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Abstract

A new scheme, based on an exact separation between adiabatic and nonadiabatic elec-
tron responses, for particle-in-cell (PIC) simulations of drift-type modes is presented. The
(linear and nonlinear) elliptic equations for the scalar fields are solved using a multigrid
solver. The new scheme yields linear growth rates in excellent agreement with theory and
it is shown to conserve energy well into the nonlinear regime. It is also demonstrated that
simulations with few electrons are reliable and accurate, suggesting that large-scale, PIC
simulations with electron dynamics in toroidal geometry (e.g. tokamaks and stellarators
plasmas) are within reach of present-day massively-parallel supercomputers.
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1 Introduction

It is well known that low-frequency, small-scale instabilities (eg. drift waves, Ion Temperature
Gradient-driven (ITG) modes) are major contenders for the anomalous, cross-field transport
observed in tokamaks [1–3] and stellarators [4]. Although a considerable amount of theoretical
and numerical work has been published on the topic of ion-driven microturbulence, the numerical
study of electron dynamics for slow, drift-type modes in realistic geometries (e.g. tokamak and
stellarator plasmas) has received much less attention. However, the accurate modeling of electron
physics represents a most relevant challenge in turbulence simulation research, since electrons
are expected to play a key role in the turbulence level and associated transport.

The treatment of electrons in particle-in-cell simulations is made difficult due to the fact that
the electrons move ∼√mi/me � 1 times faster than the ions. However, for drift-type modes [2,
3], the bulk of the electrons respond adiabatically to the waves and it may be advantageous to
focus on the nonadiabatic part of the electron response. In this paper, we introduce the splitting
scheme, a scheme which naturally segregates the adiabatic part of the electron response from its
nonadiabatic part. It shown that, for the same physical and numerical parameters, the splitting
scheme yields more accurate linear growth rates and has better energy conservation properties
that the conventional δf scheme [6]. There is ongoing effort to extend the present scheme to the
case of electromagnetic perturbations.

The paper is organized as follows; in section 2, we motivate and describe the splitting scheme;
linear and nonlinear field equations are also given. The nonlinear elliptic problems arising in the
splitting scheme are solved using a multigrid technique, as discussed in section 3; in addition,
the multigrid particle-in-cell algorithm is given in the same section. Section 4 is devoted to the
numerical results; a model problem is solved to test the multigrid Poisson solver. Various aspects
related to nonlinear saturation through mode coupling, diffusion in velocity space and energy
conservation are also discussed. Concluding remarks are presented in section 5.

2 Splitting Scheme

In this section, we introduce the splitting scheme to model electrostatic drift waves in shear-
less slab geometry. The model equations are the collisionless, electrostatic, gyrokinetic Vlasov
equation, in the long-wavelength limit,

dFj

dt
≡ ∂Fj

∂t
+
(
v||b̂0 + VE

)
·∇Fj − qj

mj
b̂0·∇Φ

∂Fj

∂v||
= 0 , (1)

where b̂0 = B0/B0 is a unit vector and VE = cb̂0×∇Φ/B0 is the E×B drift velocity. The
confining magnetic field is taken to be of the form B0 = B0 (ẑ + θŷ) where θ is a small parameter.
Although the standard δf scheme works well for the ion dynamics, an accuracy problem arises
when the scheme is used to treat the electron dynamics. As discussed in the Introduction, the
problem is, of course, related to the fact that the bulk of the electrons move much faster than
the ions; however, for low-frequency modes, only a subset of the electron markers interact with
the waves. Therefore, it is natural to separate the electrons into two groups (adiabatic and
nonadiabatic) as to reflect their different responses to the low-frequency waves. To do so, we
write the distribution Fj as

Fj = H (Φ) FMj + hj , (2)



where FMj is the Maxwellian distribution for particle species j given by

FMj =
n0√

2πVthj

exp

(
−1

2

v2
||

V 2
thj

)
, (3)

where n0 is the background density and Vthj =
√

Tj/mj is the thermal velocity for species j.
In Eq.(2), H (Φ) is a yet undetermined function of the electrostatic potential. The so-called
nonadiabatic part of the distribution function, hj, is governed by

dhj

dt
= −H VE·∇FMj︸ ︷︷ ︸

1

−v||∇||Φ
(

H ′ +
qj

Tj

H

)
︸ ︷︷ ︸

2

FMj − H ′FMj
∂Φ

∂t︸ ︷︷ ︸
3

, (4)

where a prime denotes a derivative with respect to Φ and the relation VE·∇Φ = 0 has been
used. Term 1 represents the drive from the free energy whereas term 2 accounts for the parallel
free streaming and the parallel force. Demanding that term 2 vanishes, we obtain

Fj = exp

(
− qj

Tj
Φ

)
FMj + hj . (5)

As it will be shown in the next sections, it is numerically more efficient to consider the nonadi-
abatic response (normalized to F ) instead of the full distribution itself; the quantity of interest,
for particle species j, is W j(x, v, t) ≡ hj(x, v, t)/Fj(x, v, t). In the spirit of particle methods, a
set of markers is introduced in order to sample the phase space; each marker k has an associated
weight wjk, and W j(x, v, t) can be approximated as [5]

W j(x, v, t) =

k=Nj∑
k=1

wjk(t)δ (x − xjk(t)) δ (v − vjk(t)) ,

where Nj is the number of markers of species j. The main computational effort is now reduced
to the computation of the trajectories {xjk(t), vjk(t), wjk(t); ∀j, ∀k}. The equation governing the
weight associated with the nonadiabatic part of the distribution function can be easily derived
using Eqs.(1,5)

dwjk

dt
= (1 −wjk)

(
VE·κj +

qj

Tj
ϕ

)
(6)

where ϕ ≡ ∂Φ/∂t and d/dt denotes the Lagrangian derivative (that is the derivative along the

marker trajectory) . Here, κj = κ
[
1 − ηj

2

(
1 − v||2

)]
, v|| = v||/Vthj , κ = −∇n0/n0, Ln =

− (d ln n0/dx)−1, LTj = − (d ln Tj/dx)−1 and ηj = Ln/LTj . By construction, the contribution
due to the free streaming markers has been removed from the weight equation (See Appendix
for a comparison with the standard δf scheme [6]). Representation (5) implies the computation
of an additional scalar field, ϕ, as it is apparent in the weight equation (6). Taking the time
derivative of the gyrokinetic Poisson (in the long-wavelength limit)

e2

Te
n0ρ

2
s∇2

⊥Φ = −ρ ≡ e

∫ +∞

−∞
(Fe − Fi) dv|| , (7)



we obtain e2Te
−1n0ρ

2
s∇2

⊥ϕ = −∂ρ/∂t. In turn, the quantity ∂ρ/∂t can be obtained by taking
the time derivative of the zeroth-order velocity moment of the Vlasov equation, Eq.(1), with the
result of

∂ρ

∂t
= −VE·∇ρ −∇||J|| ,

where J|| is the parallel current density. In gyrokinetic units (ωcit 7→ t; v||/cs 7→ v||; ρsκ 7→ κ;

ρs∇ 7→ ∇; eΦ/Te 7→ Φ, together with the definitions of cs =
√

Te/mi , ωci = eB0/(mic) and
ρs = cs/ωci), the elliptic equation governing ϕ is given by

∇2
⊥ϕ = VE·∇ρ + ∇||J|| , (8)

whereas the gyrokinetic Poisson equation becomes

∇2
⊥Φ −

(
1 +

1

τ

)
Φ =

∫ +∞

−∞
(he − hi) dv|| + Q (Φ) , (9)

where Q (Φ) ≡ exp (Φ)− exp (−Φ/τ )− (1 + 1/τ ) Φ and τ = Ti/Te. Eq.(9) has been obtained by
using representation (5) in Eq.(7). In particular, the electron and ion distribution functions are
(in gyrokinetic units)

Fi = exp

(
−Φ

τ

)
FMi + hi ,

Fe = exp(Φ) FMe + he .

Substituting these expressions in Eq.(7) and integrating over velocity space, one gets

∇2
⊥Φ = exp (Φ) − exp (−Φ/τ ) +

∫ +∞

−∞
(he − hi) dv|| .

Subtracting (1+1/τ )Φ from both sides of the above equation one obtains Eq.(9). Note that the
Maxwellian part of Fj does not contribute to the current density since the odd moments of FMj

vanish

+∞∫
−∞

FMjv
2p+1
|| dv|| ≡ 0 ,

for p = 0, 1, 2, · · ·. In summary, the equations describing the splitting scheme are Eq.(6) for the
nonadiabatic weight, the elliptic equations (9,8) for Φ and ϕ = ∂Φ/∂t, respectively, and the
equations of motion (in gyrokinetic units)

dr

dt
= v||b̂0 + b̂0×∇Φ , (10)

dv||
dt

= −Zj
mi

mj
∇||Φ . (11)

Note that the splitting scheme has been used for both ions and electrons. However, the splitting
scheme is most useful for the electron population for reasons mentioned in the Introduction. In
addition, note that the scheme presented here requires the solution of two field equations for Φ



and ϕ. The justification for this approach is that a finite difference approximation of ϕ = ∂Φ/∂t
in the right-hand side of Eq.(6) has been found to be numerically unstable.

In order to benchmark our multigrid particle-in-cell we compare the measured linear growth
rate (computed from the time evolution of the electrostatic potential) with the theoretical linear
growth rate. In order to determine the linear dispersion relation, one linearizes Eq.(4) and sub-
stitutes the resulting expressions for he and hi in the definitions of ρ and J||. Upon linearization
of the field equations, Eqs.(8,9), one obtains the linear dispersion relation of(

1 +
1

τ
+ b

)
ω = −ω

[
ζeZ (ζe) +

1

τ
ζiZ (ζi)

]
+ ω? [ζeR (ζe) − ζiR (ζi)] , (12)

where R (ζj) ≡ (1 − ηj/2) Z (ζj)+ηjζj [1 + ζjZ (ζj)] /2, ζj ≡ ω/
(√

2k||Vthj

)
, b = ky

2ρs
2 and Z(ζ)

is the plasma dispersion function of Fried and Conte [7] with argument ζ. The dispersion relation
(12) is exactly that obtained by Horton using a standard δf -type approach [3].

3 Numerical Method

This section is divided in two parts: the first part deals with the numerical algorithm, whereas
the second part describes the multigrid solver used to solve the nonlinear elliptic governing the
electrostatic potential Φ [Eq.(9)].

3.1 Numerical Algorithm

The numerical algorithm can be divided in three fundamental steps. In the first step, one
computes the zeroth and first order velocity moments of the perturbed parts of the ion and
electron distributions; these quantities are used to determine the charge density, ρ, and the
parallel current, J||, that act as source terms in the field equations for Φ and ϕ [see Eq.(9) and
Eq.(8), respectively]. The second step involves the solution of the linear and nonlinear elliptic
equations governing Φ and ϕ [Eq.(9,8)]. The third step is the ‘particle push’ (strictly speaking,
the marker push): the equations of motions [Eqs.(10,11)] and the marker weight equation [Eq.(6)]
are advanced by one time step. Note that the marker weights wjk carry the information about
the perturbed distribution function (recall the definition of the marker weight: wjk ≡ hj/Fj).
The algorithm can be summarized as follows:
Multigrid Particle-in-cell Algorithm

• 1. Grid Deposition: Compute the charge density and the parallel current density on
the grid:

ρ ∝
∫ +∞

−∞
(hi − he) dv|| ,

J|| ∝
∫ +∞

−∞
v|| (hi − he) dv|| ;

• 2. Field Solve: Solve the elliptic equations for Φ and ϕ using a multigrid solver;

• 3. Particle Push: Advance the position in configuration space, the velocity and the
weight for each marker;

• 4. Goto 1 (repeat N times).



Here, N denotes the total number of time steps. The time advance (step 3) is carried out using
a second-order Runge-Kutta algorithm. For example, consider the evolution equation for the
marker weight, Eq.(6), which can be written as

dwjk

dt
= Sjk ,

where

Sjk ≡ (1 − wjk)

(
VE·κj +

qj

Tj

ϕ

)
.

Note that Φ (required in VE ∝ ∇Φ) and ϕ in the above equation are evaluated at the particle
position by using linear interpolation from the grid quantities. If n denotes the current time
step, the marker weight at the next time step is obtained from

• w
(n+ 1

2
)

jk = w
(n)
jk + ∆t

2
S

(n)
jk ,

• w
(n+1)
jk = w

(n)
jk + ∆tS

(n+ 1
2

)

jk .

The computation of the intermediate quantity S
(n+ 1

2
)

jk is carried out through steps 1 (grid depo-
sition) and 2 (field solve) in the multigrid PIC algorithm. The equations of motions [Eqs.(10,11)]
are advanced in time using the same method. The equation of motions and the marker weight
equation are advanced with a time step ∆t such that

ω∆t � 1 ,

where ω is the typical frequency of the mode of interest. Drift waves are low-frequency waves
with ω � ωci; in practice a normalized time step, ∆t ≡ ωci∆t, of about one or less is sufficient
to resolve all the modes of interest. Better energy conservation can of course be achieved by
using small time steps.

At the beginning of the simulation, the markers are distributed randomly in configuration
space; their velocities are determined from a Maxwellian distribution [Eq.(3)]. A t = 0, the
marker weights, which are related to the amplitude of the perturbed distribution function, are
given by

wjk =

(
ξj − 1

2

)
ε , (∀j)

where ξj is a random number uniformly distributed between 0 and 1, and ε is a small parameter
(typically ε = 10−3).

3.2 Multigrid Poisson Solver

One consequence of the splitting scheme is that the original (linear) gyrokinetic Poisson equation,
Eq.(7), is transformed into a nonlinear elliptic problem, Eq.(9).

It can be argued that the nonlinear term, given by Q (Φ), in the new form of the gyrokinetic
Poisson is small [i.e. O (|Φ|2)] and that it can be neglected. However, higher-order terms such
Φ2, Φ3, ..., although small in amplitude, do generate shorter wavelength modes. Short wavelength
modes must be retained when considering the energy conservation associated with any new
algorithm. Although the original Poisson equation, Eq.(7), can be solved using Fast Fourier



Transform (FFT) techniques, this is not true of Eq.(9) which contains an infinite number of
nonlinear terms. Therefore, we must resort to grid-based techniques such as relaxation methods.
In this paper, we use a multigrid solver to solve the elliptic equations governing Φ and ϕ.

The fundamental idea behind the multigrid method [8,9] is to solve modified problems using
different scales (grids) in order to suppress error components of different scales. Basic iterative
methods (e.g. Jacobi method, Gauss-Seidel method,...) are very efficient at damping short
wavelength error components but converge poorly for the long wavelength error components.
For clarity, we consider the following model problem of a configuration with period L

LF ≡ d2F

dθ2
= S (θ) , (13)

where θ ≡ 2πx/L is an angle-like coordinate with period 2π and S(θ) is a known source term.
The uniform computational grid nodes has Nθ nodes. Problem (13) can be defined on a set of
overlapping grids (or levels) as

L(p)F (p) = S(p) , (14)

where p = 0, 1, · · · , Q, and Q is the total number of levels compatible with the original number
of grid points Nθ; the grid spacing on the finest grid (p = 0) is ∆θ = 2π/Nθ, whereas the grid
spacing on coarser grids is δθ = 2p∆θ (for p > 0). If f denotes the exact solution of Eq.(13),
that is f = L−1S, and if F denotes an approximation to the exact solution, then the algebraic
error, e ≡ f − F , and the residual r ≡ S − LF and related through the residual equation

Le = r
(
or L(p)e(p) = r(p) .

)
(15)

If A(p) denotes an approximation to L(p)−1
then F (p) = A(p)S(p); in general, the approximate

solution F (p) will depend on the initial guess F
(p)
0 . Thus

F (p) = A(p)
(
S(p); F

(p)
0 ; νp

)
, (16)

where νp is the number of relaxation sweeps on level p and F
(p)
0 is the initial guess. We define the

intergrid transfer operators from coarse grid to fine grid , I (p + 1 7→ p) (prolongation operator),
and from fine grid to coarse grid, I (p 7→ p + 1) (restriction operator). In this paper we focus
our attention on the so-called (multigrid) V cycle algorithm; in the V cycle, one proceeds from
the finest grid (p = 0) to the coarsest grid (p = Q), and then back to the finest grid. The V
cycle can be cast in the following algorithmic form of
MultiGrid V cycle

F (p) = A(p)
(
S(p); F

(p)
0 ; νp

)
r(p) = S(p) − L(p)F (p) ; p = 0, 1, · · · , Q − 1

S(p+1) = I (p 7→ p + 1) r(p)

..... . ................................ (17)

F
(p)
0 ⇐= F (p) + I (p + 1 7→ p) F (p+1)

F (p) = A(p)
(
S(p); F

(p)
0 ; νp

)
The dotted line indicates the bottom of the V cycle. For a nonlinear problem (when the right-
hand side of Eq.(13) depends nonlinearly on F or its derivatives), one can simply use Newton’s
method to linearize the right-hand side; typically a few Newton iterations are required.



4 Numerical Results

In this section, a model problem is used to illustrate the efficiency of the multigrid Poisson
solver. Linear growth rate measurements, which are used as a tool to benchmark the code, are
then presented. The comparison with theory is also discussed for a nonlinear case (nonlinear
saturation due to the parallel nonlinearity). The advantages of the splitting scheme (noise
free simulations, small number of markers per cell and good conservation properties) are also
illustrated with specific numerical examples. The characterization of the drift wave turbulence
in velocity space is also discussed.

In order to illustrate the usefulness and the efficiency of the multigrid Poisson solver, consider
Eq.(13) with a source term of the form

S (θ) = −
M∑

q=1

q2
[
α̂q cos (qθ) + β̂q sin (qθ)

]
, (18)

which corresponds to the exact solution

f (θ) =
M∑

q=1

α̂q cos (qθ) +
M∑

q=1

β̂q sin (qθ) , (19)

and M is the total number of modes; such exact solution allows us to ‘tune’ specific modes
and study the performance of the multigrid solver for short-, intermediate- and long-wavelength
modes. For the present case, we have chosen M = 12 modes with amplitudes α̂q = β̂q = 1, for
q = 1, 2, · · · , M . The initial profile (on the finest grid) is chosen as

F0(θ) = π2 sin (θ/2) . (20)

Figure 1 shows the L2 norm of the residual as a function of the number of the V cycles for a
grid with Nθ = 256 nodes. The number of relaxations per level is kept fixed at ν = 4; the basic
solver on each level is the damped Jacobi method with damping parameter ω = 0.6. We note
the sharp decrease in the L2 norm of the residual after a single V cycle. The discretization error
is reached after 9 V cycles. As a comparison, it takes approximately 7000 iterations to solve the
same problem with the same accuracy when using a single-grid algorithm! This difference in
computational efficiency between single-grid algorithms and multigrid algorithms becomes more
acute when the number of unknowns increases. The multigrid solver described in the previous
section is now used to compare the standard δf scheme and the splitting scheme for the case of
electrostatic drift waves.

We first discuss some linear simulation results. Figure 2 shows the linear growth rate obtained
using the δf scheme (triangles) and the splitting scheme (squares). The plain line is the numerical
solution (based on Muller’s algorithm [10] in the complex ωr −γ plane) of the dispersion relation
(12); the parameters are: Ni = 6765 (number of ion markers); Ne = 6765; system length L = 8
for a grid with 64 nodes; the time step step is ∆t = 1.0. The magnetic field tilt is θ = 0.01, and
the electron and ion temperature-gradient parameters are ηe = ηi = 0. The driving parameter,
κ = ρs/Ln, has been varied between 0.05 and 0.13.

For the splitting scheme, the gyrokinetic Poisson equation, Eq.(9), has been solved using the
multigrid solver described above. Newton’s method is used to treat the term Q (Φ) in Eq.(9);
typically 2 to 3 Newton iterations are sufficient for convergence. For all the simulations presented
in this paper, the multigrid relaxations have been carried out with a set of 6 V cycles, with ν = 4
relaxations on each grid level.



In Figure 2, the splitting scheme yields a linear growth in excellent agreement with the
theory; the standard δf scheme, however, is quite inaccurate even when the drive is strong. If
the number of markers is increased, both the δf scheme and the splitting scheme become more
accurate since the sampling of phase space is more detailed. However, for a given number of
markers, the performance of the δf scheme always lags behind the performance of the splitting
scheme; in fact, ‘imperfect’ splitting schemes which involve the parallel velocity in the marker
weight evolution must be less performant that the ‘exact’ splitting scheme described in this
paper.

Figure 3 shows the real and imaginary parts of the electrostatic potential for a nonlinear
run. The parameters are Ne = Ni = 10946 and κ = 1.15. Other parameters are the same as
in Figure 2. We note that this clean result has been obtained for a relatively small number
of markers, and it is in good agreement with the saturation level based on a three-wave mode
coupling theory [11] (see also Figure 4).

The nonlinear saturation of the most unstable modes (n ± 1) is due to the parallel nonlin-
earity; in this simplified one-dimensional model, the saturation due to the E×B advection is
absent. In a more realistic situation (e.g. toroidal plasmas), both mechanisms can contribute
to saturate the drift waves. Based on a perturbative, three-wave coupling theory (two fastest
growing modes, δf±1, and the nonlinear n = 0 response, δf0, due to mode coupling), Parker
and Lee have estimated that the saturation level of Φ(n = 1) to be [11]

|Φ|sat = 5.48

(
γ`

k||Vthe

)2

, (21)

where γ` is the linear growth rate and k|| = θk⊥ in this one-dimensional model. Figure 4 shows
the measured saturation level for the n = 1 mode as a function of the drive, κ, for a simulation
with Ni = Ne = 6765 markers. Since the linear growth rate varies linearly with the density
gradient parameter, we expect |Φ|sat ∝ κ2. The plain line in Figure 4 shows the theoretical value
[Eq.(21)] whereas the squares and the triangles denote the simulation results for Ne = Ni = 6765
and Ne = Ni = 4181, respectively. Taking into account that these simulations have been carried
out with a small number of markers, the agreement with theory is quite satisfactory. Figure
4 shows that the agreement with theory improves considerably when the number of markers is
increased from Ne = Ni = 4181 (triangles) to Ni = Ne = 6765 (squares).

In order to further assess the advantages of the splitting scheme, we have performed a scan in
mode number (i.e. a variation of k⊥ρs) and studied the linear growth rate for various number of
electron markers, Ne; this is illustrated in Figure 5. The parameters are for a grid with N = 512
nodes; the number of ion markers is kept fixed at Ni = 10946. The squares, diamonds and
triangles in Figure 5 represent the linear growth rates for the cases of Ne = 144, Ne = 233 and
Ne = 4181, respectively. The plain line shows the numerical solution of the linear dispersion
relation. Clearly, if there are not enough electron markers in the simulations, the linear response
of the plasma is incorrect. For the simulation with only Ne = 233 electron markers (diamonds
in Figure 5) the agreement with theory is very good. To put this result in perspective, this
corresponds to about Ne/N ∼ 0.5 electron markers per cell! For 8 electron markers per cell
(triangles), the linear growth rate agrees almost perfectly with the theoretical value. Therefore,
the use of splitting scheme allows us to simulate drift-type modes with few electrons; this,
of course, has a favorable impact on the development of global, particle-in-cell simulations in
general toroidal geometry.

Figures 6 and 7 offer a different point of view of the splitting scheme. The parameters are
Ni = Ne = 10946, system length L = 8, number of grid points N = 64, driving parameter
κ = 0.1 and ηe = ηi = 0. At t = 0 a group of M (� Ne) electron markers with Vmin < Vj < Vmax



is picked randomly from the initial distribution. As the simulation progresses, the position
of these markers in velocity space is followed in time; time progresses in the counterclockwise
direction for markers with positive initial velocities in Figures 6 and 7. The position in velocity
space of marker j at time step tk = k∆t is thus given by

V
(k)

xj = V
(k)

j cos θk

V
(k)

yj = V
(k)

j sin θk

where θk = k∆t/T where T is the total simulation time, and V
(k)
j is obtained from the nonlinear

simulations; for Figures 6 and 7, ∆t = 1.0 and T = 4000. In the absence of turbulence,
all markers would describe perfect circles in velocity space. Figure 6 shows the trajectories
in velocity space of 8 electrons markers chosen randomly in the interval Vmin/Vthe = 1.0 <
Vk < Vmax/Vthe = 1.2; clearly these markers do not ”see” the fastest growing mode, or even
higher-order modes; in other words, they behave adiabatically. We have repeated the simulation
with the same initial conditions in phase space and the same physical parameters for a set of
8 electron markers with Vmin/Vthe = 0.1 < Vk < Vmax/Vthe = 0.2 (Figure 7). The resonant
velocity, normalized to the electron thermal velocity, is Vr/Vthe ' ωr/

(
k||Vthe

)
= 0.144. Clearly

the slow electrons interact strongly with the waves in this case as their initial velocities are
close to the resonant velocity ωr/k||. Figures 6 and 7 suggest that the diffusion in velocity
space is strongly anisotropic. In order to quantity this assertion, one can extend the random
walk argument usually used in configuration space to the velocity domain. One can define the
diffusion coefficient in velocity space as

Dv = lim
t→∞

Ne∑
k=1

(∆Vk)
2

2Nt
(22)

where ∆Vk(t) = Vk(t)−Vk(0) is the change in velocity of marker k in time t. The velocity space
diffusion coefficient as a function of time for a simulation with Ne = Ni = 10946 markers is shown
in Figure 8. For the parameters of Figure 8, the typical growth time associated with the fastest
growing mode is τ` ∼ 1/γ` ≈ 330 (as before, γ` denotes the linear growth rate). Interestingly, Dv

saturates after approximately 14 growth times; the reason for this slow saturation is presumably
due to the appearance of short wavelength modes that ultimately ‘untrapped’ trajectories such
as that shown in Figure 6. As mentioned earlier, we expect the diffusion in velocity space to be
strongly anisotropic. Consider a subset M � Ne of electron markers with initial velocities in
the interval Vmin < Vk(0) < Vmax and define

D̂v (Vmin, Vmax) ≡ lim
t→∞

M∑
k=1

(∆Vk)
2

2Mt
(23)

Clearly, D̂v (−∞, +∞) = Dv when M = Ne. Table 1 shows the velocity space diffusion coefficient

(23) (in units of c2
sωci). The strong diffusion takes place near the resonant velocity, Vr , and D̂v

drops dramatically away from Vr .
We complete our description of the splitting scheme by considering the overall energy con-

servation. Here again, it is convenient to compare the splitting scheme with the well-known δf
scheme [6] (Appendix). Figure 9 shows the kinetic energy (dashed line), potential (dotted line)
and the total energy (plain line) obtained for a δf simulation using Ni = Ne = 6765 markers. A
slow but steady rise in the total energy is observed. Of course, the energy conservation can be
improved by increasing the number of markers per cell. Figure 10 shows the energy evolution



obtained for the splitting scheme for the same parameters and the same initial conditions as
those of Figure 9. The total energy does not display the steady rise observed in the δf scheme
and its overall magnitude is smaller than that of the δf scheme case.

5 Concluding Remarks

The accurate treatment of electron dynamics in particle-in-cell simulations represents a major
challenge since the fast electrons, Vthe/Vthi ∼

√
mi/me � 1, imply a stringent condition on the

time step. However, for low-frequency modes [2,3] that are relevant to the anomalous transport
in tokamaks [1] and stellarators [4, 12], the bulk of the electrons do not ”see” the waves, that is,
they respond adiabatically. Based on this observation, we have developed the splitting scheme,
which segregates electrons into two subgroups (adiabatic electrons and nonadiabatic electrons).
One consequence of the splitting algorithm is that nonlinear elliptic equations have to be solved;
the solution of such nonlinear elliptic problems is best addressed using a multigrid solver.

It has been shown that the splitting scheme yields more accurate linear growth rates as those
obtained with the conventional δf scheme [6], and that simulations with few electron markers
give satisfactory results. The favorable numerical trends of the splitting scheme are also reflected
in the overall energy conservation.

This paper is part of an ongoing project for the self-consistent treatment of electron dynamics
in large-scale, particle-in-cell simulations of tokamak and stellarator plasma microturbulence.
Although a relatively simple model was presented in this paper, the main conclusion is that
the multigrid particle-in-cell approach offers an attractive path for the simulation of plasma
microturbulence, as the computation work scales roughly linearly with the number of markers
and the number of grid points in configuration space, even for three-dimensional plasmas.
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Appendix: Weight Equation for the Standard δf Scheme

In this Appendix, we derive the weight equation for the standard δf scheme. We substitute the
representation of

Fj = FMj + δfj ,

where FMj is the Maxwellian distribution, in the collisionless, Vlasov equation (1) and use(
∂

∂t
+ v||b̂0·∇

)
FMj = 0 ,

and ∇FMj = −κjFMj to show that (in gyrokinetic units)

dδfj

dt
=
(
VE·κj + σjv||∇||

)
FMj ,

where σj ≡ ZjTe/Tj. The equation governing Wj ≡ δfj/Fj follows immediately from the above
equation

dWj

dt
= (1 − Wj)

[(
b̂0×∇Φ

)
·κj − σjv||∇||Φ

]
.
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Vmin/Vthe Vmax/Vthe D̂v

0.0 0.2 4.9 × 10−4

0.2 0.4 1.5 × 10−4

0.4 0.6 2.7 × 10−6

0.6 0.8 1.1 × 10−6

0.8 1.0 5.5 × 10−7

1.0 1.2 3.5 × 10−7

Table 1: Velocity space diffusion coefficients in various velocity layers.



Figure 1 L2 norm of the residual as a function of the number of V cycles (iterations) for a grid
with Nθ = 256 grid points. The number of relaxation sweeps on each level is ν = 4 and
the Jacobi damping parameter is ω = 0.6. The initial profile is given by Eq.(20).

Figure 2 Linear growth rate for the standard δf scheme (triangles) and for the splitting scheme
(squares) as a function of κ = ρs/Ln. The plain line is the numerical solution of the linear
dispersion relation. The parameters are: Ne = Ni = 6765, on a grid of length L = 8 with
64 grid points; ηe = ηi = 0 and θ = 0.01. Only the N = 1 mode (k⊥ρs ' 0.78) is retained
in the simulation. The initial configuration in phase space for the splitting scheme run and
the δf run are identical.

Figure 3 Time history of the real (plain line) and imaginary (dotted line) parts of the n = 1
mode based on the splitting scheme (nonlinear run).

Figure 4 Saturation level of the Parker-Lee three-wave mode coupling theory [11] (plain line)
compared with the measured values for a set of Ne = Ni = 6765 markers (squares) and for
a set of Ne = Ni = 4181 markers (triangles) as a function of the drive, κ.

Figure 5 Linear growth rate as a function of k⊥ρs for a set of Ni = 10946 ion markers; the
computational grid has N = 512 nodes. The number of electron markers is Ne = 144
squares), Ne = 233 (diamonds) and Ne = 4181 (triangles); the plain line is the numerical
solution (using Muller’s algorithm [10]) of the linear dispersion relation, Eq.(12). Other
parameters are κ = 0.15, ηe = 0 and ηi = 0.

Figure 6 Trajectories of a set of 8 electron markers in velocity space (picked randomly from
the initial distribution function) with initial velocities 1.0 < Vk(0)/Vthe < 1.2. The number
of ion and electron markers is Ne = Ni = 10946; other parameters are κ = ρs/Ln = 0.1,
ηe = ηi = 0, L = 8 and N = 64.

Figure 7 Trajectories of a set of 8 electron markers in velocity space (picked randomly from
the initial distribution function) with initial velocities 0.1 < Vk(0)/Vthe < 0.2. The number
of ion and electron markers is Ne = Ni = 10946; other parameters are κ = ρs/Ln = 0.1,
ηe = ηi = 0, L = 8 and N = 64. The resonant velocity is Vr/Vthe ' ωr/

(
k||Vthe

)
= 0.144.

Figure 8 Velocity space diffusion coefficient [Eq.(22)] for a nonlinear simulation with Ni =
Ne = 10946 markers. The time step is ∆t = 1.0; the typical growth time of the fastest
growing mode is τ` ∼ 1/γ` ' 330.

Figure 9 Kinetic (dashed line), potential (dotted line) and total (plain line) for a nonlinear
simulation with Ni = Ne = 6765 markers using the δf scheme.

Figure 10 Kinetic (dashed line), potential (dotted line) and total (plain line) for a nonlinear
simulation with Ni = Ne = 6765 markers using the splitting scheme, using the same initial
conditions and physical parameters as in Figure 9.
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