the turbulence
field (density spectra are renormalized).



19

Figure 8.  (a) Profile of 

† 

Eb  at r=

† 

rG . (b) Poloidal power spectrum of 

† 

˜ f  at r=

† 

rG  (solid
line) and of 

† 

˜ n /n  at r

† 

ª rc  (dashed line). Parameters are those of Fig. 3 with 

† 

sn =3.0x10-2.
Spectra are averaged over twenty realizations of the turbulence field.
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Figure 9.  Same as in Fig. 8(b ) for 

† 

q0=40, 

† 

kr =1.0 cm-1, 

† 

sn =1.0x10-2 (a ) and

† 

sn =2.0x10-2 (b). Spectra are averaged over twenty realizations of the turbulence field.
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Figure 10. Contour plots of 

† 

Eb  for the case of Fig. 9(b).
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